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Abstract Diabetes mellitus is considered to be a very serious
lifestyle disease leading to cardiovascular complications and
impaired wound healing observed in the diabetic foot syn-
drome. Chronic hyperglycemia is the source of the endothelial
activation. The inflammatory process in diabetes is associated
with the secretion of inflammatory cytokines by endothelial
cells, e.g., tumor necrosis factor-alpha (TNF-α) and interleu-
kin 6 (IL-6). The method of phototherapy using laser beam of
low power (LLLT—low-level laser therapy) effectively sup-
ports the conventional treatment of diabetic vascular compli-
cations such as diabetic foot syndrome. The aim of our study
was to evaluate the effect of low-power laser irradiation at two
wavelengths (635 and 830 nm) on the secretion of inflamma-
tory factors (TNF-α and IL-6) by the endothelial cell cul-
ture—HUVEC line (human umbilical vein endothelial
cell)—under conditions of hyperglycemia. It is considered
that adverse effects of hyperglycemia on vascular endothelial
cells may be corrected by the action of LLLT, especially with
the wavelength of 830 nm. It leads to the reduction of TNF-α
concentration in the supernatant and enhancement of cell pro-
liferation. Endothelial cells play an important role in the path-
ogenesis of diabetes; however, a small number of studies eval-
uate an impact of LLLT on these cells under conditions of
hyperglycemia. Further work on this subject is warranted.
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Introduction

In the twenty-first century, diabetes mellitus has become an
epidemic and being a risk factor of cardiovascular diseases [1]
leads to an increased mortality in the population of developed
and developing countries. Its severe complication—diabetic
foot syndrome—is the primary cause of limb amputation
due to vascular complications. An impaired wound healing
is crucial in the clinical manifestation of diabetes, and hyper-
glycemia in uncontrolled diabetes is the major pathogenic
factor.

The process of wound repair involves several consecutive
phases (inflammatory and proliferative phase, remodeling of
the wound), and it demands various factors: polypeptide
growth factors, cytokines, and extracellular matrix compo-
nents [2, 3]. Many of them are derived from endothelial cells,
namely vascular endothelial growth factor (VEGF), tissue
plasminogen activator (t-PA), metalloproteinases (MMP-2,
MMP-9) and their inhibitors, tumor necrosis factor alpha
(TNF-α), and interleukin-6 (IL-6). Therefore, the endothelium
is essential in the maintenance of vascular homeostasis [4].
Hyperglycemia in diabetes is responsible for damaging of
the endothelium and increases inflammation on the surface
of the vascular lining [5].

TNF-α enhances the inflammation process and has an im-
pact on angiogenesis and destructive processes. It induces the
production of other pro-inflammatory cytokines, e.g., IL-6. It
contributes to oxidative stress by generating reactive oxygen
species (ROS) [6]. TNF-α is the most important pro-
inflammatory factor in diabetes.

* Krzysztof Góralczyk
krzyg@cm.umk.pl

1 Department of Pathophysiology, Faculty of Pharmacy, Nicolaus
Copernicus University in Toruń, CollegiumMedicum in Bydgoszcz,
Skłodowskiej-Curie Street No 9, Bydgoszcz, Poland

2 Department of Laserotherapy and Physiotherapy, Faculty of Health
Sciences, Nicolaus Copernicus University in Toruń, Collegium
Medicum in Bydgoszcz, Bydgoszcz, Poland

Lasers Med Sci (2016) 31:825–831
DOI 10.1007/s10103-016-1880-4

http://crossmark.crossref.org/dialog/?doi=10.1007/s10103-016-1880-4&domain=pdf


IL-6 is a pleiotropic cytokine with a wide spectrum of bi-
ological activity. Its main function is to participate in the im-
mune response and acute phase of inflammatory reaction
where it acts together with TNF-α [7]. In the acute inflamma-
tory response, Il-6 has regulatory properties and limits the
production of pro-inflammatory cytokines such as TNF-α
[8]. IL-6 can therefore suppress the development of diabetes.
However, when produced in excess and in long term, it pro-
motes a passage of inflammation into chronic phase and con-
tributes to the development of many diseases [9].

Many studies have shown that high glucose concentration
(20–40mM/L) in the culture medium imitates conditions as in
uncontrolled diabetes and adversely affects cell proliferation
leading to cell damage and apoptosis [10–12].

The number of patients suffering from diabetes is still in-
creasing, and chronic complications of microangiopathy and
macroangiopathy cause disability and inability to work and a
deterioration of the quality of life. Diabetes is also the leading
cause of amputation [13] due to non-healing wounds. The
method of phototherapy using laser beam of low power
(LLLT—low-level laser therapy) effectively supports conven-
tional treatment and brings a significant improvement in the
quality of life in diabetes.

According to Brosseau et al. [14], lasers have been used in
medicine since at least 1974 when LLLTwas officially imple-
mented in the USSR as an alternative non-invasive treatment
of rheumatoid arthritis. A number of studies have reported the
positive impact of LLLT on alleviation symptoms caused by
hyperglycemic conditions. These investigations involved
humans and animals and were conducted in vitro [15–17]
and in vivo [18–20]. Mainly, they evaluated fibroblasts and
osteoblasts. Research from the last decade provides data on
the key role of the vascular endothelium in maintaining vas-
cular homeostasis and pathogenesis of vascular diseases.
Endothelial cells line the walls of blood vessels and therefore
are on the front line of contact with the high concentration of
glucose.

The aim of our study was to evaluate the effect of low-
power laser irradiation at two wavelengths (635 and
830 nm) on the secretion of inflammatory factors (TNF-α
and IL-6) by the endothelial cell culture—HUVEC line (hu-
man umbilical vein endothelial cells)—under conditions of
hyperglycemia.

Material and methods

Endothelial cells (HUVEC line) were derived from human
umbilical veins by the enzyme method using collagenase ac-
cording to the method described by Jaffe et al. [21]. Cells were
cultured in M199 media supplemented with 20 % fetal bovine
serum (FBS), 100 U/ml penicillin (Gibco® products), and
growth factors 50 μg/ml endothelial cell growth supplement

(ECGS—Corning Inc. USA) and heparin. ECGS was obtain-
ed from a bovine neural tissue. The cells were incubated at
37 °C in a humidified atmosphere with 5 % CO2. After 2–4
passages and seeding the cells in 6-well culture plates, the
proper experiment was conducted. HUVECs were placed at
a density of 7.5×104 cells per square centimeter.

With the exception of the control group, 30 mM/L glucose
was added to the culture medium. The culture medium was
changed every 3 days. The experiment was repeated three
times with three independent cells isolations.

A semiconductor-based laser (Roithner Lasertechnik
GmbH, Austria) was used to generate a visible laser beam
with the wavelength of 635 nm (AlGaAlP) and the wave-
length of 830 nm (GaAlAs) in the infrared. The authors have
used the optoelectronic set for controlled, reproducible expo-
sure of electromagnetic irradiation of biological structures in
the spectral band of tissue transmission window 600–1000 nm
[22]. The power of laser sources was 30 mW for 635 nm and
60 mW for 830 nm. The power density at the cell-layer level
measured by using a laser power meter (Gentec, Model
SOLO2 R2, Canada) was 1.875 mW/cm2 for 635 nm and
3.75 mW/cm2 for 830 nm. The power was constant in all
experiments. The distance between the laser source and the
surface of application was 10 cm, the application was carried
through an optical fiber, and there was 80 cm2 of irradiated
area. The experiment was conducted in four groups: 1—no
glucose in culture medium, no irradiation (control group); 2—
glucose, no irradiation; 3—glucose, laser irradiation with
wavelength of 635 nm, energy dose of 2 J/cm2; and 4—glu-
cose, laser irradiation withwavelength of 830 nm, energy dose
of 2 J/cm2. The time of laser irradiation was 1066 s for 635 nm
and 533 s for 830 nm. The cells were cultured for 7 days,
with two irradiations on days 5 and 6. At the end of
experiment, conditioned medium from each well of cul-
ture plates was collected and centrifuged for 10 min at
2000×g and frozen at −86 °C. After thawing, the concen-
tration of TNF-α and IL-6 in the supernatant was mea-
sured by ELISA test (eBioscience, Vienna, Austria) ac-
cording to the manufacturer’s instructions. The remaining
cells on the bottom of each well were harvested by using
trypsin and counted by Buerker hemocytometry. This
method uses trypan blue dye according to the method
described by Basso et al. [23]. The results of the concen-
tration of the parameters in the supernatant from each well
of culture plates were analyzed per number of cells in
each well.

Statistical analysis was performed using Statistica 10.0
(StatSoft Inc.). The one-way ANOVA was used for
parametrical analysis (proliferation), and Kruskal-Wallis test
was used for nonparametrical comparisons (TNF-α and IL-6).
Statistical significance was defined as P<0.05. The results
were presented as mean (M)± standard deviation (SD) or me-
dian (Me), lower (Q1) and upper (Q3) quartile.
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The approval of the Bioethics Commission of the NCU
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Results

Figure 1 shows the results concerning the effect of low-level
laser therapy on TNF-α concentration in the supernatant from
HUVEC culture which was grown in the high concentration
of glucose in the culture medium (glucose concentration of
30 mM/L). The level of TNF-α in the control group (group
1) without glucose in the medium and without laser irradiation
was 0.79 pg/105 cells. Its concentration was only slightly
higher (0.85 pg/105 cells) in the unirradiated group 2 contain-
ing glucose in the medium. The cells from groups 3 and 4
were grown in medium with glucose and irradiated at the
wavelength of 635 and 830 nm, respectively. The TNF-α level
in group 3 was slightly lower and in group 4 notably lower
when compared to the group 2 result. The concentration in
group 4 was 0.55 pg/105 cells and was about 35 % lower than
in group 2. However, the final outcome of the ANOVA testing
was statistically non-significant and reported as 0.1033.

Figure 2 presents the concentration of interleukin 6 in the
corresponding groups as in Fig. 1. The concentration of IL-6
increased several times after the addition of glucose to the
culture medium. There was a statistically significant differ-
ence between the three experimental groups (2, 3, 4) and the
control group (P=0.0003, P=0.0013, P=0.0219, respective-
ly). No effect of the laser was observed. There was no increase
of IL-6 concentration in groups 3 and 4 when compared to
group 2. Difference between groups 2, 3, and 4 was statisti-
cally non-significant.

Figure 3 shows the number of HUVECs which was the
highest in the control group, while the lowest number was

observed in group 2. This difference in relation to the control
group was statistically significant (P=0.0207). The number of
cells in group 3 was slightly higher compared to group 2 and
in group 4 reached the level similar to the control group.

Discussion

High concentration of glucose present in diabetes causes dam-
age to endothelial cells. It is accompanied by inflammation
associated with the secretion of pro-inflammatory cytokines
such as TNF-α and IL-6. An increased secretion of TNF-α
and IL-6 under conditions of hyperglycemia is a finding ob-
served by several authors [24–27]. It is accompanied by a
reduction of cell proliferation [10, 11, 15]. However, in the
study of Brandner et al. [28], level of TNF-α in cultured dia-
betic keratinocytes did not differ significantly from nondiabet-
ic keratinocytes, although the level of TNF-αmessenger RNA
(mRNA) in the skin of patients with diabetes was significantly
higher compared to those without diabetes. The authors ex-
plain this finding by the fact that keratinocytes are not a major
producer of TNF-α in the skin. In our study, TNF-α was only
slightly higher in cell cultures with the high glucose level in
the medium compared to cells grown under normal conditions
(Fig. 1). In contrast, the IL-6 level was significantly increased
in the groups with glucose in the medium compared to the
control group without glucose (P=0.0003; Fig. 2). IL-6 can
inhibit the production of TNF-α [8, 29] which is why a con-
siderable increase of IL-6 under hyperglycemic conditions
might have an impact on the level of TNF-α. Other authors
have also observed the significant increase of IL-6 concentra-
tion under conditions of elevated glucose level [24, 30, 31]. In
our study, a much smaller number of endothelial cells cultured
under hyperglycemic conditions compared to culture under
normal conditions (P=0.0207, Fig. 3) shows the negative
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Fig. 1 The concentration of
tumor necrosis factor-alpha (TNF-
α) in the supernatant of HUVEC
cells culture depending on
hyperglycemia and laser
irradiation of different
wavelengths. G glucose in culture
medium, L(635) laser irradiation
with wavelength of 635 nm,
L(830) laser irradiation with
wavelength of 830 nm. P value of
ANOVAwas 0.1033
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impact of high glucose concentration on the proliferation and
cell viability, as reported also by other authors [10, 12].

In hyperglycemia, glucose is subject to auto-oxidation pro-
cess and non-enzymatic glycation which leads to the produc-
tion of reactive oxygen species. An increased oxidation of the
cofactor NADPH to NADP+ and the reduction of NAD+ to
NADH are observed [32]. These reactions disrupt a balance
between oxidants and antioxidants system leading to hypoxia
and synthesis of advanced glication end-product (AGE). It is
the effect of cytokines, mainly TNF-α [26]. Hyperglycemia
increases the production of free radicals in the mitochondria,
particularly superoxide anion. These processes exacerbate the
oxidative stress [33–35] which damages cells and induces
apoptosis [36, 37]. Apoptosis may be promoted also by
DNA damage [11, 38] and irreversible changes in cytoskeletal
organization at high glucose concentration [39, 40]. IL-6 se-
creted during the acute phase of inflammation has varied

effects on cells in diabetes [30]. Pro-inflammatory or anti-
inflammatory properties of IL-6 depend on the nature and
function of cells and factors inducing inflammation. At high
concentration, it can inhibit the production of TNF-α [41]
which was confirmed in studies in mice [42]. The cited works
have shown that the reduced level of IL-6 is associated with
the impaired wound healing in diabetes.

Hyperglycemia induces the production of pro-
inflammatory cytokines and growth factors by activating key
signaling pathways associated with MAPK (mitogen-activat-
ed protein kinases), NF-κB (nuclear factor-κB), and STAT3
(signal transducers and activators of transcription) [27, 31, 43,
44] depending on ROS and oxidative stress. This is related to
the effect of TNF-α on altering the redox reaction in the mi-
tochondrial respiratory chain [35, 45, 46].

Although molecular mechanisms of low-power laser irra-
diation are still poorly understood, it is already known that the
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Fig. 2 The concentration of
Interleukin-6 (IL-6) in the
supernatant of HUVEC cells
culture depending on
hyperglycemia and laser
irradiation of different
wavelengths. G glucose in culture
medium, L(635) laser irradiation
with wavelength of 635 nm,
L(830) laser irradiation with
wavelength of 830 nm. There was
a statistically significant
difference between the three
experimental groups (2, 3, 4) and
the control group (P= 0.0003,
P= 0.0013, P= 0.0219,
respectively)
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Fig. 3 The number of HUVEC
cells depending on
hyperglycemia and laser
irradiation of different
wavelengths. G glucose in culture
medium, L(635) laser irradiation
with wavelength of 635 nm,
L(830) laser irradiation with
wavelength of 830 nm. There was
a statistically significant
difference between the two
experimental groups (2, 3) and the
control group (P= 0.0207,
P= 0.0190, respectively)
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beneficial effects are associated with stimulation of cellular
metabolism after energy absorption [47]. A stimulation of
photoreactive proteins like cytochrome C occurs in the mito-
chondrial respiratory chain. This can increase the availability
of ATP in the cells and have an influence on reactive oxygen
species [48, 49]. An improvement of the cellular energy state
and normalization of cellular functions is manifested by alle-
viating the pain and inducing the self-healing process [50].
Kwon [16] has found that laser irradiation of osteoblasts in a
diabetic model at the wavelength of 635 nm reduces the level
of generated ROS.

Studies in animals suggest beneficial effects of LLLT in
case of hyperglycemia. LLLT (wavelength of 650 and
980 nm) in ra t s w i th induced d iabe t e s has an
antihyperglycemic effect without an impact on the blood mor-
phology and biochemical profile [19]. Rabelo et al. [18] have
also reported the beneficial effect of reduced inflammation in
diabetic rats irradiated by HeNe laser at 632.8 nm.

The effects of LLLT on various types of cells depend on
irradiation parameters such as dose and wavelength. Higher
doses (10 or 16 J/cm2) cause reduction of cell viability and
mitochondrial activity and increase the percentage of DNA
damage [50, 51]. The wavelength is also important during
irradiation of diabetic fibroblast cultures. The wavelength of
1064 nm gave significantly worse results in wound healing
than 632.8 and 830.0 nm [51, 52].

Our research confirms the beneficial effects of LLLT on
cells cultured with high concentrations of glucose. TNF-α
level in the group of cells cultured in medium containing high
concentration of glucose decreased under the influence of la-
ser irradiation when compared to the unirradiated group. This
applies particularly to 830 nm (Fig. 1). P=0.1030 is not far
from significance. This result of testing in the analysis of
variance could be significantly influenced by values in group
4 (glucose in the medium, LLLT λ=830 nm) with an average
value of TNF-α lower about 35 % in comparison to group 2
(glucose in the medium, without irradiation). Many authors
have also observed TNF-α reduction caused by laser irradia-
tion [53, 54].

Our results show the significant increase of IL-6 in-
duced by hyperglycemia (P= 0.0002); LLLT did not cause
significant changes in the concentration of this cytokine in
the endothelial cell culture (Fig. 2). Some authors have
reported a rise in the level of IL-6 induced by LLLT
[30, 55, 56]. Houreld et al. [53] have observed only slight
and statistically non-significant increase of IL-6. Some of
the literature data have also reported decreased level of
IL-6 under the influence of laser irradiation [56]. The
result we have obtained may be in favor of beneficial
effects of LLLT, since IL-6 reducing TNF-α level can
therefore protect cells from the damaging effect of hyper-
glycemia. This issue is discussed and needs further re-
search [8, 57].

Data from the literature suggest that LLLT promotes the
metabolic activity of cells and stimulates their proliferation
[15, 58], in case of cells grown under hyperglycemic condition
as well [50, 52, 53]. These findings are consistent with our
research applying in particular 830 nm (P=0.0190; Fig. 3).
Hyperglycemic conditions significantly reduce the prolifera-
tion of HUVECs. The use of laser irradiation increases the
proliferation of these cells to the level observed in the control
group (non-irradiated cells in medium without glucose)
(Fig. 3).

Conclusion

1. It appears that the adverse effects of hyperglycemia on
vascular endothelial cells may be corrected by treatment
with LLLT, especially at the wavelength of 830 nm. It
causes the reduction of TNF-α concentration and en-
hancement of cell proliferation.

2. Due to the significance of endothelial cells in the patho-
genesis of diabetes and a small amount of studies evalu-
ating the impact of LLLT on these cells under conditions
of hyperglycemia, further work on this subject is
warranted.
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