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RNA polymerase II (Pol II) elongation is a critical step in
gene expression. Here we found that NDF, which was
identified as a bilaterian nucleosome-destabilizing factor,
is also a Pol II transcription factor that stimulates elonga-
tion with plain DNA templates in the absence of nucleo-
somes. NDF binds directly to Pol II and enhances
elongation by a different mechanism than that used by
transcription factor TFIIS. Moreover, yeast Pdp3, which
is related to NDF, binds to Pol II and stimulates elonga-
tion. Thus, NDF is a Pol II binding transcription elonga-
tion factor that is localized over gene bodies and is
conserved from yeast to humans.

Supplemental material is available for this article.
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In eukaryotic cells, transcription by RNA polymerase II
(Pol II) beyond the proximal promoter region is influenced
by a number of factors that function by different mecha-
nisms (for reviews, see Sims et al. 2004; Guo and Price
2013; Chen et al. 2018; Conaway and Conaway 2019;
Cramer 2019; Lis 2019; Roeder 2019; Schier and Taatjes
2020). Some factors enable Pol II to overcome nucleo-
some-mediated inhibition, whereas others interact with
Pol II and increase its ability to elongate transcripts.
Because of their key role in gene expression, the identifica-
tion and characterization of the factors that control Pol II
elongation are of critical importance.

In our studies of chromatin dynamics, we identified and
purified nucleosome-destabilizing factor NDF based on
its ability to disrupt nucleosomes in a biochemical assay
(Fei et al. 2018). We further found that NDF can facilitate
Pol II transcription through a downstream nucleosome in
vitro and is recruited to thousands of gene bodies upon
transcriptional induction in mammalian cells.

NDF is present in most animals but has not been stud-
ied in simpler organisms such as yeast. In Drosophila,

NDF (also known as CG4747) was identified as an MSL
(male-specific lethal) complex-interacting protein that
targets the complex to active gene bodies and is important
for X-chromosome dosage compensation (Wang et al.
2013). In humans, NDF (also known as GLYR1, N-PAC,
andNP60) was found as a protein that binds preferentially
to H3K36me3 relative to unmethylated H3K36 (Vermeu-
len et al. 2010). Human NDF was also observed to stimu-
late H3K4me1 and H3K4me2 demethylation by LSD2/
KDM1B (Fang et al. 2013); the region of human NDF
that interacts with LSD2/KDM1B is not present inDroso-
phila NDF. NDF has a conserved PWWP motif, which
binds to methylated lysines (Qin and Min 2014). In addi-
tion, NDF (GLYR1) is present at high levels in all (45
out of 45) tested tissues in humans (Uhlen et al. 2017).

Because NDF was identified as a nucleosome-destabi-
lizing factor in biochemical assays with purified nucleo-
somes (Fei et al. 2018), there was no obvious direct
connection between NDF and Pol II function. However,
closer re-examination of our NDF transcription data sug-
gested that purified NDF might enhance transcription
by purified Pol II with plain (naked) DNA templates in
the absence of nucleosomes. We therefore further investi-
gated the unexpected possibility that NDF stimulates Pol
II transcription.

Results and Discussion

NDF stimulates in vitro transcription by Pol II
with calf thymus DNA

In initial experiments, we sought to determine whether
NDF affects basal transcription by Pol II. To this end, we
used a simple biochemical assay in which transcription
by purified Pol II primarily initiates at nicks, gaps, and
ends of genomicDNA in a non-sequence-specificmanner.
This assay was used widely in early transcription studies,
such as for the purification of the Pol II elongation factor
TFIIS (also known as S-II) (for example, see Sekimizu
et al. 1976; Reinberg and Roeder 1987). In our work, we
performed reactions with purified yeast Pol II (yPol II)
and calf thymus DNA in the absence or presence of
NDF and measured the incorporation of radiolabeled
CTP into RNA (Supplemental Fig. S1A).

These studies revealed that human NDF (hNDF) as
well as Drosophila NDF (dNDF) can stimulate nonspe-
cific Pol II transcription with plain (naked) DNA. Tran-
scription levels were observed to increase with NDF
concentration (with saturation at ∼100 nM hNDF and
∼200 nM dNDF) (Fig. 1A,B) as well as to be linear over
the first 15 min (Fig. 1C,D). As controls, we found that
the preparations of hNDF and dNDF did not contain po-
lymerase activity and that the Pol II lacked Pol I and Pol
III activity (Supplemental Fig. S1B). In addition, these ex-
periments were performed at a Pol II concentration in
the linear concentration activity range (Supplemental
Fig. S1C).
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Yeast Pdp3 protein is related to NDF and stimulates
transcription

The ability of both dNDF and hNDF to stimulate tran-
scription by yeast Pol II suggested that there might be
NDF-related factors in yeast. We investigated this possi-
bility and identified Saccharomyces cerevisiae Pdp3
(yPdp3) as being closely related to hNDF (Supplemental
Fig. S2). yPdp3 is a PWWP domain-containing protein
(Gilbert et al. 2014) with extensive sequence similarity
(∼25% identity; ∼39% similarity) to the N-terminal re-
gion of hNDF. yPdp3 lacks the catalytically inactive dehy-

drogenase domain at the C terminus of hNDF. Notably,
the similarity between yPdp3 and hNDF extends through-
out the entire yPdp3 protein and is not restricted to the
PWWP domain. Moreover, like bilaterian NDF, yPdp3 is
localized over gene bodies (Flury et al. 2017).
To test the biochemical activities of yPdp3, we purified

the protein (Supplemental Fig. S3A) and found that it is
able to stimulate in vitro transcription by yPol II with the
calf thymusDNA assay (Supplemental Fig. S3B,C). In addi-
tion, yPdp3 did not exhibit synergism with hNDF in the
stimulation of transcription (Supplemental Fig. S3D).
This finding is consistent with yPdp3 and hNDF activating
transcription by a similar mechanism. Hence, yPdp3 is re-
lated to NDF and also stimulates transcription by Pol II.

hNDF and yPdp3 bind directly to Pol II

BecauseNDF and yPdp3 stimulate Pol II transcription, we
tested their ability to interact with Pol II. First, in HeLa
cells that stably express Flag-hNDF-GFP, we found that
the hNDF fusion protein coimmunoprecipitates with
the endogenous Pol II (Fig. 1E). Second, in wild-type
HeLa cells, we saw that the endogenous hNDF coimmu-
noprecipitates with the endogenous Pol II (Fig. 1F). Third,
we carried out sucrose gradient sedimentation analyses
with purified yeast Pol II and purified hNDF and observed
that Pol II binds directly to NDF (Supplemental Fig. S4).
Fourth, we observed that purified hNDF interacts with
purified hPol II (Supplemental Fig. S5A). Fifth, we found
that purified yPdp3 associates with purified yPol II (Sup-
plemental Fig. S5B). Consistent with this finding, it was
observed that the isolation of TAP-tagged yPdp3 from
yeast extracts resulted in the copurification of the Rpb2
and Rpb4 subunits of yeast Pol II (Gilbert et al. 2014).
These results collectively indicate that hNDF as well as
yPdp3 bind directly to Pol II.

NDF as well as Pdp3 can stimulate transcription
elongation by Pol II

Next, wemore rigorously investigated the effect of hNDF
upon Pol II transcription with well-defined DNA tem-
plates. Because NDF is localized over the transcribed re-
gions of active genes in Drosophila (Wang et al. 2013)
and in humans (Vermeulen et al. 2010; Fei et al. 2018),
we tested whether hNDF affects transcriptional elonga-
tion with purified human Pol II (hPol II).
In these experiments, we assembled Pol II elongation

complexes with hPol II and examined the effect of
hNDF on elongation through two different downstream
sequences. To this end, we assembled functional tran-
scription elongation complexes by using the method
thatwas developed byKashlev and colleagues (Sidorenkov
et al. 1998; Kireeva et al. 2000; Komissarova et al. 2003).
First, we hybridized a short 5′-labeled primer RNA to
the template DNA strand, and then added purified hPol
II to reconstitute the catalytically active elongation com-
plex. Next, we annealed a 5′-biotinylated nontemplate
DNA strand to give the elongation complex, as shown in
the top left diagram in Figure 2A.We then ligated different
downstream sequences to the complex and analyzed the
ability of hNDF to stimulate hPol II elongation through
these sequences (Fig. 2A).
With theXenopus borealis 5S rDNA as the downstream

sequence, we found that hNDF enhances the formation of
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Figure 1. NDF stimulates nonspecific in vitro transcription by puri-
fied yeast Pol II (yPol II) and binds to human Pol II (hPol II) in cell ex-
tracts. (A,B) Stimulation of in vitro Pol II transcription by hNDF and
dNDF. (C,D) Time course of transcription in the presence (red dots) or
absence (blue dots) of hNDF and dNDF. For A–D, reactions were car-
ried out as depicted in Supplemental Figure S1A, and the primary data
are in Supplemental Table S1. Three replicate reactions were per-
formed for each condition. Each cluster of dots corresponds to a single
reaction condition (in A, the 6.25 nM hNDF data points are colored
green to distinguish them from the red 12.5 nM hNDF data points).
The standard deviation (error bars) and mean (central horizontal
line) are indicated. The lines connect the mean values. (E) Flag-
hNDF-GFP coimmunoprecipitates with endogenous hPol II In HeLa
cells. Lysates from cells containing Flag-hNDF-GFP were incubated
with FlagM2 antibodies or IgG control. The immunoprecipitated pro-
teins were subjected to Western blot analysis with anti-Flag and anti-
Rpb1 (Pol II) antibodies. (F ) Coimmunoprecipitation of endogenous
hNDF and hPol II. HeLa whole-cell lysates were incubated with
anti-hNDF polyclonal antibodies (or preimmune serum as the con-
trol) and Dynabeads protein A. The beads were washed, and the asso-
ciated proteins were subjected to Western blot analysis.
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full-length runoff transcripts (Fig. 2B). Hence, beginning
with a productive hPol II elongation complex, hNDF is
able to stimulate the elongation of Pol II in the production
of full-length runoff transcripts.

We additionally tested transcription into the∼400GAA
triplet repeats in the human FXN gene. The expanded
GAA triplets in the first intron of the FXN gene impede
Pol II elongation and thus appear to cause Friedreich’s
ataxia, which is caused by a deficiency in the levels of
the FXNprotein (Bidichandani et al. 1998; Punga and Büh-
ler 2010; Li et al. 2015). Transcription into the down-
stream FXN sequences showed that hNDF substantially
increases the amount of elongation of hPol II into the
GAA triplet repeats (Fig. 2C). We also found that yPdp3
stimulates transcription elongation into downstream
FXN sequences with GAA repeats (Supplemental Fig. S6).

These findings indicate that NDF as well as Pdp3 can
stimulate the elongation of transcription by Pol II with de-
fined DNA templates. NDF was identified based on its

ability to destabilize nucleosomes and was found to be
able to facilitate Pol II transcription through a nucleosome
(Fei et al. 2018). Here, we show that hNDF as well as the
related yPdp3 protein can stimulate Pol II elongation
with plain (naked) DNA in the absence of nucleosomes
(Figs. 1, 2). Thus, the enhancement of Pol II elongation
by NDF/Pdp3 occurs independently of nucleosome-medi-
ated inhibition of transcription.

NDF enhances Pol II elongation by a different
mechanism than that used by TFIIS

We then examined whether the transcript-elongating
function of NDF is similar to that of TFIIS (also known
as S-II), which rescues arrested and backtrackedPol II elon-
gation complexes by stimulating the polymerase-mediat-
ed cleavage of the 3′ end of the nascent transcript (for
reviews, see Wind and Reines 2000; Sims et al. 2004;
Nudler 2012; Guo and Price 2013; Conaway and Conaway
2019; Cramer 2019; Schier and Taatjes 2020). The TFIIS-
stimulated transcript cleavage enables backtracked Pol II
to be properly aligned with the 3′ end of the transcript so
that the polymerase can resume transcription elongation.

To test the ability of NDF to rescue arrested Pol II, we
performed Pol II elongation assays with a downstream 9A
pause site that strongly arrests Pol II elongation (Fig. 3A; Si-
gurdsson et al. 2010). Unlike TFIIS (Sigurdsson et al. 2010),
NDF has only a slight effect on the transcription of Pol II
through the 9A pause site (Fig. 3B). To investigate whether
NDF can rescue backtracked/arrested Pol II and resume
elongation, we added NDF to preformed backtracked/ar-
rested Pol II complexes and chased with rNTPs (Fig. 3C).
We found that NDF, in contrast to TFIIS, is not able to res-
cue purified arrested Pol II elongation complexes. We fur-
ther observed that NDF, unlike TFIIS, is not able to
stimulate the cleavage of the nascent transcripts by stalled
and backtracked Pol II (Fig. 3D). These findings indicate
that NDF and TFIIS stimulate Pol II elongation by different
mechanisms. This conclusion is also supported by the ob-
servation that there is synergy between TFIIS and NDF in
the stimulation of Pol II transcription with the calf thymus
DNA template system (Supplemental Fig. S7).

NDF has a small but distinct effect on ongoing
transcription in cells

BecauseNDF functions as a Pol II elongation factor in bio-
chemical assays, we investigated whether it participates
in ongoing transcription in cells. Although there are other
Pol II elongation factors that could potentially compen-
sate for the loss of NDF, we nevertheless felt that it would
be useful to examine whether NDF contributes to tran-
scription in cells. Also, in previous work, we found that
the loss of NDF results in a decrease in steady-state tran-
scripts by RNA-seq as well as a decrease in run-on tran-
scription in nuclei by GRO-seq (Fei et al. 2018). To
assess whether NDF has an effect on ongoing transcrip-
tion in cells, we used the Bru-seq method (Paulsen et al.
2013). This technique involves the transient treatment
of cells with 5-bromouridine, which is a relatively nontox-
ic uridine analog that is incorporated into nascent
transcripts.

We therefore performed Bru-seq with wild-type (WT)
and NDF knockout (KO) HeLa cells. These experiments
showed that genes with high NDF occupancy levels
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generally exhibit a small but distinct decrease in ongoing
transcription in the KO cells relative to the WT cells (Fig.
4A; Supplemental Fig. S8A). We displayed the genes in
four clusters, which are defined in the legend for Figure
4. Notably, cluster 1 contains genes with strong signals
for RNA-seq, NDF ChIP-seq, and H3K36me3 ChIP-seq
in WT HeLa cells. We did not observe a distinct correla-
tion between the Bru-seq NDF KO/WT ratio and RNA-
seq signal strength (Fig. 4B; Supplemental Fig. S8B).
Hence, the Bru-seq data suggest that NDF contributes to
ongoing transcription in cells, such as in the cluster 1
genes with high NDF occupancy levels. However, the
loss of NDF does not result in a strong decrease of tran-
scription in cells. In addition, the observed effects
could be due to the function of NDF in Pol II stimulation
and/or nucleosome disruption.
We further tested the effect of the loss of NDF on ongo-

ing transcription by carrying out Bru-seq analyses in hu-

man SW480 cells (Supplemental Fig. S9). As in HeLa
cells, we observed that the loss of NDF in SW480 cells re-
sults in a small but distinct decrease in transcription at
genes that are associated with high levels of NDF (Supple-
mental Fig. S9B). To determine whether the decrease in
transcriptional activity was due to the loss of NDF, we ex-
pressed recombinant NDF in the NDF knockout (KO)
cells to give KO+NDF rescue cells (Supplemental Fig.
S9A). We then carried out Bru-seq analyses of the
KO +NDF rescue cells versuswild-type cells and observed
that the expression of NDF in the KO cells resulted in the
restoration of the loss in transcription at the high NDF
genes (Supplemental Fig. S9C). These data support the
conclusion that NDF contributes to ongoing transcription
at NDF-associated genes in human cells.
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with TFIIS but not with NDF. (D) Unlike TFIIS, NDF cannot stimu-
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Because there aremany different factors that participate
in the Pol II elongation process, it is likely that the small
effect observed upon loss of NDF is due to compensation
by the other Pol II elongation factors. In this regard, it is
relevant to note that modest effects on transcription
have been observed upon loss or inhibition of other Pol
II elongation factors such as TFIIS, Elongin, and ELL (for
example, see Gopalan et al. 2018; Sheridan et al. 2019;
Ardehali et al. 2021; Wang et al. 2021).

NDF is a Pol II elongation factor that is conserved from
yeast to humans

NDF was purified and identified as a protein that destabi-
lizes nucleosomes (Fei et al. 2018). Consistent with this
function,NDFwas found to be able to facilitate Pol II tran-
scription through a nucleosome. Here we found, unex-
pectedly, that NDF is a Pol II transcription factor that
stimulates transcript elongation with plain DNA tem-
plates in a nucleosome-independent manner. Moreover,
yeast Pdp3, which is related to NDF, binds directly to
Pol II, stimulates transcription elongation, and is localized
to gene bodies. Thus, NDF is an ancient protein that is
conserved from yeast to humans.

In humans, hNDF,which is encoded by theGLYR1 gene,
is present at high levels in all (45 out of 45) tested tissues
(Uhlen et al. 2017). This property suggests that hNDF has
a widespread biological function. Upon transcriptional in-
duction,NDF is recruited to the transcribed regionsof thou-
sands of genes, but not all induced genes, in mammalian
cells (Fei et al. 2018). Its conserved PWWP motif, which
binds tomethylated lysines (Qin andMin 2014), is probably
important for the association of NDF with its target genes,
but it shouldalsobenoted thatNDF isnotenrichedatmany
genes that have moderate to high levels of H3K36me3 (Fei
et al. 2018). It thus seems likely that other factors, such as
those associatedwith the transcription process, additional-
ly contribute to the recruitment of NDF to genes during
transcription. In this regard, the direct interaction between
NDFandPol IImaycontribute to the recruitmentofNDFto
gene bodies.

There are many different transcription factors that bind
directly to Pol II and facilitate the elongation process (for re-
views, see Sims et al. 2004; Guo and Price 2013; Chen et al.
2018; Conaway andConaway 2019; Cramer 2019; Lis 2019;
Roeder 2019; Schier and Taatjes 2020). These Pol II binding
elongation factors canbeplaced into twogeneral categories.
The first group comprises TFIIS and CSB, which rescue ar-
rested and backtracked Pol II, and second group includes
TFIIF, ELL, Elongin, and Spt4–Spt5, which suppress tran-
sient Pol II pausing. ELL, Elongin, and Spt4–Spt5 are also lo-
calized over gene bodies. Given that NDF functions
differently than TFIIS and is localized over gene bodies, it
appears that NDF and Pdp3may act similarly to ELL, Elon-
gin, and Spt4–Spt5.With thisworking hypothesis, itwill be
important to carry out structural, biochemical, and genetic
experiments on NDF and Pdp3 that will shed additional
light on their mechanisms and biological functions.

Materials and methods

Antibodies

Rabbit polyclonal antisera against hNDFwere described in Fei et al. (2018).
Commercial antibodies were as follows: anti-BrdU (5 µL per sample for na-

scent RNA sequencing; BD Biosciences 555627) and anti-Pol II (rabbit
polyclonal antibodies raised against amino acids 1–224 of the largest sub-
unit of human Pol II; 1:1000 dilution for Western blots; Santa Cruz Bio-
technology sc-9001). Horseradish peroxidase (HRP)-conjugated protein A
was obtained from Thermo Fisher (101023).

Cell culture

HeLa cells were cultured by using Dulbecco’s modified Eagle’s medium
(DMEM) containing 10% (v/v) fetal bovine serum (FBS; Gibco), 100 U/
mL penicillin, and 0.1 mg/mL streptomycin. Cells were maintained in a
humidified incubator atmosphere at 37°C with 5% CO2. NDF knockout
(KO) HeLa cells were described in Fei et al. (2018).

Nucleic acids

For transcription elongation experiments, template strand (TS), nontem-
plate strand (NTS), RNA primer, and 5S rDNA sequences were used as de-
scribed (Xu et al. 2017; Fei et al. 2018). The Friedreich’s ataxia (FXN) gene
fragment containing ∼400 GAA trinucleotide repeats was amplified (for-
ward primer: 5′-ATACCGGATCCGGGATTGGTTGCCAGTGCTTAA
AAGTTAG-3′, BamHI site is underlined; reverse primer: 5′-GGTATGG
TACCGATCTAAGGACCATCATGGCCACACTTGCC-3′, KpnI site is
underlined) from DNA obtained from GM16223 Friedreich’s ataxia pa-
tient cells (Coriell Institute for Medical Research) by using the PCR condi-
tions described in Campuzano et al. (1996) and subcloned into the BamHI
and KpnI sites of pBS (BlueScribe, Stratagene) to give the pFXN-GAA plas-
mid. The pause rescue experiments with the site-specific 9A pause site
were performed as previously described (Xu et al. 2017). The oligonucleo-
tides were as follows: primer RNA (5′-AUCGAGAGGA-3′), template
strand DNA (5′-CAGACTCTAACCACACATCACTTACCCTACATAC
ACCACACACCACACCGAGAAAAAAAAATTACCCCTTCACCCTCA
CTGCCCCACATCATCACTTACCTGGATACACCCTTACTCCTCTC
GATACCTCACCACCTTACCTACCACCCAC-3′), and biotin-labeled
nontemplate strand DNA (5′-biotin-TTTGTGGGTGGTAGGTAAGGT
GGTGAGGTATCGAGAGGAGTAAGGGTGTATCCAGGTAAGTGAT
GATGTGGGGCAGTGAGGGTGAAGGGGTAATTTTTTTTTCTCGG
TGTGGTGTGTGGTGTATGTAGGGTAAGTGATGTGTGGTTAGAG
TCTG-3′).
Additional methods are included in the Supplemental Material. The ge-

nome-wide data have been deposited at the Gene Expression Omnibus
(GEO; accession no. GSE185464), and will be released upon acceptance
of the paper for publication. All experiments were performed independent-
ly at least twice to ensure reproducibility of the data.
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