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Taxifolin (TAX) is a hepatoprotective flavanol compound, which is severely limited by poor
solubility and low bioavailability. Liposomes (Lips) are used as well-recognized drug carrier
systems that improve the water solubility and bioavailability of drugs, but are easily
damaged by gastric juice after oral administration, resulting in the release of drugs in
the gastric juice. Therefore, it is important to findmaterials that modify liposomes and avoid
the destruction of the liposomal phospholipid bilayer structure by the gastrointestinal
environment. Taxifolin liposomes (TAX-Lips) were modified by polyvinylpyrrolidone-k30
(PVP-TAX-Lips) and manufactured using a thin-film hydration technique. Particle size
(109.27 ± 0.50 nm), zeta potential (−51.12 ± 3.79mV), polydispersity coefficient (PDI)
(0.189 ± 0.007), and EE (84.7 ± 0.2%) of PVP-TAX-Lips were studied. In addition, the
results of in vitro release experiments indicated that the cumulative release rates of TAX-
Lips and PVP-TAX-Lips were 89.73 ± 5.18% and 65.66 ± 4.86% in the simulated gastric
fluid after 24 h, respectively, while the cumulative release rates were 68.20 ± 4.98% and
55.66 ± 3.92% in the simulated intestinal fluid after 24 h, respectively. Moreover, PVP-TAX-
Lips were able to reverse lipopolysaccharide and D-galactosamine (LPS/D-GalN)-induced
acute liver injury (ALI) by inducing autophagy to inhibit the expression levels of the TLR4/
NF-κB signaling pathway and inflammatory factors, which suggested that PVP-TAX-Lips
played an important role in the prevention of ALI and also provided a promising drug
delivery system for the application of TAX.
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1 INTRODUCTION

The liver plays an important role in human metabolism, immune response, protein synthesis, and
removal of pathogens and toxins (Ma et al., 2014). Acute liver injury (ALI) is an inflammatory disease
induced by many factors including drugs such as acetaminophen (APAP), carbon tetrachloride
(CCl4), and lipopolysaccharide and D-galactosamine (LPS/D-GalN) (Bohm et al., 2016; Khoury
et al., 2017; Woolbright and Jaeschke 2017; Liu Wei et al., 2018; Huang et al., 2021). Regardless of its
etiology, ALI can induce liver fibrosis, cirrhosis, and even liver cancer, which is the 12th most
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common malignancy in the United States (Koyama and Brenner
2017). In addition, previous studies have shown that ALI occurs
by complex mechanisms related to inflammation, oxidation, and
autophagy (LiuWei et al., 2018; Liu et al., 2020; Miao et al., 2020).
LPS is a typical toxic component of Gram-negative bacteria, and
the toxicity of LPS can be increased by D-GalN. Hence, the
clinical ALI in mice will be induced by LPS/D-GalN within a few
hours (Li et al., 2020), a model commonly used to study and
develop new hepatoprotective drugs, such as Taxifolin (TAX),
which is a natural product with excellent hepatoprotective effects
(Liu Aiyun et al., 2018; Zhou Honghong et al., 2018; Yang et al.,
2019).

TAX [(2R, 3R) 3, 3ʹ, 4ʹ, 5, 7-pentahydroxy flavan-4-one], also
known as dihydroquercetin, is a flavanol compound found in
conifers such as Pinus Roxburghe and Siberian larch as well as in
plant-based foods such as vegetables, fruits, wine, tea, and cocoa.
Interestingly, numerous studies have shown that TAX has anti-
inflammatory, antioxidant, antidiabetic, and hepatoprotective
effects (Sun et al., 2014; Cai et al., 2018; Lektemur Alpan
et al., 2020; Ahiskali et al., 2021). TAX has been approved as a
novel food ingredient by many countries including the US,
United Kingdom, European Commission, and China (Ding
et al., 2021). However, poor water solubility and oral
utilization of TAX limit its application in the medical industry
(Shikov et al., 2009). Therefore, many studies have reported
methods to increase the solubility of TAX. For example, TAX
was prepared as a powder by a supercritical antisolvent to
improve the solubility of TAX in water (Zu et al., 2012). TAX
has also been prepared as liposomes for use in beverage and skin
preparation (Kim et al., 2019; Hasibi et al., 2019), but the
mechanism of TAX-Lips in vivo have not been explored in
depth. Liposomes are recognized as drug carriers with a
phospholipid bilayer structure which are biocompatible and
capable of improving drug absorption, reducing drug toxicity,
and increasing bioavailability of unstable or insoluble drugs (Ong
et al., 2016; Pan et al., 2018; Yuan et al., 2017). Hence, the
encapsulation of TAX in liposomes is an effective way to increase
the bioavailability of TAX.

Unfortunately, current applications of liposomes are still
limited to intravenous injection therapy, as oral treatment of
liposomes faces great challenges, such as the damage in the
gastrointestinal tract and the poor permeability of the
gastrointestinal epithelium (He et al., 2019; Wang et al., 2017;
Zhou et al, 2020). Consequently, numerous strategies have been
developed to avoid the destruction of liposomes by the
gastrointestinal tract in order to improve the bioavailability of
their cargoes, such as modifications with polyethylene glycol
(PEG), maltodextrin, and chitosan (Gurturk et al., 2017; Ota
et al., 2018; Stenger Moura et al., 2019; Steffes et al., 2020).
Polyvinylpyrrolidone (PVP) has been reported to form a furry
protective layer on the outer layer of liposomes that may avoid
drug leakage caused by the complex gastrointestinal environment
(Liu et al., 2017b). Therefore, we explored the preparation,
characterization, and hepatoprotective activity of TAX-Lips
modified by PVP (PVP-TAX-Lips) to develop a new dosage
form, able to increase the bioavailability of TAX. The current
research on liposomes is usually focused on in vivo

pharmacokinetics and in vitro cytotoxicity, but in vivo
mechanisms of action are sometimes still unclear (Grillone
et al., 2017; Zhou Chuchu et al., 2018; Wang et al., 2019; Yao
et al., 2019; Zhang et al., 2019; Jagwani et al., 2020; Le et al., 2021).
Therefore, this study was conducted to evaluate the
hepatoprotective effect of PVP-TAX-Lips and its mechanism
in LPS/D-GalN-induced ALI.

2 MATERIALS AND METHODS

2.1 Reagents and Materials
Taxifolin was purchased from the National Institutes for Food
and Drug Control of China, batch No: 111816–201102, with a
purity of 98.0%. Soy phosphatidylcholine (SPC) and Cholesterol
(Chol) were purchased from Shanghai Macklin Biochemical Co.,
Ltd. (Shanghai, China). Polyvinylpyrrolidone-K30 (PVP-K30)
was obtained from Anhui Shanhe Pharmaceutical Excipients
Co., Ltd. (Huaihe, China). Chloromethane and methanol were
provided by Shanghai Sinopharm Chemical Reagent Co., Ltd.
(Shanghai, China). Phosphate buffer saline (PBS) powder was
purchased from Solarbio Biotechnology Co., Ltd. (Beijing,
China), and the water used in the experiment was distilled
water. Lipopolysaccharide (LPS) from Escherichia coli 055: B5
was obtained from Sigma-Aldrich Co., Ltd. (Shanghai, China).
D-galactosamine (D-GalN) was acquired from Aladdin Reagent
Database Co., Ltd. (Shanghai, China). The commercial assay kit
of alanine aminotransferase (ALT), aspartate aminotransferase
(AST), glutathione (GSH), superoxide dismutase (SOD),
malondialdehyde (MDA), and hematoxylin-eosin (H&E) were
purchased from Nanjing Jiancheng Bioengineering Research
Institute Co., Ltd. (Nanjing, China). Rabbit primary polyclonal
antibodies to Toll-like receptor 4 (TLR4), myeloid differentiation
factor88 (MyD88), nuclear factor-kappa B (NF-κB, P65),
sequestosome-1 (P62), light chain 3 (LC3), mouse Interleukin-
1β (IL-1β), inducible nitric oxide synthase (iNOS), tumor

FIGURE 1 | The schematic diagram of the structure of PVP-TAX-Lips.
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necrosis factor α (TNF-α), β-actin, Autophagy related 7 (ATG7),
Autophagy related 5 (ATG5), inhibitor kappa B alpha (IκBα),
phospho-inhibitor kappa B alpha (p-IκBα), goat anti-rabbit IgG
horseradish peroxidase (HRP)-conjugated secondary antibody,
and goat anti-mouse IgG-HRP-conjugated secondary antibody
were bought from Proteintech (Wuhan, China).

2.2 Preparation of TAX-Lips and
PVP-TAX-Lips
TAX-Lips and PVP-TAX-Lips were prepared by a thin-film
hydration technique. To briefly describe the preparation
process, TAX (10 mg), SPC (60 mg), and Chol (10 mg) were
weighed and dissolved in chloroform and methanol (4:1).
Thereafter, chloroform and methanol were removed in a
rotary evaporator under vacuum at 35°C to obtain a thin film,
and then 10 ml of PBS aqueous solution containing 1% PVP-K30
was added to the hydrate to obtain the liposomes. Next, the
solution was ultrasonicated at 100W for 5 min in an ice bath to
obtain the PVP-TAX-Lips. The schematic structure of PVP-
TAX-Lips is shown in Figure 1. On the other hand, TAX-Lips
were prepared following the same procedure but without the
addition of PVP-K30 in the abovementioned steps.

2.3 Characterization of TAX-Lips and
PVP-TAX-Lips
2.3.1 Encapsulation Efficiency
Due to the poor water solubility of TAX, the nonencapsulated or free
drug can be removed by centrifugation (Han et al., 2020). For that,
0.5 ml of TAX-Lips or PVP-TAX-Lips solution was centrifuged at
12000 rpm at 4°C for 30 min. Then, the amount of encapsulated
TAX (W1) in the liposomes was obtained by the addition of 10 ml of
methanol to the supernatant followed by ultrasonic breaking for
5 min, while the total TAX amount (Wtotal) in the liposome solution
was obtained by taking the same volume of TAX-Lips or PVP-TAX-
Lips solution and then adding 10ml of methanol for ultrasonic
crushing for 5 min. TAX was quantified by high performance liquid
chromatography (HPLC) (Waters, e2695, United States) with UV
detection at 290 nm. Methanol (45%) and water (55%) were used as
mobile phase, at 1.0 ml/min, and aCOSMOSILC18-PAQ column as
stationary phase (4.6 × 250mm, 5 μm), The encapsulation efficiency
(EE) was calculated by the following equation:

EE(%) � W1

Wtotal
× 100%.

2.3.2 Particle Size and Zeta Potential Analysis of
TAX-Lips and PVP-TAX-Lips
Nanobrook 90 plus zeta (Brookhaven, United States) was used to
analyze the particle size, zeta potential, and polydispersity
coefficient (PDI) of TAX-Lips and PVP-TAX-Lips. The
measurement temperature was maintained at 25°C, while the
scattering angle was set to 90° C. The sample was diluted 10 times
with double distilled water before the test. All tests were
performed 3 times in parallel.

2.3.3 Transmission Electron Microscopy
The morphology of PVP-TAX-Lips and TAX-Lips was observed
by transmission electron microscopy (TEM, JEM-1200 EX,
Hitachi, Japan). The prepared liposomes were diluted 10 times
with double distilled water. TAX-Lips and PVP-TAX-Lips were
supported on a copper grid and negatively stained with 0.2% (w/
v) phosphotungstic acid.

2.3.4 Fourier Transform Infrared Spectroscopy
All the samples were lyophilized for at least 48 h by using a freeze-
drier (Alpha 1-2 LD plus; BMH Instrument Co., Ltd., Beijing,
China) before the measurements. The dried samples and KBr
were grounded into homogeneous powder in a mortar and
pressed into suitable tablets with appropriate thickness. The
infrared characteristic peaks of pure TAX, TAX-Lips, PVP-
TAX-Lips, and the physical mixture of SPC, TAX, and PVP-
K30 were measured in the range of 400–4,000 cm−1, using a
Fourier transform infrared spectrophotometer (FTIR) (CT
Norwalk PerkinElmer, United States).

2.4 In Vitro Drug Release
The cumulative in vitro release rates of PVP-TAX-Lips, TAX-
Lips, and free TAX over 24 h were determined by dialysis. Two
mL of PVP-TAX-Lips, TAX-Lips, and free TAX were added to
the dialysis bag and then placed in 200 ml of two release media:
simulated gastric (pH = 1.2) and simulated intestinal fluid (pH =
6.8). The samples were shaken at 100 rpm in a bath at 37°C, and
2 ml aliquots of release medium were taken at 0, 0.5, 1, 2, 4, 6, 8,
10, 12, and 24 h. The aliquots withdrawn were replaced with the
same volume of fresh medium at 37°C. TAX was quantified by
HPLC (Waters, e2695, United States) with UV detection at
290 nm. Methanol (45%) and water (55%) were used as
mobile phase at 1.0 ml/min, and a COSMOSIL C18-PAQ
column as stationary phase (4.6 × 250 mm, 5 μm). The
cumulative release of TAX from free TAX, TAX-Lips, and
PVP-TAX-Lips at different time points were calculated
according to the following equation:

Cumulative release rate (%) � [V1 × (C1 + C2 +/ + Ci−1)
+ V2 × Ci]/(V0 × C0) × 100%.

In the equation, V1: sampling volume at each time point; V2:
volume of dissolution medium; C1~Ci: concentration of
substance measured at each time point; V0: volume of the
medium at 100% dissolution; and C0: concentration of a
substance at 100% dissolution.

2.5 In Vivo Experiment
2.5.1 Animals and Experimental Plan
40 male ICR mice (6–8 weeks old; weight 23 ± 2 g) were
purchased from Changchun YISI Experimental Animal Co.,
Ltd. (Certificate of Quality: No. SCXK (JI) -2019–0,006,
Changchun, China). The animals were given adequate food
and water, and kept in a suitable environment (24 ± 2°C, 55 ±
10% humidity, 12 h light-dark cycle). The experiments were
conducted by the National Institutes of Health Guide for
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Laboratory Animals Care and Use and the Laboratory Animal
Management Committee of Jilin Agricultural University, and
approved by the Animal Investigational Morals Committee of
Jilin Agricultural University, with the ethics approval number
2019–08–28–002.

The mice were randomly divided into four groups after 1 week
of adaptive feeding (n = 10 in each group). The control group and
the model group were given physiological saline for 14 days, and
the TAX-Lips group and the PVP-TAX-Lips group were given
the same dose of TAX (50 mg/kg) for 14 days by intragastric
administration. The mice were induced by intraperitoneal
injection of LPS (10 μg/kg) and D-galactose (700 mg/kg) for
ALI in all the groups except the control group, 1 h after the
administration on the last day, and then anesthetized by
intraperitoneal injection of 70 mg/kg pentobarbital sodium
after 6 h (Shanghai Beizhuo Biochemical and Technological
Co., Ltd., Shanghai, China). The serum was collected by
centrifugation at 3,500 ×g at 4°C for 10 min. Then, the
anaesthetized mice were sacrificed by dislocation and the liver
tissues were immediately dissected, washed with cold saline,
blotted on a filter paper, and the shape and size of the tissues
were observed. The liver tissues were taken partially and
preserved in 10% formaldehyde, while the remaining liver and
serum were stored at −80°C. The liver index was calculated using
the following equation:

Liver index(%) � liver weight(g)/final weight of the

mice(g) × 100%.

2.6 Histological Analysis
The liver tissues were fixed in 10% formalin solution and
embedded in paraffin, and then cut into 5 μm thickness slices.
The pathological sections were examined to assess the extent of
ALI with hematoxylin and eosin (H&E) staining kits for further
observation under a light microscope (Bio-Rad, Hercules,
United States) (100× and 200×). The degree of liver necrosis
was assessed and quantitatively scored by necrotic area, fat
vacuolation, and inflammatory cell infiltration (Liu Aiyun
et al., 2018; Yan et al., 2018).

2.7 Biochemical Analysis
The ALT and AST levels in the serum were quantified according
to the manufacturer’s protocol using the clinical autoanalyzer
(Hitachi, Japan) and a commercial kit (Roche Diagnostics,
Mannheim, Germany). GSH, SOD, and MDA levels in the
liver tissue were quantified according to the manufacturer’s
protocol via commercial kits (Nanjing Jiancheng
Bioengineering Research Institute Co., Ltd., Nanjing, China).

2.8 Western Blot Analysis
The expression levels of iNOS, TNF-α, IL-1β, TLR4, MyD88,
IκBα, p-IκBα, P65, β-actin, LC3, P62, ATG7, and ATG5 were
detected by western blotting. The liver tissues were lysed using
RIPA lysis buffer and phosphatase inhibitor (Sangon Biotech Co.,
Ltd., Shanghai, China), and then 5x loading buffer solution was
added and heated at 100°C for 10 min. The proteins were

transferred to polyvinylidene fluoride (PVDF) membranes by
10% SDS-PAGE separation and blocked in 10% nonfat milk for
2 h at room temperature, and the membranes were incubated
overnight at 4°C with primary antibodies of iNOS, TNF-α, IL-1β,
TLR4, MyD88, IκBα, p-IκBα, P65, β-actin, LC3, P62, ATG7, and
ATG5, and then further incubated at room temperature with
secondary antibodies for 1 h. The protein band signals were
detected with ECL luminescent solution (Pierce Chemical Co.,
Ltd. Rockford, IL, United States), and the intensity of bands was
quantified using ImageJ software.

2.9 Statistical Analysis
Statistical analysis was performed using SPSS 19.0 software
(Chicago, IL, United States). The data are presented as the
mean ± standard deviation (mean ± SD). Statistical analysis
was conducted by one-way analysis of variance (one-way
ANOVA) with post hoc comparisons of the least significant
difference (LSD). The variances between the groups were
tested for significance, and the statistical significance was set at
p < 0.05, p < 0.01, or p < 0.001. GraphPad Prism software package
8.2 was used for figures.

3 RESULTS

3.1 Encapsulation Efficiency
The HPLC chromatograms of TAX (standard), TAX-Lips, and
PVP-TAX-Lips are shown in Figures 2A–C. The EE of TAX-Lips
was 91.3 ± 1.0% and that of PVP-TAX-Lips was 84.7 ± 0.2%
(Table 1). The EE of PVP-TAX-Lips was slightly decreased
compared to that of TAX-Lips, which may be due to the fact
that PVP prevented a small portion of TAX from entering the
liposome surface.

3.2 Measurement Results of the Particle
Size, Polydispersity Coefficient, Zeta
Potential, and Image of Liposomes by TEM
The results of particle size, PDI, and zeta potential are shown in
Figures 2D–G. TAX-Lips showed a particle size of 96.18 ±
0.66 nm, PDI of 0.186 ± 0.012, and zeta potential of -33.75 ±
3.76mV (Table 1; Figures 2D,E), while PVP-TAX-Lips showed a
particle size of 109.27 ± 0.50 nm, PDI of 0.189 ± 0.007, and zeta
potential of −51.12 ± 3.79 mV (Table 1; Figures 2F,G). The
particle size and zeta potential of PVP-TAX-Lips were slightly
increased compared with TAX-Lips, and TEM images showed that
TAX-Lips and PVP-TAX-Lips were spherical structures with good
dispersion, which proved that PVPmodified TAX-Lips and did not
affect the structure and dispersion of liposomes (Figures 2H,I).

3.3 Fourier Transform Infrared
Spectroscopy Analysis
The FTIR characteristic peaks of pure TAX, PVP-TAX-Lips, and
TAX-Lips, and the physical mixture of SPC, TAX, and PVP-K30
are shown in Figure 2J. The FTIR results revealed that the CH2

vibration of TAX-Lips and PVP-TAX-Lips at 2925 and
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2854 cm−1 (Pan et al., 2018), respectively, the C=O symmetric
stretching vibration at 1741 cm−1, and the C=N vibration at
1,280 cm−1 for PVP-TAX-Lips are the characteristic absorption

peak of PVP (Jouyandeh et al., 2019). Interestingly, the
characteristic peak of TAX in the range of 1,000–400 cm−1

disappears completely in TAX-Lips and PVP-TAX-Lips.

FIGURE 2 | Characterization of TAX-Lips and PVP-TAX-Lips. (A) The HPLC chromatogram of TAX standard. (B) The HPLC chromatogram of TAX-Lips. (C) The
HPLC chromatogram of PVP-TAX-Lips. (D) Particle size of TAX-Lips. (E) Zeta potential of TAX-Lips. (F) Particle size of PVP-TAX-Lips. (G) Zeta potential of PVP-TAX-
Lips. (H) TEM image TAX-Lips. (I) TEM image of PVP-TAX-Lips. (J) FTIR spectra of TAX-Lips, PVP-TAX-Lips, and pure TAX, and a physical mixture of PVP-K30, TAX,
and SPC.

TABLE 1 | Particle size, zeta potential, PDI, and EE of TAX-Lips and PVP-TAX-Lips.

Group Particle size (nm) PDI Zeta potential (mV) EE (%)

TAX-Lips 96.18 ± 0.66 0.186 ± 0.012 −33.75 ± 6.42 91.3 ± 1.0
PVP-TAX-Lips 109.27 ± 0.50 0.189 ± 0.007 −51.12 ± 3.79 84.7 ± 0.3

Data are presented as the mean ± SD (n = 3).

Frontiers in Bioengineering and Biotechnology | www.frontiersin.org June 2022 | Volume 10 | Article 8605155

Ding et al. Hepatoprotective Effect of Taxifolin Liposomes

https://www.frontiersin.org/journals/bioengineering-and-biotechnology
www.frontiersin.org
https://www.frontiersin.org/journals/bioengineering-and-biotechnology#articles


Therefore, these experimental results suggest that PVP
successfully modified TAX-Lips and formed an outer layer on
the outside.

3.4 The Cumulative Rate of Drug Release In
Vitro
In vitro release profiles of TAX-Lips, PVP-TAX-Lips, and free
TAX are shown in Figure 3. The results indicate that both the
liposomes exhibited some slow-release properties in the
simulated gastric fluid (pH = 1.2) and simulated intestinal
fluid (pH = 6.8) compared to free TAX. The cumulative
release rate of free TAX in the simulated gastric juice reached
95.40 ± 2.86% after 6 h, and was completely released after 8 h. The
cumulative release rate of free TAX in the simulated intestinal
fluid reached 90.60 ± 8.82% within 10 h and was completely
released after 12 h. The rapid release of drug from TAX-Lips and
PVP-TAX-Lips during 0–2 h was probably due to the rapid
diffusion of unencapsulated drug and sudden release of
liposomes, and the drug started to be released slowly after 2 h,
reaching a maximum release of 89.73 ± 5.18% for TAX-Lips and
65.66 ± 4.86% for PVP-TAX-Lips after 24 h in the simulated
gastric fluid. On the other hand, the cumulative release rate was
68.20 ± 4.98% for TAX-Lips and 55.66 ± 3.92% for PVP-TAX-
Lips during 24 h in the simulated intestinal fluid.

The results of in vitro release experiments showed that PVP-
TAX-Lips had a slow-release effect in the simulated
gastrointestinal fluids.

3.5 The Role of PVP-TAX-Lips in Protecting
the Liver
3.5.1 PVP-TAX-Lips Improves LPS/D-GalN Induced
Liver Morphological Abnormalities in Mice
The morphological appearance of the liver of mice is presented
in Figure 4A. After 6 h, the liver of the model group showed
obvious hemorrhagic damage due to the intraperitoneal
injection of LPS/D-GalN, while the liver appearance of the
mice treated with TAX-Lips and PVP-TAX-Lips was
significantly improved. The results of H&E staining
histopathology and the necrosis score are shown in
Figure 4B. The liver tissue of the control group showed no

abnormalities and structural integrity, with the hepatocytes
arranged radially along the central vein with dense interstitial
spaces. Conversely, the model group had disturbed hepatocyte
arrangement, severely damaged the liver structure, increased fat
vacuoles, and obvious inflammatory cell infiltration. PVP-TAX-
Lips significantly reversed LPS/D-GalN-induced ALI without
significant hepatocyte damage, according to the degree of
hepatocyte necrosis represented by quantitative scoring of the
histopathological results. It is worth mentioning that hepatocyte
necrosis was significantly improved by PVP-TAX-Lips
treatment compared to the model group (p < 0.01). The
scores ranged from 0 to 5, with scores of 1-3 for mild liver
injury, 3-4 for moderate liver injury, and 4-5 for severe liver
injury.

3.5.2 PVP-TAX-Lips Reversed the Increase of Liver
Index in Mice With ALI Induced by LPS/D-GalN
The results in Table 2 showed that TAX-Lips and PVP-TAX-Lips
had no effect on the body weight of mice after 14 days of
treatment. The liver weight of mice in the model group was
significantly increased compared with the control group (p <
0.001; Table 2), but the liver weight of mice treated with TAX-
Lips and PVP-TAX-Lips was significantly reduced compared
with the model group (p < 0.01; Table 2). The liver index was
significantly increased in the model group (7.5 ± 1.3%) compared
with the control group (p < 0.01; Table 2), while the increase in
the liver index was significantly reversed in mice with TAX-Lips
and PVP TAX-Lips treatment (6.4 ± 1.2% and 5.4 ± 0.9%) (6.4 ±
1.2% and 5.4 ± 0.9%) (p < 0.01; Table 2).

3.5.3 PVP-TAX-Lips AttenuatesMiceWith ALI Induced
by LPS/D-GalN
The levels of ALT, AST, GSH, MDA, and SOD were measured to
evaluate the effect of PVP-TAX-Lips on LPS/D-GalN-induced
ALI inmice. The levels of ALT andAST in the serum ofmice were
significantly increased in the model group after the
intraperitoneal injection of LPS/D-GalN (p < 0.001), but the
levels of ALT and AST were significantly reduced after TAX-Lips
and PVP-TAX-Lips treatment (p < 0.01; Figures 4C,D). The
levels of GSH and SOD were significantly reduced (p < 0.001)
while the level of MDA was significantly increased (p < 0.01) in
the liver tissue of the model group, while the abnormal expression

FIGURE 3 | (A) In vitro release profiles of free TAX, TAX-Lips, and PVP-TAX-Lips in simulated gastric juice (pH = 1.2). (B) In vitro release profiles of free TAX, TAX-
Lips, and PVP-TAX-Lips in simulated intestinal fluids juice (pH = 6.8) (mean ± SD, n = 3).
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FIGURE 4 | Acute liver injury in mice. (A) Effects of TAX-Lips and PVP-TAX-Lips on the appearance of the liver in mice. (B) H&E-stained liver tissue sections, with
magnifications of ×100 and 200X, and the necrosis score of the liver. (C,D) ALT and AST levels in mice serum. (E–G)GSH, MDA, and SOD content in themice liver tissue.
As compared with the control group, ##p < 0.01,###p < 0.001; As compared with the model group, *p < 0.05, **p < 0.01, ***p < 0.001. The data are presented as the
mean ± SD (n = 8).

TABLE 2 | Effect of TAX-Lips and PVP-TAX-Lips on the liver index in mice.

Group Initial
weight of mice(g)

Final
weight of mice(g)

Liver weight(g) Liver index (%)

Control 31.3 ± 3.0 35.5 ± 4.2 1.6 ± 0.3 4.4 ± 0.6
Model 30.5 ± 3.0 35.2 ± 5.0 2.6 ± 0.5### 7.5 ± 1.3###

TAX-Lips 31.8 ± 4.0 36.3 ± 5.4 2.3 ± 0.6** 6.4 ± 1.2**
PVP-TAX-Lips 32.2 ± 2.6 37.5 ± 4.1 2.0 ± 0.4*** 5.4 ± 0.9***

As compared with the control group, ###p < 0.001; the model group, *p < 0.05, *p < 0.01, ***p < 0.001; data are presented as the mean ± SD (n = 8).
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levels of GSH, MDA, and SOD induced by LPS/D-GalN were
significantly reversed by PVP-TAX-Lips treatment (p < 0.05;
Figures 4E–G).

3.5.4 Effect of PVP-TAX-Lips on Inflammatory Factors
in Mice With ALI Induced by LPS/D-GalN
The expression levels of inflammatory factors iNOS, IL-1β, and
TNF-α in LPS/D-GalN-induced ALI in mice were studied in
order to estimate the anti-inflammatory effect of PVP-TAX- Lips
(Figure 5). The protein expression levels of iNOS, IL-1β, and
TNF-α were significantly increased in the model group compared
with the control group after intraperitoneal injection of LPS/
D-GalN (p < 0.05), whereas the protein expression levels were
significantly decreased in the PVP-TAX-Lips treatment group
compared with the model group (p < 0.05).

3.5.5 PVP-TAX-Lips Improved LPS/D-GalN Induced
ALI by Inhibiting the TLR4/NF-κB Signaling Pathway
The activation of TLR4/NF-κB signaling pathway plays an
essential role in ALI induced by LPS/D-GalN. Therefore, the
expression levels of related proteins TLR4, MyD88, IκBα,
p-IκBα, and NF-κB were evaluated (Figure 6A), to study the
effect of LPS/D-GalN-induced TLR4/NF-κB signaling pathway.
The protein expression levels of TLR4, MyD88, p-IκBα/IκBα,
and NF-κB were increased in the model group compared to the
control group, while the protein expression levels were
significantly inhibited after PVP-TAX-Lips treatment
compared with the model group (Figures 6B–F). These
results indicate that the hepatoprotective effect of PVP-TAX-
Lips on LPS/D-GalN-induced ALI may be related to TLR4/NF-
κB signaling pathway.

3.5.6 PVP-TAX-Lips Improved LPS/D-GalN-Induced
ALI by Increasing Autophagy
Autophagy is involved in the cellular clearance of damaged
organelles and pathogens, among other activities (Zhang et al.,
2020). The protein expression levels of LC3II/I, ATG5, and ATG7
were reduced after the intraperitoneal injection of LPS/D-GalN in
the model group mice, while the protein expression level of P62
was significantly increased (p < 0.05; Figure 7). In addition, PVP-
TAX-Lips significantly reversed the effect of LPS/D-GalN on
autophagy protein in mice (p < 0.05; Figure 7). In conclusion, the
abovementioned results suggest that PVP-TAX-Lips avoided
LPS/D-GalN-induced ALI by regulating the expression levels
of autophagy protein.

4 DISCUSSION

TAX is a flavonoid compound that has been proved to possess
significant hepatoprotective effect in the previous studies (Hu
et al., 2019; Sunil and Xu 2019; Yang et al., 2019). However, the
poor water solubility of TAX limits its application, and for that it
is important to find a method that improves the bioavailability of
TAX, and liposomes are known to be a dosage form capable of
enhancing the apparent water solubility of drugs. However,
traditional liposomes have some disadvantages, as they are not
suitable for oral administration due to the destruction of lipid
membrane in the complex gastrointestinal environment, which
leads to drug leakage in the gastrointestinal tract. Chemical
modification of liposomes helps to reduce the effect of the
complex gastrointestinal environment on the traditional
liposomes, and intact liposomes can enter M cells through the

FIGURE 5 | Inflammatory factors in mice with ALI induced by LPS/D-GalN. (A) Protein levels of iNOS, IL-1β, TNF-α, and β-actin analyzed byWestern blotting. (B–D)
Relative band intensity analyzed by ImageJ Analysis System, and β-actin was used as a control for equal loading. As compared with the control group, #p < 0.05. As
compared with the model group, *p < 0.05. The data are presented as the mean ± SD (n = 3).
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intestinal epithelial cells to release drugs, thus prolonging their in
vivo circulation (Figure 8). Therefore, it is crucial to find
materials to modify traditional liposomes in order to improve
the outcome of their oral administration. PVP is a drug carrier

material with the advantages of good biocompatibility, low
toxicity, and enhanced drug solubility (Edikresnha et al.,
2019), which was employed here to modify TAX-Lips. PVP
has been widely used in drug delivery systems, wound and

FIGURE 6 | Expression of TLR4/NF-κB signaling pathway induced by LPS/D-GalN. (A) Protein levels of TLR4, MyD88, IκBα, p-IκBα, NF-κB, and β-actin analyzed
by Western blotting. (B–E) Relative band intensity analyzed by ImageJ Analysis System, and β-actin was used as a control for equal loading. As compared with the
control group, ##p < 0.01, ###p < 0.001; As compared with the model group, **p < 0.01, ***p < 0.001. The data are presented as the mean ± SD (n = 3).

FIGURE 7 | Expression of the autophagy proteins induced by LPS/D-GalN. (A) Protein levels of LC3, P62, ATG5, ATG7, and β-actin analyzed by Western blotting.
(B–E) Relative band intensity analyzed by ImageJ Analysis System, and β-actin was used as a control for equal loading. As compared with the control group, #p < 0.05.
As compared with the model group, *p < 0.05, **p < 0.01. The data are presented as the mean ± SD (n = 3).
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burn dressings, and ophthalmic applications (Ajji et al., 2020;
Teodorescu et al., 2019). According to the FTIR results, PVP-K30
was successfully located on the outer layer of TAX-Lips. The
comparison of PVP-TAX-Lips with TAX-Lips revealed that the
particle size of PVP-TAX-Lips was increased by 13.09 nm and the
zeta potential of PVP-TAX-Lips was increased by 17.37 mV,
which may improve the stability of the drug carrier system due to
electrostatic repulsion (Hanafy and Ei-kemary 2022), thus
reducing the aggregation between liposomes. The in vitro
release results have demonstrated that PVP-TAX-Lips
exhibited superior slow-release compared to free TAX and
TAX-Lips, which, in turn, may prevent the leakage of TAX
from liposomes in the simulated gastrointestinal fluid
environment. This provided a basis for the hepatoprotective
effect of PVP-TAX-Lips against LPS/D-GalN-induced ALI.

ALI has become one of the diseases that seriously damage
human heath: the improper use of drugs, excessive alcohol
consumption, and environmental pollution damages the
hepatocytes, which induce serious consequences such as liver
fibrosis, cirrhosis, and even liver cancer (Buchanan and Siclair
2021; Bunchorntavakul and Reddy 2018; Liu et al., 2021; Xiong
and Guan 2017; Yang et al., 2019). Therefore, the development of
new hepatoprotective drugs is a priority. The ALT and AST levels
are important indicators to assess liver function, whereas GSH,
MDA, and SOD are the biomarkers of the degree of oxidation in
vivo (Bohm et al., 2016; Khoury et al., 2017; Zhou Honghong

et al., 2018; Hanafy 2021; Huang et al., 2021). In this study, the
expression levels of ALT, AST, GSH, MDA, and SOD were
abnormally altered in the model group of mice after the
intraperitoneal injection of LPS/D-GalN, while PVP-TAX-Lips
were able to reverse this abnormal expression levels. Oxidative
stress is one of the important factors for evaluating aging and
diseases (Liu Aiyun et al., 2018; Yan et al., 2018), leading to
inflammatory infiltration of neutrophils, structural destruction of
hepatocytes, increased fat vacuolation, and irregular cell
arrangement, as well as these changes can be observed by
histopathological staining. The histopathological results
presented here showed significant histopathological
manifestations of liver injury compared with the control
group, while PVP-TAX-Lips reduced the inflammatory
infiltration of liver neutrophils and protected the liver
structures with significant hepatoprotective effects.

LPS/D-GalN-induced ALI inmice not only produces oxidative
stress but also inflammation (Liu et al., 2017a). When the
hepatocytes are attacked by LPS, TLR4 recognizes LPS and
activates nuclear transcriptional factor NF-κB with the help of
MyD88. Hence, TLR4/NF-κB pathway is one of the important
signaling pathways in LPS-D-GalN-induced ALI (Jia et al., 2018).
The LPS/D-GalN activates TLR4/NF-κB signaling pathway and
stimulates the release of proinflammatory factors, such as iNOS,
IL-1β, and TNF-α. This study investigated the changes in
expression levels of TLR4/NF-κB signaling pathway related

FIGURE 8 | The diagram of PVP-TAX-Lips oral administration into the body circulation.
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factors and proinflammatory factors by PVP-TAX-Lips
treatment of LPS/D-GalN-induced ALI, and the results of
Western blot analysis showed that PVP-TAX-Lips significantly
inhibited the activation of the TLR4/NF-κB signaling pathway
and the expression levels of proinflammatory factors, confirming
the involvement of this signaling pathway in the hepatoprotection
mechanism of PVP-TAX-Lips.

Autophagy is a highly conserved mechanism of intracellular
homeostasis that includes five different stages: initiation,
extension, autophagosome formation, autophagosome
lysosome fusion, and then degradation (Yang et al., 2010;
Zhang et al., 2020). Autophagy can clearly damage cells and
organs, so the increase of autophage protein expression helps to
remove damaged cells and effectively prevent ALI induced by
LPS/D-GalN in mice. Importantly, LC3, P62, ATG5, and ATG7
are the key nodes of the autophagy signaling pathway (Liu et al.,
2019; Rah et al., 2017). The results of Western blot analysis were
consistent with the fact that PVP-TAX-Lips treatment increases
the levels of autophagy in mice and improves the ALI induced by
LPS/D-GalN in mice, a result that is in line with a previous one,
that showed that the upregulation of the autophagy signaling
pathway effectively inhibited ALI (Zhang et al., 2020).

Current studies have shown that TLR4/NF-κB signaling
pathway was closely related to autophagy (Lee et al., 2019).
TLR4 is the main receptor of LPS and autophagy prevented
LPS-induced injury and regulated the downstream role of TLR4
signaling pathway, which further confirmed the relationship
between TLR4 signaling pathway and LPS-induced autophagy
(Leventhal et al., 2016). It has been shown that LPS inhibits the
expression levels of inflammatory factors such as TNF-α and IL-
1β in macrophages through the activation of TLR4-MyD88
signaling pathway (Zhao et al., 2019), and rapamycin was
found to attenuate brain injury and activate autophagy
through the TLR4-MyD88 signaling pathway (Li et al., 2019).
Recent studies also revealed the relationship between ALI and
TLR4/NF-κB signaling pathway through LPS/D-GalN-induced
ALI in mice, but the hepatoprotective mechanism of autophagy in
combination with TLR4/NF-κB has not been yet explored (Chen
et al., 2021; Jia et al., 2018).

5 CONCLUSION

In this research, PVP-TAX-Lips with hepatoprotective
properties were prepared for the first time, expanding the
therapeutic applications of TAX, a very poorly soluble

compound from natural origin. Our work explored the
hepatoprotective effect of PVP-TAX-Lips on the LPS/
D-GalN-induced ALI in mice by regulating the expression
levels of autophagy proteins and inhibiting the expression
levels of TLR4/NF-κB signaling pathway with the activation
of related inflammatory factors, which provided a new idea for
TAX application and the prevention of ALI in the future.
However, the preparation process of PVP-TAX-Lips remains
to be optimized, and further studies on the hepatoprotection
mechanism are needed to fully characterize the proposed drug
delivery system.
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