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Rho kinase (ROCK) is a serine/threonine kinase and a downstream target of the
small GTPase Rho. The RhoA/ROCK pathway is associated with various neuronal
functions such as migration, dendrite development, and axonal extension. Evidence
from animal studies reveals that RhoA/ROCK signaling is involved in various central
nervous system (CNS) diseases, including optic nerve and spinal cord injuries, stroke,
and neurodegenerative diseases. Given that RhoA/ROCK plays a critical role in the
pathophysiology of CNS diseases, the development of therapeutic agents targeting this
pathway is expected to contribute to the treatment of CNS diseases. The RhoA/ROCK
pathway mediates the effects of myelin-associated axon growth inhibitors—Nogo,
myelin-associated glycoprotein (MAG), oligodendrocyte-myelin glycoprotein (OMgp), and
repulsive guidance molecule (RGM). Blocking RhoA/ROCK signaling can reverse the
inhibitory effects of these molecules on axon outgrowth, and promotes axonal sprouting
and functional recovery in animal models of CNS injury. To date, several RhoA/ROCK
inhibitors have been under development or in clinical trials as therapeutic agents for
neurological disorders. In this review, we focus on the RhoA/ROCK signaling pathway
in neurological disorders. We also discuss the potential therapeutic approaches of
RhoA/ROCK inhibitors for various neurological disorders.
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INTRODUCTION
Because of the complexity of the CNS and its limited capacity
to regenerate on its own, the CNS is one of the most difficult
organs to repair after an injury. Various extrinsic and intrin-
sic factors modulate the onset, severity, and progression of CNS
diseases (Yiu and He, 2006). Therapeutic benefits seem to be
achieved for diverse CNS diseases by interfering with common
targets or pathways. It is evident that lesions to the adult CNS in
animals activates RhoA/ROCK signaling pathway and this path-
way inhibits axon growth and sprouting. Therefore, this pathway
is considered to be a potential therapeutic target for CNS diseases.

Rho family proteins are important regulators of actin dynam-
ics, and regulate cellular shape and motility (Jaffe and Hall,
2005). Multiple extrinsic factors, including myelin-associated
inhibitors and RGM, induce the activation of guanine nucleotide
exchange factors (GEFs), which promote the exchange of guano-
sine diphosphate (GDP) for guanosine triphosphate (GTP) bind-
ing, thus activating RhoA (Filbin, 2003; Yiu and He, 2003; He
and Koprivica, 2004). The GTP-bound form of RhoA causes
ROCK activation. RhoA/ROCK activation, in turn, activates
downstream effectors, which regulate cytoskeletal reorganization
such as growth cone collapse and neurite outgrowth inhibition
(Lehmann et al., 1999). Several studies have demonstrated the
involvement of the RhoA/ROCK pathway in the pathophysiology
of neurological disorders such as spinal cord injury (SCI), optic
nerve injury, stroke, and inflammatory CNS diseases (Mueller
et al., 2005; Yiu and He, 2006).

After injury, the adult mammalian CNS shows limited
regrowth capacity. It has been considered that multiple factors,
including the weakness of intrinsic growth capacity, the inhibitory
extrinsic environment, and neuronal vulnerability after lesion,
cause regenerative failure in the adult CNS. In contrast, the axons
in the peripheral nervous system (PNS) or embryonic nervous
system show the capacity to regenerate. The difference in the
surrounding environment between the CNS and PNS seems to
be one of the major causes of limited regeneration of injured
CNS axons. In the CNS, axons are ensheathed by myelin formed
by oligodendrocytes. When myelinated fibers are damaged after
injury, injured CNS axons are exposed to myelin debris that con-
tains inhibitory molecules for axonal regrowth. These inhibitory
molecules induce the activation of RhoA/ROCK in neurons. In
addition, the developmental guidance molecules such as ephrin
B3 and semaphorin 4D (Sema4D/CD100) are also expressed in
CNS myelin, suggesting that they are involved in the inhibitory
effect of CNS myelin (Moreau-Fauvarque et al., 2003; Benson
et al., 2005). Further, the glial scar formed by reactive astro-
cytes also inhibits axonal regrowth by releasing axonal inhibitory
molecules such as chondroitin sulfate proteoglycans (CSPGs).
CSPGs also trigger the activation of RhoA/ROCK, resulting in
outgrowth inhibition. Thus, multiple axon growth inhibitory
molecules converge on RhoA/ROCK in neurons. In this section,
we summarize the molecular signals mediated by axon growth
inhibitors. There are at least two members of the ROCK fam-
ily, ROCK-I and ROCK-II (Nakagawa et al., 1996). Both of
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them contain an amino-terminal kinase domain, a Rho-binding
domain (RBD), which is located within the mid-coiled-coil-
forming domain, and a pleckstrin-homology (PH) domain with
a carboxy-terminal cysteine-rich domain (CRD) (Riento and
Ridley, 2003; Mueller et al., 2005). ROCK-II is mainly expressed
in brain and skeletal muscle, whereas ROCK-I is prominently
expressed in non-neuronal tissues such as the liver, testis, and
kidney (Nakagawa et al., 1996). Although PNS neurons are also
myelinated by Schwann cells, myelin debris in the PNS seems to
be removed much faster and more effectively compared to the
CNS (Griffin et al., 1992; George and Griffin, 1994). Further,
some of myelin-associated inhibitors such as Nogo are expressed
only in CNS myelin but not PNS myelin (Yiu and He, 2006). This
review summarizes the molecular mechanisms of CNS disorders
mediated by RhoA/ROCK signaling. We also discuss the potential
use of RhoA/ROCK inhibitors as a therapeutic strategy to treat
CNS disorders.

RhoA/ROCK SIGNALING AND AXON GROWTH INHIBITION
MYELIN-ASSOCIATED INHIBITORS
Three myelin-associated inhibitors—Nogo, MAG, and
oligodendrocyte-myelin glycoprotein (OMgp)—have been
well characterized. Nogo was identified (Chen et al., 2000;
Grandpre et al., 2000; Prinjha et al., 2000) as the putative antigen
of the monoclonal antibody IN-1 (Caroni and Schwab, 1988;
Schnell and Schwab, 1990), and neutralized the inhibitory effects
of myelin. Nogo has at least three different isoforms generated
by alternative splicing and promoter usage (Nogo-A, Nogo-B,
and Nogo-C). Nogo-A is mainly expressed in the nervous system;
Nogo-A is found in the endoplasmic reticulum, and also is
observed at lower levels on the cell surface of the myelin sheath
(Grandpre et al., 2000; Wang et al., 2002c). In contrast, Nogo-B
and Nogo-C are widely expressed outside the CNS (Huber
et al., 2002). Nogo-A/B expression is not altered significantly
after spinal cord injury (Huber et al., 2002). Nogo has two
transmembrane domains, and these domains are separated by
a 66-amino acid loop, Nogo-66, which is shared by all three
isoforms. Nogo-66 is one of the inhibitory domains of Nogo and
causes growth cone collapse (Fournier et al., 2001).

MAG was the first identified potent inhibitor of neurite out-
growth (McKerracher et al., 1994; Mukhopadhyay et al., 1994).
It is a transmembrane protein with five immunoglobulin-like
domains in its extracellular region, and is localized in both
PNS Schwann cells and CNS oligodendrocytes of myelin sheaths.
MAG is required for the formation and maintenance of myelin
(Quarles, 2007). MAG has bidirectional effects on axonal growth;
in young neurons, MAG promotes axonal growth, whereas in
older neurons, it inhibits axonal growth (Johnson et al., 1989;
Salzer et al., 1990; McKerracher et al., 1994; Mukhopadhyay et al.,
1994; Debellard et al., 1996; Turnley and Bartlett, 1998). This
bidirectional effect of MAG on neurons seems to depend on intra-
cellular levels of cyclic AMP (cAMP). The endogenous cAMP level
is higher in young neurons than in older neurons, thus convert-
ing MAG from a promoter to an inhibitor of axonal growth (Cai
et al., 2001). Further, some studies reported the protective effects
of MAG on the neurons (Nguyen et al., 2009; Lee et al., 2010;
Kinter et al., 2012; Jones et al., 2013). Deletion of MAG reduces

corticospinal tract (CST) sprouting after pyramidotomy in vivo
(Lee et al., 2010). MAG prevents vincristine-induced axonal
degeneration in postnatal dorsal root ganglion neurons (Nguyen
et al., 2009). Thus, MAG has both inhibitory and promoting
effects on axonal growth in mature neurons.

OMgp is a glycosylphosphatidylinositol (GPI)-anchored gly-
coprotein with a leucine-rich repeat (LRR) domain (Kottis et al.,
2002; Wang et al., 2002b). OMgp is expressed in both oligoden-
drocytes and neurons (Habib et al., 1998). During development,
OMgp-null mice show impaired myelination and thalamo-
cortical projection (Gil et al., 2010; Lee et al., 2011). Although
deletion of OMgp does not improve axon regeneration after SCI
(Ji et al., 2008; Cafferty et al., 2010; Lee et al., 2010), its removal
promotes sprouting of serotonergic axons (Ji et al., 2008). The
highest level of OMgp mRNA at the lesion site is detected 1 day
after SCI (Guo et al., 2007).

These three structurally distinct proteins all bind to the
same receptor, the Nogo receptor (NgR) (Fournier et al., 2001;
Domeniconi et al., 2002; Liu et al., 2002; Wang et al., 2002b)
and the paired immunoglobulin-like receptor B (PIR-B) (Atwal
et al., 2008) (Figure 1). Among the NgR family receptor (NgR1,
NgR2, and NgR3), NgR1 was first identified. Later, NgR2 and
NgR3 were discovered as proteins bearing sequence similarities to
NgR1 (Barton et al., 2003; Lauren et al., 2003; Pignot et al., 2003)
(Figure 2). MAG can bind to NgR2 with higher affinity than to
NgR1 (Venkatesh et al., 2005). Deletion of either NgR1 or NgR2
does not affect the MAG-mediated neurite growth inhibition in

FIGURE 1 | Molecular mechanisms of inhibitory environmental

molecules in axon growth inhibition. The adult mammalian CNS shows
limited capacity for axon regeneration. Myelin-associated inhibitors such as
MAG, Nogo, and OMgp bind to NgR1 and PIR-B, whereas Nogo-A-�-20
specifically binds to S1PR2. Myelin-associated inhibitors transduce signals
to neurons through NgR, which is part of a receptor complex, including
p75NTR and Lingo-1. The ligand binding to NgR induces the activation of
RhoA/ROCK. The activation of ROCK leads to the phosphorylation of
various substrates, resulting in axon growth inhibition.
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FIGURE 2 | Nogo receptor family members and their ligand selectivity.

NgR1 interacts with MAG, Nogo, and OMgp. NgR2 binds to MAG with
high affinity, and has redundant function to NgR1 in MAG-induced neurite
outgrowth inhibition. LOTUS interacts with NgR1, and inhibits the binding
of Nogo to NgR. CSPGs bind with high affinity to NgR1 and NgR3.

sensory neurons (Worter et al., 2009). NgR1 and NgR3 bind to
CSPG, and mediate the inhibitory effect of CSPG in cultured neu-
rons (Dickendesher et al., 2012). Knockdown of NgR1 along with
NgR3, but not single knockdown of either receptor, promotes
axonal regeneration after optic nerve injury. These observations
suggest that there are redundant and compensatory mechanisms
among these receptors.

Since NgR is a GPI-anchored protein and has no intracellular
domain, NgR is considered unable to transduce signals into neu-
rons and requires a co-receptor(s). The low-affinity neurotrophin
receptor p75NTR was found to be a signal transducer of MAG
(Yamashita et al., 2002), and subsequent studies demonstrated
that p75NTR associates with NgR to form a receptor complex
for MAG, Nogo, and OMgp (Wong et al., 2002; Wang et al.,
2002a). The CNS transmembrane protein leucine-rich repeat
and Ig domain containing 1 (Lingo-1) was also identified as
an additional component of the receptor complex of NgR and
p75NTR (Mi et al., 2004). p75NTR induces the release of RhoA
from Rho GDP-dissociation inhibitor (RhoGDI), thus acting as
a RhoGDI dissociator (Yamashita and Tohyama, 2003). In addi-
tion, the RhoGEF Kalirin9 directly binds to p75NTR, and com-
petes with RhoGDI for binding to p75NTR. MAG reduces the
interaction of Kalirin9 with p75NTR, resulting in the increased
association of RhoGDI to p75NTR (Harrington et al., 2008).
This causes the activation of RhoA/ROCK signaling, leading
to growth cone collapse and axon growth inhibition. Indeed,
the ROCK inhibitor Y-27632 attenuates the inhibitory effect of
these myelin-associated inhibitors. Lingo-1 seems to also regulate
the localization of RhoGDI and the activation of RhoA (Zhang
et al., 2009). Downstream of the RhoA/ROCK signaling pathway,
inactivation of collapsin response mediator protein-2 (CRMP-
2) inhibits neurite outgrowth. CRMP-2 interacts with tubu-
lin heterodimers and facilitates microtubule assembly (Fukata
et al., 2002). Overexpression of CRMP-2 promotes axonal growth

(Inagaki et al., 2001). Upon MAG stimulation in cultured cerebel-
lar neurons, CRMP-2 is phosphorylated and inactivated by ROCK
(Mimura et al., 2006). These observations suggest that the inacti-
vation of CRMP-2 by ROCK-mediated phosphorylation inhibits
tubulin polymerization, leading to neurite outgrowth inhibition.
In addition, it is demonstrated that RhoA/ROCK pathway also
regulates actin cytoskeleton (Ohashi et al., 2000; Sumi et al., 2001;
Hsieh et al., 2006). Ser/Thr kinase, LIM (Lin-11, Isl-1, and Mec-3)
kinase is phosphorylated by ROCK, leading to the phosphory-
lation of actin depolymerization factor, cofilin. Inactivation of
cofilin by LIM kinase stabilizes the actin filament in the growth
cone, resulting in the inhibition of neurite outgrowth. Recently,
cartilage acidic protein-1b (lotus) was identified as a protein
that endogenously antagonizes NgR1 (Sato et al., 2011; Kurihara
et al., 2012). Lotus suppresses Nogo-NgR1 binding and Nogo-
induced growth cone collapse. Interestingly, lotus-deficient mice
show defasciculated lateral olfactory tracts, suggesting that lotus is
required for normal fasciculation of the specific tract in the CNS.

NgR is not to be an only receptor to mediate neurite out-
growth inhibition. Previous studies reported that genetic deletion
of NgR does not reduce neurite outgrowth inhibition by myelin-
derived proteins in vitro, nor does it enhance axon regeneration
after SCI (Kim et al., 2004; Zheng et al., 2005; Chivatakarn et al.,
2007). These observations suggest that unidentified receptors
may be involved in the neurite outgrowth inhibition induced by
myelin-derived axon growth inhibitors. Indeed, PIR-B, which is a
major histocompatibility complex (MHC) class I receptor (Takai,
2005), was identified as the second receptor that inhibits neurite
extension (Atwal et al., 2008).

The above-mentioned molecules have some functions also in
the physiological conditions. Several reports demonstrate that
NgR signaling limits synaptic plasticity. In the visual cortex, dele-
tion of NgR delayed the closure of critical period for ocular
dominance plasticity to monocular deprivation (McGee et al.,
2005). NgR1 regulates dendritic spine morphology and activity-
dependent synaptic plasticity (Lee et al., 2008). Further, post-
synaptic NgR1 limits synapse formation in the hippocampus
during CNS development through the activation of RhoA (Wills
et al., 2012). These observations indicate that NgR regulates the
proper development of the nervous system. NgR expression is
decreased specifically in the sensory-deprived cortex and in adja-
cent region after SCI (Endo et al., 2007). These results suggest the
involvement of NgR in cortical plasticity after the injury, and that
decreased expression of NgR may facilitate neural rewiring after
injury in the CNS. PIR-B was first identified to regulate ocular-
dominance plasticity (Syken et al., 2006), indicating that PIR-B
restricts neuronal plasticity in physiological conditions. Further,
a recent report demonstrates that the G protein-coupled receptor
(GPCR) sphingosine-1-phosphate receptor 2 (S1PR2) is a recep-
tor for Nogo-A, and Nogo-A restricts synaptic plasticity through
this receptor in physiological conditions (Kempf et al., 2014).
Nogo-A-�-20 (amino-Nogo), which is the N-terminal extracel-
lular region of Nogo-A, binds to S1PR2 and induces the activation
of the G protein G13, the RhoGEF LARG, and RhoA. Inhibition
of Nogo-A/S1PR2 signaling increases hippocampal and corti-
cal long-term potentiation. Thus, physiological Nogo signaling
seems to regulate synaptic plasticity.
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RGMa
Repulsive guidance molecule (RGM) also acts as an inhibitor of
axon growth (Mueller et al., 2006; Yamashita et al., 2007). RGM
is a GPI-anchored membrane-bound protein with a molecular
weight of 33/35 kDa. RGM has been shown to bind to its recep-
tor, neogenin. RGM was originally identified as a protein that
induces growth cone collapse in the chick retinotectal system dur-
ing development. Three homologs of RGM have been identified
in mouse and human, including RGMa, RGMb, and RGMc. In the
adult nervous system, RGMa has a role in inhibiting axon regener-
ation. RGMa expression is increased around the lesion after SCI.
RGMa-positive microglia/macrophages and oligodendrocytes are
observed in the lesion epicenter area. Treatment with neutralizing
anti-RGMa antibodies after SCI in rat promotes axonal regener-
ation and functional recovery (Hata et al., 2006). RGMa binds
to its receptor neogenin, and then induces the association of
UNC5B and neogenin. LARG, which is a RhoGEF, is recruited to
this receptor complex and induces RhoA activation (Hata et al.,
2009). A ROCK inhibitor indeed blocks RGMa-induced neurite
outgrowth inhibition, demonstrating that RGMa inhibits neurite
outgrowth via activation of the RhoA/ROCK pathway. The phos-
phorylation of myosin light chain (MLC) is increased after SCI.
Inhibition of myosin IIA prevents neurite outgrowth inhibition
induced by RGMa (Kubo et al., 2008). These results indicate that
ROCK induces phosphorylation of myosin light chain (MLC),
leading to myosin IIA activation, and that this effect is essential
for neurite outgrowth inhibition induced by RGMa. In addi-
tion, transcriptional coactivator LIM domain only 4 (LMO4)
is also involved in RGMa-induced RhoA activation (Schaffar
et al., 2008). LMO4 directly interacts with cytoplasmic domain of
neogenin in cortical neurons. Binding RGMa to neogenin leads
to the dissociation of LMO4 from neogenin. This dissociation
increases the interaction of LMO4 with other molecules, such as
Src homology 2-containing protein tyrosine phosphatase (SHP)-
2 (Novotny-Diermayr et al., 2005), resulting in RhoA activation.
Knockdown of LMO4 prevents RGMa-induced RhoA activation
and neurite outgrowth inhibition. Thus, RGMa induces activa-
tion of RhoA through the release of LMO4 from neogenin.

CSPGs
At the lesion site, the glial scar blocks axon regrowth. The glial scar
is mainly formed by reactive astrocytes. Although astrocytes have
been shown to generate growth-promoting molecules, they also
produce inhibitory extracellular matrix molecules such as proteo-
glycans. Proteoglycans consist of a core protein attached by sugar
moieties to a sulfated glycosaminoglycan chain with disaccharide
repeats. Astrocytes produce four types of proteoglycans, based on
the composition of the repeating disaccharide: CSPG, dermatan
sulfate proteoglycan, keratan sulfate proteoglycan, and heparan
sulfate proteoglycan. Among these, CSPGs play important roles to
inhibit axonal regeneration after injury. CSPGs include aggrecan,
brevican, neurocan, NG2, phosphacan, and versican, all of which
have chondroitin sulfate chains. In the adult mammalian CNS,
CSPGs are secreted by reactive astrocytes immediately after injury
and their expression persists for a long period (McKeon et al.,
1999; Jones et al., 2003; Tang et al., 2003). For instance, the expres-
sion of neurocan and versican is upregulated for 4 weeks after SCI.

FIGURE 3 | CSPGs and their receptors. PTPσ, LAR, which is another
member of the LAR subfamily of receptor protein tyrosine phosphatase,
and NgR1/3 act as a receptor for CSPGs. Blockade of these receptors can
reverse the inhibitory effects of CSPGs on neurite growth.

A transmembrane protein tyrosine phosphatase, PTPσ, trans-
duces CSPG-mediated inhibition of axon growth (Shen et al.,
2009) (Figure 3). CSPGs interact with the first immunoglobulin-
like domain of PTPσ. Genetic deletion of PTPσ enhances axon
sprouting to the regions containing CSPGs in the animal model
of SCI. Leukocyte common antigen-related phosphatase (LAR),
which is another member in the LAR subfamily of PTPσ, is also
identified as a CSPG receptor (Fisher et al., 2011). After SCI,
deletion of LAR reverses CSPG-induced neurite growth inhibi-
tion. Blocking LAR with a peptide enhances axonal growth of
serotonergic fibers. Further, CSPGs inhibit neurite outgrowth
through the activation of the RhoA/ROCK pathway since inhibit-
ing RhoA/ROCK signaling blocks the inhibitory effects of CSPGs
on neurite outgrowth (Dergham et al., 2002; Borisoff et al., 2003;
Monnier et al., 2003).

RhoA/ROCK INHIBITION IN ANIMAL MODELS OF CNS
DISORDERS
INHIBITION OF RhoA/ROCK SIGNALING IN SCI
It is evident that minimal axon regeneration occurs after SCI
in adult animals (Schwab and Bartholdi, 1996). Previous stud-
ies have addressed whether axon regeneration can be induced by
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pharmacological treatments or genetic manipulations that target
inhibitory axon growth signals. While the treatment of neu-
rons with MAG, Nogo, and OMgp inhibits neurite outgrowth
in vitro, it is still under debate whether they also inhibit axonal
outgrowth in the CNS in vivo. Intracerebral or Intrathecal admin-
istration of neutralizing antibodies for Nogo (designated as IN-1),
implantation of IN-1 mAb-secreting hybridoma cells (Schnell and
Schwab, 1990; Bregman et al., 1995; Brosamle et al., 2000; Merkler
et al., 2001), or NgR antagonist peptide NEP1-40 (Nogo extra-
cellular peptide, residues 1–40) enhances axonal outgrowth and
functional recovery after SCI (Grandpre et al., 2002; Li and
Strittmatter, 2003). However, it should be noted that there are
conflicting reports about the effects of genetic deletion of Nogo
or NgR on CNS injury (Kim et al., 2003, 2004; Simonen et al.,
2003; Zheng et al., 2003, 2005; Cafferty and Strittmatter, 2006;
Dimou et al., 2006). Deletion of PIR-B, which is another recep-
tor for MAG, Nogo, and OMgp, demonstrates no improvement
in axonal regeneration and motor function after SCI (Nakamura
et al., 2011). Moreover, a triple-deletion of MAG, Nogo, and
OMgp fails to facilitate the regeneration or functional recovery
after SCI compared to wild type mice (Lee et al., 2010). These
observations suggest that achieving a beneficial outcome by tar-
geting an individual ligand or receptor is difficult, presumably
because multiple signals mediate axon growth inhibition.

On the other hand, RhoA/ROCK is the shared signal among
multiple inhibitory factors. Therefore, this pathway may be a
promising molecular target for the treatment of axon regenera-
tion. It has been reported that RhoA activation is observed in the
lesion site after SCI (Dubreuil et al., 2003; Madura et al., 2004).
In addition, RhoA inactivation exerts in vivo therapeutic effects
on SCI. Treating mice with a single injection or gel foam patches
application of C3 transferase (C3), which inactivates RhoA
by ADP ribosylation of the effector domain, promotes axonal
regrowth of CST fibers after SCI, and improves locomotion
(Dergham et al., 2002; Boato et al., 2010). Further work shows
that a cell-permeable derivative of C3, C3-05, reverses RhoA acti-
vation and prevents p75NTR-dependent cell death (Dubreuil et al.,
2003). Thus, RhoA inhibition mediates axonal regrowth and neu-
roprotection, leading to functional recovery after SCI. ROCK
inhibition also causes beneficial effects on SCI. Intraperitoneal or
intrathecal treatment, or gel foam implant of ROCK inhibitors
fasudil and Y-27632 stimulate axonal regrowth and functional
recovery in a SCI model (Hara et al., 2000; Dergham et al., 2002;
Fournier et al., 2003; Sung et al., 2003). Furthermore, the pep-
tide inhibitor of p21CIP1/WAF1 (ROCK inhibitory protein) also
promotes axonal growth and functional recovery (Tanaka et al.,
2004).

INHIBITION OF RhoA/ROCK SIGNALING IN OPTIC NERVE INJURY
Previously, deleting MAG was reported to have almost no effect
on optic nerve regeneration after crush injury (Bartsch et al.,
1995). In contrast, inhibition of downstream molecules can pro-
vide an alternative approach. Inactivation of RhoA with the treat-
ment of C3 or its derivatives intravitreously, by using gel foam, or
by injection of adeno-associated viruses carrying a gene for C3
ribosyltransferase promotes in vivo axonal regrowth after optic
nerve injury (Lehmann et al., 1999; Fischer et al., 2004; Bertrand

et al., 2005). Intravitreous injections of ROCK inhibitors, includ-
ing Y-27632 and dimethyl-fasudil also improve optic nerve regen-
eration (Lingor et al., 2007, 2008). These findings indicate that
RhoA/ROCK could be a promising target for the treatment of
axon degeneration. We have recently demonstrated that inhibi-
tion of PIR-B signaling promoted optic nerve regeneration after
crush injury (Fujita et al., 2011). Upon MAG stimulation, PIR-
B interacts with tropomyosin receptor kinase (Trk) neurotrophin
receptors, which are known to promote neurite outgrowth. This
receptor complex recruits SHP, leading to dephosphorylation and
inactivation of Trk receptors. Inhibition of SHP induces axonal
regrowth after optic nerve injury. However, Pirb-knockout (KO)
mice show little to no detectable regeneration of optic nerve
fibers. Intravitreous treatment with brain-derived neurotrophic
factor (BDNF), which is a ligand for TrkB, promotes axonal
regrowth in Pirb-KO mice but not in wild type mice. These results
suggest that for axonal regeneration after optic nerve injury, both
inhibition of the negative signal and activation of the positive
signal on axon growth are required.

INHIBITION OF RhoA/ROCK SIGNALING IN STROKE AND TRAUMATIC
BRAIN INJURY
The inhibition of the RhoA/ROCK pathway also has neuropro-
tective effects after stroke. Several studies using rodent stroke
models demonstrate that inhibiting the Nogo–NgR pathway pro-
motes functional recovery (Wiessner et al., 2003; Lee et al., 2004).
As an experimental stroke model in rodents, middle cerebral
artery occlusion (MCAO) is widely used. Mice lacking NgR or
Nogo-A/B exhibit improved functional recovery after MCAO (Lee
et al., 2004). Intraventricular treatment with a purified mono-
clonal anti-NogoA antibody (7B12) 24 h after injury promotes
sprouting of corticospinal fibers and improves long-term func-
tional recovery (Wiessner et al., 2003). However, controversial
results have been reported regarding the effect of PIR-B inhibi-
tion on CNS injury. Mice lacking PIR-B show no difference in the
sprouting of CST axons and functional recovery compared with
wild type mice after traumatic brain injury or SCI (Omoto et al.,
2010; Nakamura et al., 2011). In contrast, increased crossing of
CST fibers from the intact motor cortex and improved behav-
ioral outcome could be observed after MCAO in Pirb-KO mouse
(Adelson et al., 2012). These discrepancies might be due to dif-
ferent experimental conditions such as different Pirb-KO mice or
different disease models.

There is also evidence from the human brain demonstrating
the association of the RhoA/ROCK pathway with CNS diseases. It
has been reported that RGM expression is increased in lesion and
perilesion sites in adult human brains with focal cerebral ischemia
or traumatic brain injury (Schwab et al., 2005). Furthermore, the
expression of RhoA and B at the lesion site is increased in the
autopsied tissue of humans dying from traumatic brain injury
(Brabeck et al., 2004). Indeed, mice treated with the RhoA/ROCK
inhibitors such as C3, fasudil, hydroxyfasudil, and Y-27632 sub-
cutaneously, intraperitoneally, or intravenously show increased
recovery after ischemia-induced damage (Laufs et al., 2000;
Toshima et al., 2000; Satoh et al., 2001; Rikitake et al., 2005). These
results suggest that reversing the RhoA/ROCK pathway may con-
tribute to restoration of the injured CNS network after stroke.
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INHIBITION OF RhoA/ROCK SIGNALING IN NEURODEGENERATIVE
DISORDERS
Alzheimer’s disease (AD) is characterized by pathological mark-
ers in the brain such as deposition of the beta-amyloid peptide
(Aβ) and intracellular neurofibrillary tangles. Some non-steroidal
anti-inflammatory drugs (NSAIDs) have been shown to reduce
the risk of AD development (McGeer et al., 1996; Anthony et al.,
2000; Weggen et al., 2001; Eriksen et al., 2003). It has been
reported that NSAIDs can reduce the Aβ production by block-
ing the RhoA/ROCK signaling. Inhibition of ROCK by Y-27632
reduced the level of Aβ1–42, which is more prone to aggregation
than Aβ1–40 in AD model mice (Zhou et al., 2003). In con-
trast, other studies have demonstrated that the NSAIDs reduce
the production of Aβ by the inhibiting of γ-secretase pathway
(Takahashi et al., 2003; Beher et al., 2004). Aβ is produced by
the cleavage of amyloid precursor protein (APP) by β- and γ-
secretases. In contrast, since APP cleavage by α-secretase occurs
within the Aβ sequence, the production of Aβ is avoided (Esch
et al., 1990; Sisodia et al., 1990). Inhibition of RhoA/ROCK sig-
naling by statins seems to induce APP cleavage by α-secretase,
leading to the reduction of Aβ generation (Pedrini et al., 2005).
It has been shown that NgR family members associate with APP
processing. Subcellular localization of NgR and Nogo is altered in
AD brain. Overexpression of NgR decreases Aβ generation, and
deletion of NgR in an AD model mouse increases Aβ accumu-
lation (Park et al., 2006). All three NgRs can interact with APP,
and the interaction of NgR2 with APP favors processing of APP
by β-secretase. Deletion of NgR2 in AD model mouse reduces Aβ

deposition (Zhou et al., 2011). These observations suggest that
inhibition of RhoA/ROCK signaling shows differential effects on
Aβ generation.

Further, involvement of RhoA/ROCK signaling has been sug-
gested in other neurodegenerative diseases, such as Parkinson’s
disease, Huntington’s disease, and amyotrophic lateral sclero-
sis (ALS). Oral gavage administration of fasudil in 1-methyl-
4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) mouse model of
Parkinson’s disease reduced the loss of dopaminergic neurons.
ROCK inhibition induces Akt activation, leading to neuropro-
tective effect (Tonges et al., 2012). ROCK inhibitor Y-27632
prevents the phosphorylation of profilin, leading to the inhibition
of huntingtin aggregation (Shao et al., 2008). ROCK inhibitor
and ROCK-II siRNA prevent striatal neuronal death induced by
polyQ-Huntingtin in vitro (Deyts et al., 2009). In the hSOD1G93A

mouse, which is the animal model of ALS, ROCK is upregulated
and ROCK-pMLC pathway seems to be involved in the synapse
loss (Hu et al., 2003; Sunico et al., 2011). Inactivation of ROCK
by oral gavage administration of Y-27632 improves the survival
of spinal muscular atrophy (SMA) model mice (Bowerman et al.,
2010). These observations suggest that inhibition of Rho/ROCK
pathway can be a therapeutic lead for diverse neurodegenerative
disorders.

IMMUNE SYSTEM-MEDIATED CNS DISEASES
Multiple sclerosis (MS) is characterized by inflammation,
demyelination, and axonal loss. Patients with MS exhibit various
neurological signs such as motor deficits, progressive paraly-
sis, and optic neuritis. The immune system plays a key role in

the pathogenesis of MS (Noseworthy et al., 2000; Hauser and
Oksenberg, 2006; Trapp and Nave, 2008; Krumbholz and Meinl,
2014). However, the precise pathogenesis of MS is unclear. It has
been historically considered that a patient’s own immune system
attacks CNS myelin as foreign and then destroys it; this destruc-
tive process induces axonal damage. One possible mechanism
in the pathogenesis of MS is the migration of leukocytes into
the CNS, which induces inflammatory signals and CNS demyeli-
nation. Statins, drugs widely used for lowering cholesterol, are
considered to prevent the infiltration of leukocytes into the CNS.
Although statins inhibit 3-hydroxy-3-methylglutaryl coenzyme A
(HMG-CoA) reductase, they also inhibit isoprenylation of RhoA,
which inactivates RhoA (Neuhaus et al., 2004). RhoA inhibition
suppresses leukocyte infiltration into CNS in an experimental
autoimmune encephalomyelitis (EAE), which is the primary ani-
mal model of MS (Walters et al., 2002; Greenwood et al., 2003;
Hendriks et al., 2004).

Several studies have demonstrated the role of ROCK in inflam-
matory disorders such as MS (Sun et al., 2006; Yu et al., 2010;
Hou et al., 2012). The ROCK inhibitor fasudil has been shown
to inhibit the development of EAE (Sun et al., 2006). Fasudil
reduces T-cell proliferation and infiltration of inflammatory cells
into the CNS (Yu et al., 2010). The upregulation of ROCK-
II in perivascular spaces and vascular endothelial cells of the
spleen, spinal cord, and brain in EAE are all inhibited by fasudil
treatment. The molecular mechanism underlying the inhibitory
effect of fasudil may include regulating cytokine production.
Compared with a control group, fasudil treatment in EAE mice
downregulates interleukin (IL)-17, IL-6, and monocyte chemoat-
tractant protein-1 (MCP-1), whereas it upregulates IL-4 (Yu
et al., 2010). In addition, fasudil also inhibits toll-like receptor-
4 (TLR-4), phosphorylation of nuclear factor κB (NF-κB)/p65,
and inflammatory cytokines such as IL-1β and tumor necrosis
factor (TNF)-α, and enhanced IL-10 production in spinal cord
(Hou et al., 2012). These observations suggest that inhibition
of the RhoA/ROCK pathway may contribute to neuroprotection
in MS.

T-cell activation and trafficking within the CNS have been
considered to mediate the processes in MS (Barten et al., 2010;
Hilas et al., 2010; Chastain et al., 2011). It is well established
that antigen-presenting cells (APCs) activate T cells by present-
ing MHCs to the T-cell receptor (Guermonprez et al., 2002).
Activated T cells can transmigrate across the blood-brain bar-
rier (BBB) and locate to the CNS. They are re-stimulated by
APCs, which trigger disease progression (Tompkins et al., 2002).
For example, suppression of T cells by Fingolimod (FTY720),
which is a sphingosine-1-phosphate (S1P) receptor agonist, con-
tributes to attenuation of autoimmune activity in MS (Brown
et al., 2007). Thus, suppressing the immune system can help to
slow the progression of MS. Our recent study demonstrates that
RGMa mediates T-cell activation, and inhibition of RGMa atten-
uates clinical symptoms of EAE (Muramatsu et al., 2011). We
previously found that RGMa was expressed outside the CNS, in
particular in the activated macrophages/microglia after SCI (Hata
et al., 2006). Further analysis revealed that RGMa was expressed
in bone marrow-derived dendritic cells upon stimulation with
lipopolysaccharide, and its receptor, neogenin was expressed in
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CD4+ T cells. These observations suggest that RGMa medi-
ates CD4+ T-cell activation triggered by dendritic cells. Binding
of RGMa to CD4+ T cells activates Rap1, leading to stronger
adhesion of T cells to intracellular adhesion molecule-1 (ICAM-
1). Neutralizing anti-RGMa antibody reduces the infiltration of
inflammatory cells into the CNS and blocks clinical signs of EAE.
Further, RGMa expression is increased in dendritic cells in the
brain and spinal cord of patients with MS. Neutralizing anti-
RGMa antibody inhibits the proliferation of peripheral blood
mononuclear cells prepared from patients with MS and reduces
the production of inflammatory cytokines interferon-γ (IFN-γ),
ILs-2, −4, and −17. These results suggest that RGMa is involved
in the pathogenesis of MS through the activation of CD4+ T cells,
although involvement of RhoA/ROCK remains to be determined.

RhoA/ROCK INHIBITORS
Since multiple inhibitory signals converge onto the RhoA/ROCK
pathway, identifying RhoA/ROCK inhibitors would be helpful
in the treatment of neurological disorders. The Rho inhibitor
C3 enzyme was originally identified from Clostridium botulinum
culture supernatants. C3 specifically ADP-ribosylates Rho on its
effector domain without inhibiting the activity of other members
of the Rho family. To date, seven members of C3-like trans-
ferases have been identified. The first evidence for the effect
of RhoA inhibition to promote axon regeneration in vivo was
provided by studies on an optic nerve injury model; treatment
with C3 enhances optic nerve regeneration (Lehmann et al.,
1999). Thereafter, it was demonstrated that C3 promotes axonal
regrowth and functional recovery after SCI (Dergham et al.,
2002). Treatment with C3-05, the cell-permeable form of C3,
in a fibrin matrix to the lesion site after injury shows ability
to suppress RhoA activation to a physiological level (Dubreuil
et al., 2003). Administration of BA-210 (Cethrin®), a recom-
binant fusion protein composed of C3, inactivates RhoA and
improves functional recovery after SCI in rodents (Lord-Fontaine
et al., 2008). Based on these observations, phase I/II clinical trials
of BA-210 were conducted (Fehlings et al., 2011).

Several ROCK inhibitors have also been discovered.
Isoquinoline derivatives are typical ROCK inhibitors. Fasudil
(hexahydro-1-(5-isoquinolylsulfonyl)-1H-1,4-di-azepime, also
known as HA-1077), which has the isoquinoline and the
homopiperazine ring, is widely used as a ROCK inhibitor.
Although fasudil effectively inhibits ROCK, it also inhibits several
protein kinases, including PRK2 and MSK1 (Davies et al., 2000).
Hydroxyfasudil is the major metabolite of fasudil in vivo. It is
slightly more active than the original compound and has a longer
half-life [fasudil: t(1/2) = 0.3 h, hydroxylfasudil: t(1/2) = 2.9 h]
(Chen et al., 2010). Although both fasudil and hydroxyfasudil
show low infiltration ability into the brain, preparation of either
in liposomes can improve their efficacy (Ishida et al., 2006).
Another isoquinoline derivative, dimethylfusudil (H-1152P),
was optimized on the basis of fasudil and shows higher efficacy
and selectivity for ROCK (Sasaki et al., 2002; Shimokawa, 2002).
Another type of ROCK inhibitor, 4-aminopyridine derivatives, is
also widely used. Y-27632 is one typical example. Y-27632 inhibits
both ROCK-I and ROCK-II through competitively binding to
the ATP-binding site. However, because Y-27632 also inhibits

PKA, PKC, and citron kinase (Ishizaki et al., 2000), researchers
have attempted to optimize this compound to develop more
potent and selective ROCK inhibitors. Y-39983 inhibits ROCK
approximately 30 times more effectively than Y-27632 (Uehata
et al., 1997; Tokushige et al., 2007). Y-39983 has been shown
to decrease the intraocular pressure in the animal model of
glaucoma (Nakajima et al., 2005; Tokushige et al., 2007), and
promotes axonal regeneration after optic nerve injury (Sagawa
et al., 2007).

THERAPEUTIC POTENTIAL OF RhoA/ROCK INHIBITORS
The concept of treating neurological disorders with RhoA/ROCK
inhibitors is considered as a rational therapeutic approach. A
phase I/IIa clinical trial has been completed for BA-210, the Rho
inhibitor (Fehlings et al., 2011). This clinical trial was designed
to investigate the effect of a single dose of BA-210 in patients
with acute SCI. Sixteen patients with either cervical (C4–T1) or
32 patients with thoracic (T2–T12) SCI were treated within 7
days after injury with a single dose of 0.3, 1, 3, 6, or 9 mg of BA-
210. All patients had acute, complete (i.e., American Spinal Injury
Association impairment (ASIA) scale (Steeves et al., 2007) grade
A) SCI. Inclusion criteria allowed both male and female subjects
aged from 16 to 70 years. BA-210 was applied through a fibrin-
mediated delivery system onto the dura matter at the lesion site of
SCI. This was a relatively non-invasive delivery system, and it had
been used for experimental studies in rodents (Guest et al., 1997;
Kassam et al., 2004) and spinal surgery (Nakamura et al., 2005).
The following tests and assessments were performed: vital signs,
clinical laboratory tests, computed tomography (CT) scans of the
spine, head, and abdomen, magnetic resonance imaging (MRI)
of the spine, and ASIA assessment in the pre-study period and in
the 1-year follow-up period after treatment. All doses were safe
and well tolerated, and no severe adverse effects attributable to
BA-210 were reported. ASIA assessment was used to evaluate the
neurological status of patients. The results of this clinical trial sug-
gest that the treatment of BA-210 increases neurological recovery
in patients with both cervical and thoracic SCI (Fehlings et al.,
2011). Changes in ASIA motor scores from baseline were larger
in cervical patients (18.6 ± 19.3) than in thoracic patients (1.8
± 5.1). The largest mean change in motor score was observed in
patients with cervical SCI treated with 3 mg of BA-210. Although
there was no placebo control group, this clinical trial demon-
strates some possibilities of improvement of functional recovery
by BA-210 treatment. Thus, RhoA/ROCK remains a promising
molecular target for the treatment of neurological diseases.

CONCLUSION
The evidence obtained from animal models and clinical trials
implicate that inhibition of the RhoA/ROCK pathway would be
an effective therapeutic approach for CNS disorders. However,
unresolved problems should be addressed to achieve the ther-
apeutic applications of RhoA/ROCK inhibitors. For example,
timing of administration and low drug selectivity needs to be
discussed in more detail. In the case of SCI, pharmacological
treatments in rodents are often administered within 3 days of
the injury (Rosenzweig and McDonald, 2004). However, delayed
administration sometimes can promote recovery from SCI.
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Although immediate intrathecal treatment of the NgR competi-
tive antagonist NEP1-40 has shown to improve axonal regrowth
after hemisection injury (Grandpre et al., 2002), delayed treat-
ment for up to 7 days after SCI also demonstrated anatomical
and functional recovery (Li and Strittmatter, 2003). As men-
tioned above, the ROCK inhibitor fasudil inhibits both ROCK-I
and ROCK-II. Since ROCK-I is mainly distributed in non-
neuronal tissues, fasudil may cause some unwanted side effects or
induce beneficial effects through glial cells (Tonges et al., 2011).
Therefore, developing more selective inhibitors against ROCK-II
will help to provide better therapeutic applications. Further stud-
ies will consolidate the evidence linking RhoA/ROCK inhibitors
to neurological diseases.
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