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Liver has a very amazing ability to regenerate from the remnant liver after injury or partial hepatectomy (PH). Carbohydrate
metabolism plays a critical role in regeneration. Many signaling pathways are involved in the metabolism process. We analyzed
the changes of proteins at 0–36 h after PH in rats using isobaric tags for relative and absolute quantitation (iTRAQ) coupled
with LC-MS/MS-based quantitative proteomics strategy. The results showed that 110 proteins and 5 signaling pathways related to
carbohydrate metabolism in rat LR changed significantly. Based on amotif discovery method performed by iRegulon, we identified
for the first time that the transcription factor SPIB whose motif was enriched among the differentiated genes associated with
carbohydrate metabolismmay play an important role in liver regeneration for the first time.The findings of this research provide a
molecular basis for further unrevealing the mechanism of regeneration at priming stage (0–6 h) and proliferation stage (6–36 h) of
LR in rats. At the same time, our studies provide more novel evidence for the signaling pathways which regulate carbohydrate
metabolism from proteomics level. This study can provide some new thinking of liver regeneration and treatment of diseases
associated with glucose metabolism.

1. Introduction

Liver has a very amazing ability to regenerate. The remnant
liver can enter the cell cycle rapidly after encountering some
stimulus such as injury or partial hepatectomy (PH) in
order to substitute the lost hepatic tissue and restore liver
function. This process is called liver regeneration (LR) [1].
Under normal circumstances, the majority of liver cells are
in G0 phase and only a handful of them divide [2]. When
a number of factors such as viruses, autoimmune diseases,
toxins, drugs, and surgical resection cause liver damage, the
usually quiescent and highly terminal differentiated liver cells
enter into G1 phase from G0 phase after receiving the signal
stimulation and then induce the expression of a series of
genes related to liver regeneration [3].The proliferation of the
hepatocytes completes twice in 2-3 days and is accompanied
by the proliferation of hepatic stellate cells, Kupffer cells, and
biliary epithelial cells. At the same time, the proliferation

of endothelial cells and angiogenesis are involved in the
reconstruction of liver construction too [4].

It is generally believed that LR is divided into three stages,
priming, proliferation, and termination, and the specific
time is species-dependent. In rat, the priming stage lasts
for 4 h which characterized the transition from G0 to the
cell cycle and DNA synthesis initiates approximately 20 h
after hepatectomy [5]. Cell activation, proliferation, and
apoptosis and other physiological activities in LR are closely
associated with the normal liver function, development,
growth, and disease [6–8]. Thus, the illumination of the
molecular mechanism of LR has an important theoretical
and practical value to reveal the mechanism of liver disease
and establish the methods of treatment and prevention
of liver disease [9–11]. As the center of metabolism, liver
plays an important role in glucose utilization, absorption,
transport, and degradation. It maintains a relatively constant
blood glucose level mainly by glycogen synthesis, glycolysis,
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glycogenolysis, and gluconeogenesis. Glycogen can be broken
down into glucose and released into the blood to regulate
the normal blood sugar levels but also can be converted into
a variety of polysaccharides, oligosaccharides, and glucose
derivatives so as to constitute the cell structure [12].

The carbohydrate metabolism activity which occurs in
liver contains mainly glycolysis, aerobic oxidation, pentose
phosphate pathway, glycogen synthesis, glycogenolysis, and
gluconeogenesis. Glucose, fructose, and galactose can enter
the glycolytic pathway through phosphorylation of various
forms so as to perform glycolysis or aerobic oxidation so
as to provide ATP which the body needs. In this study,
the glucose metabolism proteomics in rat liver regeneration
were studied bymeans of high-throughput biological analysis
and systems biology approach. We found that six signaling
pathways and many kinds of proteins regulate the carbohy-
drate metabolism after combination of the databases from
NCBI, GENEONTOLOGY, RGD, KEGG, and IPA (Ingenuity
Pathway Analysis) software. We expanded the study at trans-
lational level in order to explore the activity and mechanism
of glucose metabolism-related physiological process of LR.
In this study, the protein expression profile was examined
which is related to rat LR using isotopically labeled tags
for relative and absolute quantification (iTRAQ) combined
with mass spectrometry (MS) [13–17]. And we analyzed
the likely transcription factor which is likely regulating the
carbohydrate metabolism and built the network.

2. Materials and Methods

2.1. Model Preparations of Rat Liver Regeneration Induced
by Partial Hepatectomy. All rats in our study were obtained
from the Experimental Animal Center of Henan Normal
University, and protocols were approved by Institutional
Animal Care and Use Committee of Henan Normal Uni-
versity in China (Permit Number SYXK2008-0105). Adult
healthy male Sprague-Dawley rats weighing 210 g–250 g were
provided by the Experimental Animal Center of Henan
Normal University. These rats were raised in a controlled
temperature room (21 ± 2∘C) with the relative humidity 60 ±
10% and illumination 12 h/d (light from 8:00 to 20:00). They
were allowed to have water and food freely. A total of 76 rats
were divided into 19 groups with 4 rats per group: one normal
control group (NC), nine sham-operated groups (SO), and
nine partial hepatectomy groups (PH).The rats in PH groups
were subjected to 2/3 partial hepatectomy according to the
method described previously (Xu et al., 2010). The SO group
received the same procedure as the PH group except the liver
removal and the same procedure as the PH group. The rats
were anesthetized and put to death at 0, 2, 6, 12, 24, 30, and
36 h after operation according to Higgins’ methods; that is
to say, the middle and the left hepatic lobe accounting for
about 70% of liver weight were removed. The experimental
procedures were in accordance with the Current Animal
Protection Law of China.

2.2. Protein Extractions, iTRAQ Labeling, and Peptides Iso-
lation. Protein extraction was performed according to the
procedure described before [18]. Frozen rat liver sampleswere

grounded to powder in liquid nitrogen and suspended in lysis
buffer (150mMTris, 8M urea, 2M thiourea, 4% CHAPS, and
65mMDTT).The suspension was vortexed at 4∘C for 1 h and
then centrifuged at 20,000𝑔 for 1 h in a high-speed centrifuge.
The protein concentration of each sample was determined by
2D Quantification kit (GE Healthcare, USA).

A total of 80 𝜇g of each sample was denatured, reduced,
and alkylated as described in the iTRAQ protocol (Applied
Biosystems, USA). Each sample was digested with 0.1 𝜇g/𝜇L
trypsin solution at 37∘C and overnight. Control (0 h), 2 h, 6 h,
12 h, 24 h, 30 h, and 36 h samples were, respectively, labeled
with 114, 115, 116, 117, 118, 119, and 121 iTRAQ tags according
to the manufacturer’s protocol (Applied Biosystems, USA).
Seven samples were collected and vacuum-dried. All labeled
peptides were mixed to be performed by SCX prefraction.
The flow-through and elution were collected in 30 parts
and merged into eight samples per group according to SCX
chromatogram. The samples were desalted using a Pepclean
C18 spin column (sigma, USA) and dried by vacuum cen-
trifugation. Each sample was analyzed by mass spectrometry
(Thermo Fisher Scientific, Waltham, MA, USA) after the
capillary HPLC separation [2, 15].

The style of the original data got frommass spectrometry
is RAW. We uploaded the RAW data to Mascot 2.2 software
(Matrix Science, London, UK) by Proteome Discover 1.4
and searched through the Swiss-Prot database from Uniprot
website (http://www.uniprot.org). The analysis and search
parameters were set as described before [13].

2.3.The Validation of iTRAQData byWestern Blot Validation.
The Western blot was performed as described previously to
verify the expression of proteins. In brief, the proteins were
separated and transferred to a PVDF membrane. Then, the
membrane was blocked in Tris-buffered saline containing
0.1% tween-20 for 1 h at 37∘C. Subsequently, the membrane
was incubated with primary antibodies rabbit anti-CD68
(Boster, #BA3638, 1 : 1,000), rabbit anti-CD163 (Bioss, bs-
2527R, 1 : 1,000), rabbit anti-CD47 (Boster, # BM413, 1 : 1,000),
and rabbit anti-PIK3R1 (Boster, # BA1352-2, 1 : 1,000) and
then the secondary antibodies (alkaline phosphatase labeled)
for 1 h at 37∘C. Finally, the membrane was visualized in the
substrate solution and terminated by TE buffer. The relative
quantity of target proteinswas analyzed byTyphoon 9500 and
ImageQuant software with 𝛽-actin as the internal reference.

2.4.Master Regulator Analysis. In order to identify TFs based
on regulatory motif and chromatin immunoprecipitation-
sequencing, we performed iRegulon plugin in Cytoscape
v3.3.4 [19]. The master regulator and its targets were detected
by scanning the known TF-binding promoter motifs. All the
options were taken as default.

2.5. The Dysregulation Prediction of Signaling Pathways Par-
ticipating in the Carbohydrate Metabolism. In order to find
the changes of signaling pathways associated with glucose
metabolism, we used the Ingenuity PathwayAnalysis (IPA) to
perform comparative analysis. Briefly, the dataset (.txt style)
containing the expression value of our proteins was uploaded
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to IPA. Then the core analysis and comparison analysis were
performed to get the heatmap of every signaling pathway and
carbohydrate metabolism.

3. Results

3.1. The Expression of Proteins Related to Carbohydrate
Metabolism in Rat Liver Regeneration. According to pro-
tein expression profile related to carbohydrate metabolism
detected by iTRAQ, we found that 110 kinds of protein were
associated with liver regeneration, wherein PKA, PPAR, P53,
HIF1𝛼, PIK3/AKT, andAMPK signaling pathway and glucose
metabolism-related proteins have 27, 16, 18, 7, 35, 12, and 33
kinds, respectively, as shown in Supplementary Table 1 in
Supplementary Material available online at https://doi.org/
10.1155/2017/8428926.

3.2. Cluster of the Protein Expression Patterns Related to
Carbohydrate Metabolism and the Signaling Pathways Par-
ticipating in Carbohydrate Metabolism in Rat LR and the
Validity of Western Blot Validation. Cluster 1 was mainly
enriched with the proteins which were downregulated at
almost all time points including CLIC6, SPA1, PSMD3, and
DDOST. The proteins in cluster 2 were classified together
mainly because they were downregulated at the proliferation
stage and changed slightly, even a little, at other time points
including NANS, CACNA1A, and GYG1. The third cluster
mainly included proteins downregulated at priming stage
and upregulated at the proliferation stage such as ARSA,
PPP1CB, NCOR1, HK3, and CDK4. Almost all the proteins
that were upregulated at all time points are classified into
the fourth cluster including GLB1, AKT1, COQ7, INSR, and
PIK3R1. The last cluster included mainly the proteins that
were up-/downregulated including HEXB, PPP1R7, PTPN1,
and SIRPA (Figure 1(a)).

To validate the reliability of the iTRAQ results, 4 proteins
were detected by Western blot detection including CD68,
CD163, CD47, and PIK3R1 (Figure 1(b)). The results showed
that there is a good correlation in the expression level of 4 pro-
teins between Western blot and iTRAQ result (Figure 1(c)).

3.3.Master RegulatorsAnalysis. Wediscovered the regulatory
TFs at the initiation of LR using iRegulon in Cytoscape. The
most strongly enriched TF motif is SPIB with a normalized
enrichment score (NES) of 5.299. The expression changes of
the target genes for SPIB have been shown in color in Figure 3.

3.4. The Expression of Proteins Associated with Carbohydrate
Metabolism Signaling Pathways and the Predicted Signaling
Activity in LR. Theprotein expression profile of the signaling
pathways associated with LR was uploaded to IPA to perform
the Heatmap analysis by the Ingenuity� Knowledge Base
database built in IPA. The result indicated that four out of
five signaling pathways changed significantly, one activated,
two suppressed, and one changed differently at different time
points. The activity of AMPK signaling pathway increased,
p53 signaling pathway decreased at 6 h, 24 h, and 36 h after
hepatectomy, and PPAR signaling pathway weakened at

2 h, 30 h, and 36 h as shown in Figure 2. Notably, HIF1𝛼
signaling did not change. And the carbohydrate metabolism
was upregulated at all time points and changed significantly,
except at 12 h.

4. Discussion

Adenosinemonophosphate activated protein kinase (AMPK)
signaling pathway plays an important role in the energy
metabolism, especially in carbohydrate metabolism [20–23].
AMPK consists of three kinds of subunits: 𝛼, 𝛽, and 𝛾. There
are 12 different existing forms and themain form in rat liver is
𝛼1/𝛽1/𝛾1 and 𝛼2/𝛽1/𝛾1 [24–27]. AMPK can be activated by an
increased ratio of AMP/ATP or ADP/ATP [28]. Studies have
shown that activation of AMPK inhibits glycogen synthase,
activates glucose transporter 4 (GLU4), and then facilitates
the transfer and absorption of glucose and increases the
glycogen content in skeletal muscle [29]. AMPK is very sensi-
tive to hypoxia.TheAMP/ATP and creatine/phosphocreatine
ratio influence AMPK signaling pathway significantly. Our
research found that AMPK signaling pathways and carbo-
hydrate metabolism have been in active state almost in the
whole process of LR as shown in Figure 4. In order to illustrate
clearly the changes of the proteins in rat LR, we divided the
liver regeneration into two stages, initiation stage (2–6 h) and
proliferation stage (6 h–36 h). After PH, the low nutrients
caused the rise of AMP/ATP ratio and activated PKA, and the
latter activated the STK11-STRAD-MO25 ternary complex
and caused the phosphorylation of 𝛼 subunit in AMPK.
When 𝛼 subunit combines with 𝛽 and 𝛾 subunit, AMPK gets
activated. The activated AMPK caused four effects at least
fromour results as follows. Firstly, it activatedGLUT4 so as to
increase glucose transport and strengthen glucose utilization.
Secondly, AMPK induced phosphorylation of ACC, thereby
inhibiting its function and the synthesis of malonyl-CoA
and fatty acid from acetyl-CoA, so that the latter entered
into the Krebs cycle to produce more ATP which can meet
the energy needs of regeneration. Thirdly, AMPK caused the
phosphorylation of PFK-2, which catalyzed generation of
F-2 and 6-P2 and the latter produced F-1 and 6-P2 under
the upregulated PFK-1. Pyruvate was eventually produced
and entered into the TCA cycle to generate ATP. Fourthly,
GSK3 forms complex with AMPK 𝛽-regulatory subunit and
phosphorylates AMPK𝛼-catalytic subunit [30]. Based on
previous researches, the activity of GSK-3 was reduced when
its ser9 site was phosphorylated by AKT [31]. And GSK-3
phosphorylates glycogen synthase, thus inhibiting its activity.

Our research found that the expression of the insulin
receptor which resides in the membrane was upregulated.
The activated insulin receptor causes the phosphorylation
of tyrosine of IRS 1,2. The activated IRS activated PI3K and
the latter caused the phosphorylation of phosphatidylinositol
4,5-bisphosphate (PIP2) to produce PIP3. As the second
messenger, PIP3 can activate AKT and the latter inhibits
FOXO. As the first clarified kinase that inhibits FOXO, AKT
played an extremely important role in the regulation of FOXO
[32, 33]. The activated AKT promoted the phosphorylation
of FOXO and caused its inactivity. The inactivated FOXO
was transported from nucleus to the cytoplasm, thereby
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Figure 1: Global protein expression patterns in rat LR and Western blot validation. (a) The “hierarchical diagram” column represents 109
differentially expressed proteins. Red and green colors represent the expression level higher and lower than the control, respectively. (b) The
protein expression levels detected by Western blot. 𝛽-Actin is the internal reference. (c) The correlation of proteins detected by iTRAQ and
Western blot. The horizontal axis represents the recovery time (h) after partial hepatectomy and the ordinate axis represents the relative
protein level.

terminating the action on G6Pase, FBPase, and PEPCK and
inhibited glucose production at the level of transcription. In
our study, FBPase was upregulated at the priming and prolif-
eration stage, which agreedwith previous studies [34, 35].The
deletion of p53 caused the reduction of oxygen consumption
and resulted in the attenuation of aerobic oxidation [36]. In
order to ensure the energy demand, glycolysis strengthened.
So p53 is the very important substance in balancing the
glucose metabolism and aerobic oxidation. p53 regulates the
aerobic respiration process in mitochondria mainly depend-
ing on the regulation of regulative subunit of cytochrome
c oxidase complex. Cytochrome c oxidase (COX) catalyzes
the transfer of electrons from cytochrome C to molecular

oxygen, which helps tomaintain the electrochemical gradient
between outer and inner mitochondrial membrane that is
necessary to synthesize ATP. In our study, LDHA (M type
lactate dehydrogenase) has been in a rising state while LDHB
(H type lactate dehydrogenase) in a reduced state in thewhole
process of LR. As we all know, LDHA has a relatively lower
𝐾
𝑚
value to pyruvate and promotes the transformation of

pyruvate to lactate easily. And the following glycolysis could
provide energy quickly relatively. LDHB has a higher 𝐾

𝑚
to

lactate; what it does more is promoting the transformation
from lactate to pyruvate and the latter goes into Krebs cycle.
In order to compensate for the lack of energy, the glycolysis
goes on for a longer time. That is to say, glycolysis makes up
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Figure 3: Network of SPIB using iRegulon in Cytoscape. The nodes in pink and green represent the upregulated and downregulated genes
at the initiation and progression stage of LR in rat. (a) The regulator SPIB and its targets genes at the initiation stage of LR. (b) The regulator
SPIB and its target genes at the progression stage of LR. (c) The binding motif of SPIB.

for the reduction of energy due to the reduction of aerobic
oxidation [37]. The result is consistent with Matoba et al.’s
[38].

PPARs are nuclear hormone receptor superfamily mem-
bers including 3 kinds of subtypes, PPAR𝛼, PPAR𝛿, and
PPAR𝛾 [39], and PPAR𝛼mainly is in liver. It is reported that
insulin inhibited the expression of PPAR𝛼 which is highly

expressed in liver [40]. PPAR𝛼 regulated lipid metabolism
by regulating some enzymes participating in 𝛽-oxidation in
peroxisome [41]. According to Zeng et al.’s report, the drugs
acting on PPAR𝛾 affected the process of glucose metabolism
by affecting the activity of key enzyme in glycolysis [42]. And,
according to Yan’s report, the Geniposide’s hypoglycemic
effects were directly related to the activation of PPAR𝛾
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receptor (Yan et al. 2007). In our study, PPAR signaling path-
way has been in a suppressed state. Therefore, we speculate
that a lot of energy is required at priming and proliferation
stage of LR, but the 𝛽-oxidation of fatty acids is blocked and
more glucose is employed due to the lack of oxygen.

HIF is a major transcription factor regulating transcrip-
tion of most enzymes in the glycolytic pathway from glucose
down to lactate [36]. In our study, HIF1𝛼 signaling pathway
did not change significantly. But the downstream molecule
of the signaling pathway such as PDK1 changed and thereby
regulated the glucose metabolism in LR. Hypoxia inducible
factor (HIF) is themost important factor whichmaintains the
oxygen balance in mammals with pyruvate dehydrogenase
kinase-1 (PDK1) as an important target gene. The protein
encoded by PDK1 has a direct impact on the fate of pyruvate.
Our research found that PDK1 declined slightly at priming
stage and increased at proliferation stage which is consistent
with the SO group, so PDK1 is related to liver injury (not
shown). Based on the above process, PDK1 inhibited the
synthesis of acetyl coenzyme A by phosphorylating PDH,
thus blockingKrebs cycle and reducing oxygen consumption.
At the same time, the increased LDHA promoted more
pyruvate to generate lactate. This was consistent with Simon
[43] (Figure 4).

The relatively new transcription factor SPIB belongs to
ETS family and binds to purine-rich sequence and plays an
important role in differentiation [44]. SPIB is overexpressed

in several cancers including liver and colon cancers compared
to the normal samples. And the high SPIB was significantly
associated with the poor survival of patients with HCC
so it may serve as a clinical prognostic indicator of HCC
[45]. In our study, the target genes regulated by SPIB are
overexpressed the most. Considering the similarity between
regeneration and tumor,we inferred that SPIBmayplay a vital
role in liver regeneration.

In conclusion, the carbohydrate metabolism is activated
at the priming and progression stage during LR. At priming
stage, the activation of metabolism may be prepared for the
requirement of substance and energy for the ensuring cell
cycle.Due to the deficiency of oxygen at the priming stage, the
glycolysis may play a more important role. At the progression
stage, more energy is required for the synthesis of DNA and
proteins and the carbohydrate is more metabolic than the
priming stage. As the most important organ in regulating
relatively constant blood sugar levels, liver regulates glucose
metabolism by many metabolic pathways. At the priming
stage of live regeneration, the most important thing is to
reduce the oxygen consumption and increase glycolysis to
provide energy.Many signaling pathways and proteins related
to glucose metabolism intercross with each other in main-
taining the balance of energy and blood sugar. At the priming
stage, glycolysis played an important role in the energy supply
due to the deficiency of oxygen. At the progressing stage,
aerobic oxidation supplied more energy for cell proliferation.
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And we identified that the transcription factor SPIBmay play
a significant role in liver regeneration.
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