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Measuring the health benefits of air quality improvement is a new perspective for

evaluating government investment in pollution control. Improving air quality can reduce

the burden on medical insurance funds and patients themselves; however, patients

with higher reimbursement rates are more affected by air quality changes. This study

calculated health benefits using medical insurance reimbursement data from a sample

city in China. The results show that for every 10 µg/m3 decrease in PM2.5, patients’

average medical cost will decrease by CNY 1,699 (USD 263.6), and the loss of ordinary

working and living time will decrease by 1.24 days. PM2.5 has a more significant impact

on patients with chronic respiratory diseases and inpatients with circulatory diseases.

Suppose the city’s annual PM2.5 concentration drops to the national standard of 35

µg/m3. In that case, it will bring more than CNY 1.28 billion (USD 198 million) in health

benefits, accounting for 18% of the city’s annual investment in environmental protection.

Keywords: air pollution, health benefits, medical insurance reimbursement data, induced demand, thermal

inversion

INTRODUCTION

Air pollution control is the focus of ecological development in many developing countries, and
healthcare costs due to air pollution are receiving higher priority worldwide. Existing studies
have constructed a well-established framework for research on air pollution and health outcomes,
finding that air pollution is associated with higher infant mortality, morbidity, and healthcare
expenditures (1–13).

However, since existing research has generally studied the relationship between poor air quality
and health outcomes, evaluating “better air quality” is meaningful, especially for developing
countries facing development transformation challenges (14). In 2013, the Chinese government
issued an action plan for air pollution prevention and control1 that included systematic
measures to combat air pollution. Existing evaluative studies have also found that over CNY 60
billion investments have resulted in significant improvements in air quality2 (15). Essentially,

1Available online at: http://www.jingbian.gov.cn/gk/zfwj/gwywj/41211.htm?tdsourcetag=s_pcqq_aiomsg (accessed January

18, 2021).
2Available online at: http://www.xinhuanet.com/politics/2018lh/2018-03/17/c_137045643.htm (accessed October 18, 2020).
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lower air pollution figures are meaningless to the government.
Further studies are needed to evaluate the effectiveness
of this investment in environmental public finance. Air
quality improvement plays an essential role in enhancing
productivity from a supply-side perspective (16); however,
the health benefits need further study from a demand-side
perspective. Public disclosure of environmental information
has increased the population’s overall health awareness and
commitment, accompanied by increased proactive and defensive
investments to address air pollution (21). Owing to consumption
inertia, improvements in air quality will not change the
established consumption habits of those who can defend
themselves. However, for people who do not have sufficient self-
defense capacity, the health costs resulting from air pollution will
be high, which could cause forward health inequality between
different people.

This study evaluated the benefits of environmental inputs
from a new perspective. At the individual level, air quality
improvements are mainly reflected in reduced healthcare costs,
which are analyzed according to the morbidity of the two central
air pollution-related diseases, namely respiratory and circulatory
diseases. In addition, we introduce the concept of lost work
hours based on Grossman’s (22) health stock model; that is, air
pollution may lead to a loss of wage income for patients due to
the treatment of illnesses. Chen et al. (23) noted that workers
facing air pollution might choose to forego income, highlighting
the opportunity cost concept extending the traditional evaluation
of health benefits. A link between the environment and the health
sector is evident at the government level. Environmental inputs
can lead to savings in health insurance spending, and establishing
such a relationship will help the government improve the
multiplier effect concerning financial inputs.

Estimation with two-step linear squares (2SLS) shows that for
every 10 µg/m3 reduction in PM2.5, healthcare expenditures for
patients with respiratory and circulatory diseases will decrease by
16%, and the visit duration in days will be reduced by 14%. These
values remained robust after changing the instrument variables,
adjusting the data structure, and accounting for the effects of
population migration and air pollution warnings. Heterogeneity
analysis found that air pollution has a more significant impact on
the cost of visits for patients with chronic respiratory diseases and
inpatients with circulatory diseases and a more substantial effect
on the expenditure of drugs and treatment. Further research has
found that improvements in air quality can alleviate both the
burden of health insurance and individuals. This study found
a moderating effect of health insurance reimbursement in the
impact of air pollution on health care costs, where patients with
higher reimbursement rates are subject to “induced demand” and
will potentially face higher healthcare costs. We also find non-
linearity, which shows a marginal health benefit increasing for
PM2.5, under 90 µg/m3. In terms of economically significant
measures, this study found that for every 10 µg/m3 reduction
in PM2.5, the health benefits for respiratory and circulatory
patients in the city would be CNY 546 million (USD 84.9
million). In contrast, a reduction in PM2.5, the annual average
standard of 35 µg/m3 would result in annual health benefits of
approximately CNY 1.278 billion (USD 198 million), including

CNY 1.032 billion (USD 160 million) in health insurance
expenditure savings.

The contributions of our study can be summarized as follows:
First, we expanded the calculation range of health benefits for
air quality improvement by introducing the concept of lost
work hours. Specifically, we estimated the opportunity cost of
treating illness by regressing the visit duration on air pollution.
Second, we provided a more comprehensive measure of the
health benefits of air quality improvement. We calculated the
health benefits in the resident and government sectors based on
the proportion of costs reimbursed by health insurance. Third,
we estimated the causal relationship between air quality and
medical health costs. We used a high frequency with extensive
observation data from the medical insurance reimbursement
system to capture the health cost of patients. Furthermore, we
analyze this relationship using instrumental variables to solve
the endogeneity.

This paper continues in the following manner. Section
Literature Review presents the literature review; Section
Theoretical Model is a refinement of the Grossman health stock
model; Section Data and Variables is a basic description of
the research data; Sections Empirical Methodology, Empirical
Results, and Further Analysis present the methodology
and results of the baseline empirical analysis and further
analysis, respectively; and Section Conclusions provides
concluding remarks.

LITERATURE REVIEW

Research on how air pollution affects health falls into two
perspectives: the impact of air pollution on people’s health
outcomes and the cost of defending against air pollution.
Chen et al. (2) used total suspended particles (TSPs) as
the measurement index of air pollution. They estimated
the negative impact of air pollution on life expectancy by
taking the heating difference between the north and south
of the Huai River as a geographical regression discontinuity
design. Janke (3) found that nitrogen dioxide (NO2) and
ozone (O3) had a significant positive impact on children’s
respiratory emergency hospitalizations in England. Schlenker
and Walker (7) measured the impact of carbon monoxide
(CO) emissions caused by taxiing time of airplanes at the
airport. They found that CO significantly increased themorbidity
of residents within 10 km of the airport. Deschenes et al.
(10) found that air pollution affects body weight through
biological channels and causes overweight through behavioral
channels, such as increasing calorie intake. Many other studies
have focused on the relationship between air pollution and
mortality (4–6, 9, 12). The above studies focused on the
externalities of air pollution, which is conducive to a deeper
understanding of the negative impact of air pollution on working
and living.

Another perspective focuses on the cost of defending against
air pollution. Existing studies have generally found that air
pollution has contributed to increasing mask and air purifier
sales (17–19) and increasing commercial insurance purchases
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(20). Deschênes et al. (24) and Deryugina et al.’s (9) examination
of the relationship between air quality and health expenditure
in the US healthcare market provided many references for
our study; however, the three studies based on the Chinese
situation are the most relevant to us. Barwick et al. (25)
used China UnionPay credit card consumption data for the
period 2013–2015 to study the impact of air pollution on
morbidity costs and found a significant relationship between air
pollution and health expenditures; they measured the decline
in health or non-health consumption when the PM2.5 falls
below the World Health Organization’s (WHO) air quality
standards as the morbidity cost of air pollution. Liao et al.
(26), however, used data from the 2016 and 2018 China Family
Panel Studies (CFPS) and found that PM2.5, which increases
the cost of air pollution by affecting lifestyle (sleeping time and
sedentary activities hours), will increase household health care
expenditure and out-of-pocket hospital expenditure, and that
the effect is more pronounced in younger age groups. Shen
et al. (27) focused on the impact of industrial air pollution
on health expenditure by region using province-level panel
data for the period 2002–2015. They found that air pollution
has a greater effect in central and eastern China and a non-
linear impact in western China, with a negative impact below
the threshold.

In the above studies, Barwick et al. (25) tracked credit card
spending in hospitals, Liao et al. (26) utilized information from
micro surveys to determine the nature of consumption, which
can help researchers identify how air pollution contributes
to health expenditure more clearly, both of which were
studied from a consumer perspective. We analyzed the medical
insurance reimbursement system from a provincial capital
city in China for our research. There are some differences
between our study and the above literature. First, our data
facilitate more accurate identification of medical expenditure
from the hospital perspective and allow us to avoid bias
due to different payment methods or respondents’ subjective
judgments. Second, compared to consumer data, the data
obtained from hospitals contain richer information about
individual medical histories, enabling the study to be conducted
in the appropriate pathological context. Furthermore, these
data include the specific visit dates for all patients from
January 2016 to December 2017; hence, the data better
capture daily air quality trends by matching daily air pollution
indicators, whereas the annual data of Liao et al. (26)
and Shen et al. (27) used only the air quality for the
entire year.

However, we should admit that the medical insurance
system data still has inevitable shortages. Due to data source
limitations, our data cover only 2 years, and it is difficult to
prolong the period of data. However, our data might be the
newest accessible data from the medical insurance system. As
we know, the current data wave also allows us to control
series time fixed effects such as year fixed effects, month fixed
effects, and day of week fixed effects. Our study also faces the
problem of lacking data from more cities. We believe that our
research introduces a model to evaluate the health benefits of
environmental improvement.

THEORETICAL MODEL

Grossman (22) analyzed health needs and inputs in a utility
maximization framework. This study serves as the basis for
various theories (24, 25). Deschênes et al. (24) considered
the marginal willingness to pay (MWTP) for air pollution
in terms of patients’ duration of illness due to the effects
of air pollution. Barwick et al. (25) further considered the
time of exposure to a polluted environment. They subdivided
consumption into medical, online non-medical, and offline non-
medical consumption. The latter two ultimately yield MWTP for
air pollution by solving for the maximization of the utility of the
health stock, subject to budget constraints. Based on the above
studies, this paper discusses the boundaries of health benefits
concerning the characteristics of empirical data.

In this study, MWTP is defined as the health benefits of
air quality improvement, mainly for the following reasons. On
the one hand, MWTP refers to the cost of optimal healthcare
spending, which alleviates the negative impact of air pollution
exposure in the model of Grossman (22). It can also be regarded
as the opportunity cost of better health outcomes and better
living progress with given air quality. This cost will decrease with
improved air quality, which means that the health benefits of air
quality are another side of the MWTP for air pollution.

On the other hand, the MWTP measures the subjective
intention of expenditure in most situations; however, the health
benefits can not only reflect the individual revenue of patients
who go to the hospital to get better health outcomes with a
proactive attitude contain the objective gains of government
environment investment. Thus, the health benefits of air quality
improvement have enriched the traditional concept ofMWPT for
addressing air pollution.

For the model, the first is the health stock equation, given that
it consists of three components. h0 denotes the health stock of the
patient’s endowment, m denotes patients’ medical expenditure
to cope with air pollution, and medical spending can improve
health status. g(e) is the health loss due to air pollution, and
e(a,m) is the loss of working hours due to air pollution. The
higher the pollution level, the more working hours lost; therefore,
there is a positive relationship with the level of air pollution.
The relationship between health expenditures and lost working
hours is uncertain, but the direction of the coefficient does not
influence the final result. It is certain that themore working hours
lost (time spent on visits), the greater the overall health loss.
Therefore, g (e) is an incremental function of e(a,m), as in the
existing literature (25). The three components of the health stock
are summed linearly in this study, as follows:

h = h0 +m− g(e) (1)

In the long run, total income consists of two components:
non-wage income, y0, and wage income, W[h (e) , e], where
wage earnings are proportional to health status and inversely
proportional to working hours lost, with a budget constraint, as
in Equation 2:

y
(

h
)

= y0 +W
(

h
)

≥ π + pm+ c (2)
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π indicates that the insurance pays an annuity, p is the proportion
of out-of-pocket payments, and c is non-health expenditure. As
this study does not focus on consumption information other than
medical expenditure, it treats c as exogenously given.

Final utility U
(

h, c, e
)

is affected by three components: health
status, loss of working hours, and expenditure. Equation 5 was
first obtained using the Lagrangian first-order derivation:

L = U
(

h, c, e
)

+ λ[y
(

h
)

− π − pm− c] (3)

∂L

∂m
= 0 (4)

λp = Ueem + (Uhgeem + λyh
[

1− geem
]

) (5)

The MWTP for air pollution can be obtained using the implicit
function theorem, as shown in Equation 6.

MWTP = −
∂L/∂a

∂L/∂y(h)
(6)

Of which:

∂L

∂a
= −Uhgeea + Ueea − λyhgeea = Ueea − geea(Uh + λyh) (7)

Equation 8 is obtained by differentiating air pollution, health
conditions, and working hours lost in Equation 7 and simplifying
it as follows:

∂L

∂a
= Ue

[

de

da
− em

∂m

∂a

]

+

[

dh

da
−

∂m

∂a
+ geem

∂m

∂a

]

[Uh + λyh] (8)

Combining Equations 5 and 8 produces Equation 9:

∂L

∂a
=

∂m

∂a
(−λp+ Uh)+

∂h

∂a

(

Uh + λyh
)

+ Ue
de

da
(9)

The denominator of the MWTP can also be directly expressed as
∂L
∂a = λ, and dividing by Equation 9 yields

MWTP = (p−
Uh

λ
)
∂m

∂a
−

∂h

∂a

(

Uh + λyh
)

−
de

da

Ue

λ
(10)

Expanding and simplifying the above equation yields the final
Equation 11:

MWTP =
∂m

∂a

[

p−
Uh

λ

]

+

(

Uh

λ
+ yh

)

∂h

∂a
−

de

da

Ue

λ
(11)

The first term on the right side of the equal sign in Equation 11
can be regarded as the cost of paying for healthcare under air
pollution, ∂m

∂a . The second term can be considered as the loss of
labor efficiency due to air pollution, which can be reflected in the
loss of work capacity due to illness or the opportunity cost due to
the delay in working hours. This paper does not discuss the loss of
utility owing to illness in other areas as a result of data limitations.

Combined with the above theoretical analysis, the empirical
part of this study measured the health benefits of air quality

in two main ways: according to health expenditure savings
owing to improved air quality. First, personal out-of-pocket
savings help improve the welfare of those who lack defenses
against air pollution, improve consumption structure, reduce
subsistence consumption, and release people from other forms
of consumption. In addition, savings due to health insurance
reimbursement bolsters the sustainability of the health insurance
fund and protects the corresponding financial investment.
Second, air quality improvement safeguards against the loss of
working hours and the consequent loss of wages, raising the
population’s income in terms of opportunity costs.

DATA AND VARIABLES

The Air Quality Improvement Process
The sample city in our study is a provincial capital city inWestern
China. In 2017, the GDP of the sample city was over 1,300
billion CNY, ranking in the top 10 of all cities in China, and
the resident population was over 16 million by the end of 2017.
The basic topography of the sample city is plain, and the sample
city also has rich medical resources; in particular, the number of
physicians and beds in medical institutions is ranked in the top
five of all cities in China. We believe that this sample city could
be a representative case in research on the relationship between
air quality and health outcomes.

To measure the air quality background of the sample city, we
collected a series of pollution indicators to illustrate the air quality
improvement process, using descriptive statistics. The pollution
indicators for the sample city in 2015–2017 are described in
Table 1, where both NO2 and particulate pollution (PM10 and
PM2.5) are above China’s secondary annual average standard.3

Particulate pollution significantly exceeded the standard. Both
PM10 and PM2.5 exceeded the secondary annual average standard
by more than 20 µg/m3, about 30% of the days between 2015
and 2017 had mild pollution and above, about 10% had moderate
pollution and above, PM10 exceeded the secondary 24-h average
standard on 16% of the days, and PM2.5 exceeded the same 25%
of the time. According to the sample city’s 2016 Environmental
Quality Bulletin, air quality was ranked in the lower to middle
range of 74 cities nationwide.

According to national standards, the air quality of the sample
city was not excellent. However, air quality dynamics are of
greater interest given the city’s topography is not conducive to
pollution dispersion. The annual average of the major pollutant
indicators for the sample city are shown in Figure 1, with the
average AQI and average particulate pollution maintaining a
downward trend over the 3 years. The decline observed in 2017
was greater than that in 2016, supporting this study’s air quality
improvement research.

3The national concentration limits for basic items of ambient air pollutants are

divided into annual average, 24-h average and 1-h average. The different averaging

times are divided into primary and secondary standards, and the values for

primary standards are lower than those for secondary standards. Each indicator’s

exceedance frequency is compared to the secondary 24-h average standard.
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TABLE 1 | Sample city’s air pollution status.

Variable (1) (2) (3) (4) (5) (6)

Mean Std. Min. Max. Unit National annual standard

Panel A: Pollution indicators

AQI (Air Quality Index) 85.2923 46.6955 18.6534 369.8114 Dimensionless Below 100 is good quality

SO2 14.0845 5.5222 4.3813 38.4656 µg/m3 60

NO2 48.9433 15.2567 14.9057 112.1062 µg/m3 40

CO 1.0021 0.3511 0.4112 2.5722 mg/m3 4

PM10 96.1556 60.3444 14.8712 451.4689 µg/m3 70

PM2.5 57.9911 39.1775 6.6555 290.8890 µg/m3 35

O3 8 h maximum 127.7735 55.2521 22.0012 300 µg/m3 160

Panel B: Air quality divided by AQI

Excellent air quality 0.2045 0.4056 0 1 AQI: 0–50

Good air quality 0.5367 0.5067 0 1 AQI: 51–100

Mild pollution 0.1863 0.3812 0 1 AQI: 101–150

Moderate pollution 0.0623 0.2446 0 1 AQI: 151–200

Heavy pollution 0.0366 0.1866 0 1 AQI: 200–300

Serious pollution 0.0039 0.0578 0 1 AQI: 300

Panel C: Frequency of air pollutant over daily standard

SO2 0.0013 0.0011 0 1 SO2 > 150

NO2 0.0432 0.1856 0 1 NO2 > 80

CO 0.0002 0.0012 0 1 CO > 4

O3 8 h maximum 0.2843 0.4556 0 1 O3 8 h > 160

PM10 0.1655 0.3712 0 1 PM10 > 150

PM2.5 0.2521 0.4332 0 1 PM2.5 > 75

Information on air pollution variables was obtained from the environmental data processing support provided by the Qingyue Open Environmental Data Center (https://data.epmap.org).

The above table spans the period from 1st January 2015 to 31st December 2017, and the pollution standards are HJ 633-2012 and GB3095-2012.

FIGURE 1 | Annual air quality in sample city, 2015–2017.

Measuring Patients’ Exposure to Air
Pollution
Although many studies have shown that various air pollutants,
such as CO, NO2, SO2, could affect people’s health (32, 37, 38),

particulate pollutants are the major pollutants in the sample
city. Notably, PM2.5 is incredibly harmful to humans (28). PM2.5

exceeded the secondary annual average standard by 38%; PM2.5

is also the leading cause of haze, which people can observe
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and perceive directly. In most studies, PM2.5 is used as a proxy
measurement for air pollution (9, 18, 25), as in our research.
Thus, we set PM2.5 as our key independent variable and control
the other pollutants (CO/NO2/SO2/PM2.5−10) in our regression
to enhance the efficiency of the regress model.

This study matched all air pollutants according to the patient’s
visit dates (from January 1 2016 to December 31 2017). The
following two steps were performed: the daily air pollution
concentrations index was first calculated on a forward-moving
average and then matched to the patient’s visit date to reflect
the durational course of the air pollution effect. In keeping
with the existing literature, a 7-day moving average window
was used in this study, and the results were not sensitive
to the moving average window (see Supplementary Material
Appendix A). Second, to ensure the consistency of air quality and
patient distribution, we obtained the concentrations of pollutants
by averaging data from nine different monitoring stations located
in the urban areas of sample city. In particular, we matched the
patients in 78 public hospitals with air pollution day by day.

Measuring Health Benefits
To measure health benefits, we used detailed health insurance
reimbursement data from 78 public hospitals in a sample city.
The database provides 563,383,685 expense details, including
when each expense was incurred, cost, type of patient, type of
patient reimbursement insurance, and diagnosed disease. The
data included 869,781 patients with 1,766,690 visits. Health
insurance claims were recorded for inpatient and special
outpatient visits.4 However, our data did not include patients
without health insurance or those who did not use their health
insurance for payment (e.g., ordinary outpatients).

Referring to the existing literature (29–32), only samples from
patients first diagnosed with a respiratory or circulatory disease,
the diseases with themost direct effect, were used in the follow-up
regression. The number of visits for circulatory and respiratory
diseases was 213,804 and 313,840, respectively, accounting for
18 and 12% of the total number of visits, ranking first and third
among the 22 major medical conditions coded as ICD-10.

Table 2 presents the descriptive statistics of the variables.
Panel A is a variable description of the health insurance
reimbursement data. Regarding total personal costs, patients’
average total individual cost was CNY 10,616, and the per
capita health insurance reimbursement expense was CNY 8,340,
with reimbursement rates of more than 75%. Treatment fees
accounted for a higher proportion than drug and consumable
fees regarding the cost structure. Of the patients, 70.3% were
inpatients, and 72.8% belonged to the Basic Medical Insurance
for Urban Employee (UEBMI). In contrast, the other patients
belonged to the Basic Medical Insurance for Urban and Rural
Residents (URRBMI). Visit duration was obtained by subtracting
the admission date from the discharge date, and the visit duration

4Special outpatients are patients with certain prescribed chronic diseases who

are still eligible for reimbursement under the basic social health insurance when

they visit public hospitals’ outpatient departments, while ordinary outpatients

are not eligible for reimbursement under the basic social health insurance. The

special outpatient category includes 22 diseases, such as coronary heart disease,

hypertension III, and diabetes mellitus.

for the sample from special outpatient clinics was set to 1. The
visit duration per capita was 8.55 days, and the average number
of repeat visits per capita was 3.32, which means that all of the
patients in our data, on average, will go to the hospital more than
three times in 2 years. Panel B is a variable description from the
air pollution and climate databases. For the pollution and climate
indicators, we use a 7-day on-moving average.

EMPIRICAL METHODOLOGY

Although air quality is a relatively exogenous variable for
individual behavior, an individual’s air pollution exposure can be
endogenous. The presence of factors that affect both individual
air pollution exposure and patient healthcare expenditure can
lead to omitted variable bias. This study focuses on obtaining
consistent estimates by controlling for fixed effects and using
instrumental variables. For selecting the baseline model, we used
the applied microeconometric method because we tried to solve
the endogeneity problem to obtain causal inference results.5

Controlling for Fixed Effects
The first method eliminates time-invariant omitted variables and
time trends by including dummy variables as much as possible.
In addition, hospital records use ICD-10 codes for disease types,
which can be further subdivided into 6-digit codes for respiratory
and circulatory diseases, reflecting differences on disease type and
degree of illness.

Unlike other autonomous consumptions, inter-individual
differences in public hospital medical costs mainly reflect disease
type and hospital differences. The scope for individual patient
decisions related to the expenses of visits is relatively small.
Therefore, we controlled for hospital fixed effects and used
ICD-10 6-digit codes corresponding to disease-type fixed effects
to control for some patient differences to a certain extent.
The year, month, and day of week fixed effects are also
controlled to eliminate the effects of time trends and specific
cyclical events (18).

Instrumental Variables
Given that fixed effects cannot absorb the effects of factors such
as possible short-term shocks, including workplace changes and
unexpected public events that affect both patient air pollution
exposure and visit costs (25), we add instrumental variables to
the regressions. In this study, thermal inversion intensity was
selected as the instrumental variable in the data context.

Thermal inversion is an atmospheric phenomenon in which
the atmospheric temperature appears to be hotter at the top
and colder at the bottom. The formation of an inversion layer
hinders the diffusion of pollutants. This phenomenon does
not directly affect humans, except through channels that affect

5We also believe that the machine learning is more frontier method to analyze this

question, especially for the non-linearity identification (48). In comparison, the

machine learningmethod emphasize themicro perspective of the deep relationship

between air pollution and illness process in sample individual perspective, we

focused on the effect of air pollution in a comprehensive level, applied micro-

econometric method would be better to capture the macro relationship and

calculate the health benefit of air quality improvement.
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TABLE 2 | Descriptive statistics of variables.

Variable Observation Mean Std Min. Max.

Panel A: variables from health insurance reimbursement data

Total individual costs (Cost of visits) 527,645 10,616.4165 15,014.1904 690.0600 95,787.2031

Insurance reimbursement expenses 527,645 8,340.2325 10,174.8192 627.6041 62,383.4141

Individual out-of-pocket expenses 515,002 2,198.8969 5,476.5628 0.0001 38,426.0820

Cost of drug 527,645 3,867.8017 4,588.1423 184.0400 29,621.1660

Cost of consumables 378,692 2,055.3273 7,660.2320 1.9800 53,677.1289

Cost of treatment 414,051 6,575.6370 7,514.0128 18 48,493.2109

Patient type: inpatients 527,645 0.7034 0.4567 0 1

Insurance type: UEBMI 527,645 0.7275 0.4453 0 1

Visit duration (days) 527,645 8.5511 8.5832 1 46

Number of repeat visits 527,645 3.3163 2.9170 1 45

Panel B: variables from air pollution database and climate database

7-day average surface air temperature (◦C) 527,645 18.5581 7.8227 3.5000 32.9625

7-day average sunshine hours (h) 527,645 2.9586 2.0055 0.0000 9.7625

7-day average pressure (hPa) 527,645 951.2132 6.3978 939.1250 964.4250

7-day average relative humidity (%) 527,645 81.0924 5.6805 64.7500 93.2500

7-day average temperature (◦C) 527,645 16.4359 7.0856 1.9375 29.0750

7-day average evaporation (mm) 527,645 1.7799 0.7850 0.6000 4.2875

7-day average PM2.5 (µg/m3
) 527,645 58.4380 31.9735 14.1177 193.6603

7-day average wind speed (m/s) 527,645 1.3261 0.2084 0.7625 1.9125

7-day average thermal inversion intensity (◦C) 527,645 0.8602 1.6251 0.0000 8.4879

7-day average sulphur dioxide (µg/m3
) 527,645 14.0047 3.4600 7.3711 26.7350

7-day average NO2 (µg/m3
) 527,645 49.8129 11.2201 24.2242 91.1488

7-day average CO (mg/m3
) 527,645 1.0155 0.3064 0.6022 2.2103

7-day average O3 (µg/m3
) 527,645 126.1352 43.0932 55.5000 238.2500

7-day average PM2.5−10 (µg/m3
) 527,645 38.6782 19.0024 13.4486 114.5743

Source: Health insurance reimbursement database of a provincial capital city. The authors calculated several indicators. Information on climate variables was obtained from publicly

available data: National Greenhouse Data System data.sheshiyuanyi.com/WeatherData/.

For specific types of disease, the total per capita cost of respiratory diseases was CNY 10,601 and the per capita visit duration in days was 10.84. In contrast, it was CNY 11,136 and

7.52 days for circulatory diseases. Of the patients with respiratory diseases, 99.8% were inpatients, 55% had UEBMI, and the number of repeat visits was 2.5 in both years. Inpatients

and special outpatients accounted for 50% of patients with circulatory diseases, respectively. In 84.8% of the patients with circulatory diseases, the insurance type was UEBMI and

repeat visits were four in both years.

pollution diffusion; therefore, inversion has become awidely used
instrumental variable in air pollution studies (6, 16, 26, 33–36). In
this study, thermal inversion data were obtained and processed
in the NASA-MERRA2 database by referring to Sager (35) (see
Appendix B for details).

Finally, the baseline regression equation used in this study
is shown in Equation 12, where footer I denotes individuals
and footer t denotes time, where costit includes the cost of the
visit and the visit duration in days, both treated logarithmically.
PM2.5it is The average PM2.5 during the window period for
each patient, weatheritare climatic variables including days
of sunshine, surface air temperature, air pressure, relative
humidity, air temperature, evapotranspiration, and wind speed
that can contribute to respiratory or circulatory diseases (28,
37, 38). Pollutionit represents the additional air pollution
indicators shown in Table 2, including sulfur dioxide (SO2),
nitrogen dioxide (NO2), carbon monoxide (CO), ozone (O3),
and PM2.5−10 concentrations, with all of the above indicators
taken as moving averages for the 7 days before the visit. Xi

represents the remaining control variables, including patient

type, insurance type, visit duration, and the number of
repeat visits6; hospitalirepresents hospital fixed effects; diseasei
represents the 6-digit ICD-10 coded disease fixed effects; and T
represents the time fixed effects, such as weekends, months, and
seasons. The first-stage regression equation is shown in Equation
13, where thermal_ivit is the thermal inversion intensity, and
εit ,µit is the residual term. All standard errors of the regressions
are robust standard errors.

ln (costit) = β0 + β1PM2.5it + λ1weatherit + λ2pollutionit

+φXit + hospitali + diseasei + T + εit (12)

pm2.5t = α0 + α1thermal_ivit + θ1weatherit

+θ2pollutionit + σXit + hospitali + diseasei + T + µit (13)

6The patient type includes inpatient and special outpatient, the insurance type

includes UEBMI and URRBMI. The visit duration in days is no longer included

among the control variables when it is treated as dependent variable.
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TABLE 3 | Impact of air pollution on the cost of visits and visit duration in days

under 2SLS.

(1) (2) (3)

First stage Cost of visits Visit duration

7-day average PM2.5 0.0162*** 0.0143***

(0.0036) (0.0034)

7-day average thermal

inversion intensity

0.5375***

(0.0398)

Patient type: inpatients −0.1814** 1.1588*** 2.3499***

(0.0747) (0.0718) (0.0521)

Insurance type: UEBMI 0.2241*** 0.0921*** 0.1356***

(0.0328) (0.0259) (0.0111)

Visit duration in days 0.0054*** 0.0377***

(0.0015) (0.0053)

Number of repeat visits 0.0408*** −0.0057 0.0277***

(0.0082) (0.0040) (0.0039)

Observation 528,051 527,645 526,789

Kleibergen-Paap rk Wald

F-value

. 183.2 181.2

R square 0.9257 0.3647 0.5514

Climate variables Y Y Y

Pollution variables Y Y Y

Year fixed effects Y Y Y

Monthly fixed effects Y Y Y

Day of week fixed effect Y Y Y

Disease fixed effects Y Y Y

Hospital fixed effects Y Y Y

All standard errors of the regressions are robust. **indicates significance at the 5% level

and ***indicates significance at the 1% level. The cost of visits and visit duration in

days were treated logarithmically. The unit for the 7-day average PM2.5 in the table is

µg/m3. Visit type takes the value of 1 for inpatients, and insurance type takes the value

of 1 for UEBMI. Among the control variables, the climate variables were sunshine days,

average surface air temperature, average air pressure, average relative humidity, average

air temperature, evaporation, and wind speed. Other pollution indicators included SO2,

NO2, CO, PM2.5−10, and O3.

EMPIRICAL RESULTS

Baseline Results
Table 3 shows the baseline regression results. The first column
presents the results of the first stage of the two-stage
least squares (2SLS) regression, which shows a significant
positive effect of thermal inversion intensity on PM2.5, as
expected. The Kleibergen-Paap rk Wald F value of the first-
stage regression is well above the critical value that satisfies
the correlation requirement between the instrumental and
endogenous variables, thus rejecting the weak instrumental
variables hypothesis and indicating that the results of the 2SLS
regression are reliable. The second and third columns show
the effect of PM2.5 on patient visit costs and duration after
applying the instrumental variables, with coefficients indicating
that for every 10 µg/m3 decrease in PM2.5, visit costs for patients
with respiratory and circulatory diseases would decrease by 16%
and visit duration would decrease by 14%, both of which are
significant at the 1% level. In concrete terms, for every 10 µg/m3

reduction in PM2.5, patients’ average cost would be reduced by
CNY 1,699 (USD 263.6), and the number of regular workdays
lost would be reduced by 1.24 days.

Song et al. (15) are the only scholars to use an approximate
database in China with medical insurance sampling data
from Shanghai. They showed a 0.36% change in respiratory
pulmonary-related medical costs for every 10 µg/m3 change
in PM10 compared to the larger estimated coefficient in our
study, which may be due to the more direct health hazards of
PM2.5. Given that Song et al. (15) did not use instrumental
variables to estimate, the results may underestimate the actual
coefficients. Liao et al. (26) used micro-survey data without
instrumental variables and found a 10 µg/m3 change in PM2.5,
and a 2% change in health care costs; the regression results
using instrumental variables are more consistent with our study,
showing a 10 µg/m3 change in PM2.5, and a 17.1% change
in health care costs. Our study’s regression results are more
consistent with Barwick et al. (25), who used China UnionPay
credit card data and found that the effect of PM2.5 on hospital
credit card spending with a 7-day lag was also a 16% change in
costs for every 10 µg/m3 change in PM2.5.

Robustness Check
Next, we perform a series of robustness checks to consider the
effects of changes in the different factors on the benchmark
regression results in Table 3.

Wind Speed Was an Alternative Instrumental Variable
Some studies have used wind speed as an instrumental variable
for air pollution (25, 26, 34, 36). Thermal inversion central
inhibited pollution dispersion by reducing atmospheric flow,
wind speed also reflects the degree of atmospheric flow; the faster
the wind speed, the faster the pollutant dispersion, and the lower
the city’s air pollution level. Our study’s sample city is located on
a plain, where topographical factors affect wind speed less. It is
also suitable to choose wind speed as the instrumental variable
of PM2.5. However, in our IV-alternative robustness check, only
patients with the circulatory disease were tested, as respiratory
disease, which has some association with wind speed, may avoid
the exogenous hypothesis of the instrumental variable.

The regression results are presented in Table 4, which shows
that wind speed significantly reduces PM2.5 concentration. The
effects on the cost and visit duration are equally significant but
with smaller coefficients than the results using thermal inversion
intensity as an instrumental variable.

Difference-in-Difference Model
Because the data included patients with diseases other than
respiratory and circulatory diseases, we used differences in
disease type and air pollution between months to construct
a difference-in-difference (DID) model. We matched patients
pathologically affected by air pollution with patients unaffected
to form the control group. Specifically, two diseases with a similar
number of visits and cost per visit were selected using 3-digit
ICD-10 codes, namely “bronchitis from respiratory diseases”
and “arthritis from the musculoskeletal system and connective
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TABLE 4 | Impact of air pollution to circulatory disease patients with alternative IV.

(1) (2) (3)

First stage Cost of visits Visit duration

7-day average PM2.5 0.0051*** 0.0019**

(0.0015) (0.0009)

7-day average wind speed −6.5303***

(0.1839)

Patient type: inpatients −0.1762** 1.2137*** 2.3309***

(0.0837) (0.0664) (0.0531)

Insurance type: UEBMI 0.1944*** 0.0141 0.0942***

(0.0547) (0.0090) (0.0111)

Visit duration in days 0.0056** 0.0318***

(0.0023) (0.0047)

Number of repeat visits 0.0674*** −0.0112** 0.0271***

(0.0130) (0.0045) (0.0050)

Observation 314,087 313,840 313,287

Kleibergen-Paap rk Wald

F-value

1265 1265

R square 0.9232 0.4301 0.7046

Climate variables Y Y Y

Pollution variables Y Y Y

Year fixed effects Y Y Y

Monthly fixed effects Y Y Y

Day of Week fixed effect Y Y Y

Disease fixed effects Y Y Y

Hospital fixed effects Y Y Y

All standard errors of the regressions are robust. **indicates significance at the 5% level

and ***indicates significance at the 1% level. The cost of visits and visit duration in

days were treated logarithmically. The unit for the 7-day average PM2.5 in the table is

µg/m3. Visit type takes the value of 1 for inpatients, and insurance type takes the value

of 1 for UEBMI. Among the control variables, the climate variables were sunshine days,

average surface air temperature, average air pressure, average relative humidity, average

air temperature, and evaporation. Other pollution indicators included SO2, NO2, CO,

PM2.5−10, and O3. Wind speed was no longer included as a climate-control variable.

tissue diseases.7” Patients with bronchitis were assigned to the
treatment group (treat = 1), and patients with arthritis were
assigned to the control group (treat= 0).

The effect of PM2.5 on the cost of visits to patients with
arthritis disease is first examined in Appendix C, Figure c1,
and the results of the regression coefficients for different time
windows are shown. As expected, no significant effect of PM2.5

was found for the various windows, ranging from 2 to 330 days,
thus ensuring the integrity of the control group.

Next, a DID model was constructed to examine time-
dependent changes in air pollution based on between-group
differences in PM2.5. This study examines changes in the effects of
air pollution on the two diseases mentioned above from August
2016 to March 2017, using July 2016 as the base time group.8 The

7The sample contains 15,659 visits for bronchitis, with a per capita visit cost of

CNY 5,224, and 16,457 visits for arthritis, with a per capita visit cost of CNY 4,177.
8Period from August 2016 to March 2017 covered an enough variation of air

quality and a consistent time section during the time window of our data. As Figure

3, in July 2016, a pretty good air quality month in 1 year, PM2.5 was almost under

50 µg/m3. Thus, we use July 2016 as the base time group.

FIGURE 2 | Time trend of the cost variation factor by disease type.

regression equation is given by Equation 14.

ln
(

feeit
)

= β0 + βt

2017/3
∑

2016/7

Treat∗itmontht + λ1weatherit

+λ2pollutionit + φXit + hospitali + diseasei + T + εit (14)

The variation in the coefficient βt within a month is shown
in Figure 2. No significant difference was found in the overall
effect of PM2.5 between disease types from August to October
when air quality was better (Figure 3). From November to
March of the following year, PM2.5 had a significantly greater
effect on the cost of visits for patients with bronchitis than
patients with arthritis since the bad air quality showed as
Figure 3, supporting the positive finding drawn from the baseline
regression results. This result also suggests seasonal differences in
the impact of PM2.5 on patients with respiratory diseases, which
may result in higher medical costs during seasons with high
air pollution.

Other Factors That May Affect Identification
In addition to solving the problem of potential endogeneity,
three issues may lead to biased identification. The first issue
is the variation in air quality. The core explanatory variable
PM2.5 differs only temporally between samples in this study. If
two patients visited the hospital on similar days, the difference
in their exposure to PM2.5, after the moving average, would
be further reduced. Therefore, we only retained patients who
visited Tuesdays, Thursdays, and Saturdays to amplify the
differences in the core explanatory variables. The regression
results are shown in columns (1) and (2) of Table 5, with
robust regression coefficients and significance compared with
Table 3.

Second, regarding the problem of people migration, if patients
travel to the sample city from other cities to treat their illness,
their exposure to air pollution may not coincide with the sample
city in terms of time and space, and directly matching the
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FIGURE 3 | Time trend of PM2.5 in sample city.

TABLE 5 | Robustness check.

(1) (2) (3) (4) (5) (6)

Variables Limited in next-day sample Limited in local patients Add warning variable

Cost of visit Visit duration Cost of visit Visit duration Cost of visit Visit duration

7-day average PM2.5 0.0163*** 0.0163*** 0.0093*** 0.0138*** 0.0047*** 0.0015

(0.0050) (0.0053) (0.0025) (0.0024) (0.0015) (0.0009)

Number of 7-day AQI exceedances 0.2658 0.2095*

(0.1720) (0.1246)

Patient type: inpatients 1.1677*** 2.3470*** 0.8360*** 2.5209*** 1.2111*** 2.3291***

(0.0759) (0.0568) (0.0107) (0.0053) (0.0661) (0.0531)

Insurance type: UEBMI 0.0855*** 0.1357*** 0.1327*** 0.1507*** 0.0137 0.0939***

(0.0271) (0.0114) (0.0050) (0.0045) (0.0089) (0.0110)

Visit duration in days 0.0383*** 0.0425*** 0.0318***

(0.0056) (0.0007) (0.0047)

Number of repeat visits −0.0054 0.0280*** 0.0007 0.0273*** −0.0113** 0.0269***

(0.0044) (0.0040) (0.0006) (0.0005) (0.0046) (0.0050)

Observation 218,021 217,635 135,236 134,921 313,840 313,287

R square 0.3728 0.5513 0.4093 0.5972 0.4275 0.7031

Control variables Y Y Y Y Y Y

Time fixed effect Y Y Y Y Y Y

Disease and hospital fixed effects Y Y Y Y Y Y

Kleibergen-Paap rk Wald F-value 81.30 79.62 759.3 764.7 167.3 169.0

All the standard errors of regressions are robust standard errors. *indicates significance at the 10% level, **indicates significance at the 5% level, and ***indicates significance at the 1%

level. Year, month, and week fixed effects are controlled for as time fixed effects, as in Table 3. Cost of visit and visit duration are treated logarithmically. Control variables include days

of sunshine, average surface air temperature, average air pressure, average relative humidity, average air temperature, evaporation, and wind speed. Other pollution indicators include

SO2, NO2, CO, PM2.5−10, and O3. Wind speed is no longer included among the climate control variables in columns (5) and (6).
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TABLE 6 | Impact of PM2.5 on cost of visit: heterogeneity analysis.

Variables (1) (2) (3) (4) (5) (6) (7) (8) (9)

Respiratory

diseases

all patients

Acute Chronic Circulatory

disease

all patients

Special outpatients Inpatients Drugs Consumables Treatment

7-day average PM2.5 0.0185*** 0.0081*** 0.0142*** 0.0123** 0.0203 0.0137** 0.0155*** 0.0121* 0.0201***

(0.0027) (0.0030) (0.0024) (0.0051) (0.0439) (0.0067) (0.0040) (0.0063) (0.0038)

Observation 213,804 46,370 98,684 313,840 156,058 157,742 527,645 379,039 414,451

R square 0.2647 0.3168 0.3330 0.4158 −0.0957 −0.0239 0.1668 0.2000 0.4757

Respiratory disease Y Y Y Y Y Y

Circulatory disease Y Y Y Y Y Y

Control variables Y Y Y Y Y Y Y Y Y

Time fixed effect Y Y Y Y Y Y Y Y Y

Disease & Hospital fixed

effects

Y Y Y Y Y Y Y Y Y

Kleibergen-Paap rk Wald

F-value

785.5 265.5 453.6 71.77 1.150 874.8 183.2 1,370 683.6

All standard errors of the regressions are robust. *indicates significance at the 10% level, **indicates significance at the 5% level, and ***indicates significance at the 1% level. Year, month,

and week fixed effects are controlled for as time fixed effects, as shown in Table 3. The cost of the visit was logarithmically treated. The control variables included patient type, insurance

type, visit duration, number of repeat visits, days of sunshine, average surface air temperature, average air pressure, average relative humidity, average air temperature, evaporation,

and wind speed. Other pollution indicators included SO2, NO2, CO, PM2.5−10, and O3.

pollution and climate levels in the sample city may bias the
estimation results. Fortunately, patients in the database are those
with local health insurance, and their workplaces and residences
should be located in the sample city for an extended period;
however, as the sample city is a provincial capital city, several
of the larger hospitals may have admitted more patients from
outside the core urban area. Because of this, we excluded the
top ten hospitals in terms of visits; the remaining hospitals have
a large local population in terms of proximity. The regression
results are shown in columns (3) and (4) of Table 5 and are
equally robust.

The third issue is the effect of avoidance behavior. Some

residents may reduce their outdoor activities to minimize
exposure to negative effects (3, 39). As outdoor PM2.5 may

not reflect the proper air pollution levels to which patients
are exposed, this paper refers to Janke (3) to add an early

warning dummy variable for air pollution as the control variable

for the effect of avoidance behavior. Daily, people may pay
more attention to AQI values than PM2.5, as AQI is more

straightforward for day-to-day comparisons. AQI is also better

at reflecting the effect of early warnings; therefore, we calculated

the number of times AQI reached pollution levels 7 days

before the patient’s visit. To determine the endogeneity of AQI
similar to PM2.5, we used wind speed as the instrumental
variable of AQI. Only patients with circulatory diseases were
retained owing to relationship between respiratory diseases
and wind speed. Overall, thermal inversion intensity and wind
speed were used as instrumental variables for PM2.5 and the
number of and AQI exceedances, respectively. Columns (5)
and (6) of Table 5 present the results. A decrease in the
PM2.5 coefficient is observable, including the AQI exceedance
count, but the coefficient is still significant for the cost
of visits.

Heterogeneity Analysis
Different types of patients and those with other characteristics
may exhibit different responses to air pollution. Patients
themselves may self-categorize them based on self-identification
differences (7), which can be observed through differences in the
impact of air pollution on visit costs.

Some studies grouped samples according to commonly used
demographic information, such as sex, age, and income (40–42).
Patient disease type heterogeneity has also been explored because
of limited demographic information for micro-individuals (3,
7, 43). The inability of the data to differentiate patient
characteristics through more detailed demographic variables
limited this study. However, relying on the wealth of information
about disease types provided by the ICD-10 codes, we analyzed
heterogeneity in terms of disease, patient, and cost types.

Disease Types
Differences in the effect of PM2.5 were examined by
differentiating disease types into acute and chronic diseases
based on ICD-10 codes.9 It is easier to distinguish respiratory
system diseases according to the disease name.10 Columns
(1)–(3) of Table 6 show the regression results, with a significant
effect of PM2.5 on the cost of visits for patients with respiratory
diseases under all disease types. These values were slightly higher

9The effect examined is the different between disease, rather than the effect

between short- and long-term of air pollution (44, 45). Given this study’s regression

design, a longer time period can be chosen to reflect the long-term effects

of air pollution, but it will reduce the instrumental variables’ exogeneity (see

Appendix A); despite the data’s high temporal frequency, it is still less than a 2

year time span, so this studymainly examines the effects of short-term air pollution

exposure.
10Acute diseases include mainly the following codes: J00, J01, J02, J03, J04, J05, J06,

J20, J21, J22, J45, J46, J47. Chronic diseases include J30, J31, J32, J33, J34, J35, J36,

J37, J38, J39, J40, J41, J42, J44, J60, J61, J62, J63, J64, J65, J66, J67, J98.
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than the baseline regression in Table 3. PM2.5 has a greater effect
on patients with chronic diseases, probably because patients with
chronic diseases experience long-term sub-health conditions
and are more sensitive to air pollution, including short-term
exposure, which is more likely to lead to disease recurrence.

Patient Type
Since most patients with respiratory diseases in the data were
inpatient visits and precisely 50% of patients with circulatory
diseases were special outpatients and 50% inpatients, the
heterogeneity analysis distinguished visit types mainly for
patients with circulatory diseases. Columns (4)–(6) of Table 6
present the regression results, column (4) shows that PM2.5 has
a significant effect on the overall cost of circulatory disease visits,
with a slightly lower coefficient than a respiratory disease. Further
differentiation of patient types shows that PM2.5 has a statistically
more significant effect on inpatients. The non-significant impact
on special outpatients is mainly because special outpatients with
circulatory diseases are specifically prescribed regular hospital
visits; therefore, the cost of visits is less affected by short-term
environmental changes.

Cost Type
According to the treatment method, the individual costs can be
divided into drugs, consumables, and treatment costs. Columns
(7)–(9) of Table 6 show the regression results, indicating that
PM2.5 has a more significant effect on drug and treatment costs,
indicating that air pollution mainly increases the cost of drug
and treatment and has a relatively small impact on treatment
modalities such as surgery. In the current Chinese healthcare
reform, improving air quality will also help reduce the proportion
of drugs.

FURTHER ANALYSIS

Further analysis discusses threemain aspects: first, to examine the
differences in the impact of PM2.5 on health care expenditures via
different payment methods and with varying types of insurance,
that is, to explore the moderating role of health insurance in
the impact of PM2.5 on the cost of visits, which entails an
empirical analysis of the interaction between health insurance
reimbursement rates and air pollution in the theoretical model;
second, to examine the non-linearity of PM2.5 with the threshold
identification method; and last, to measure the health benefits
of air quality improvement, based explicitly on regression
coefficients and sample data.

The Impact of Health Insurance
Reimbursement
Based on detailed information about patients’ payment types,
we can distinguish the costs associated with reimbursement
and out-of-pocket expenses, where the former are paid by the
health insurance coordination fund and the latter are the portion
of the total visit cost personally borne by the patient after
removing the part of the health insurance pays. Hence, the out-
of-pocket cost can reflect patients’ personal payment pressure
due to the cost of the visit. Panels A, columns (2) and (3) in

TABLE 7 | Impact of PM2.5 on cost of visit: further analysis, consider

reimbursement.

Total cost Reimbursement

of expenses

Out-of-pocket

expenses

Panel A (1) (2) (3)

7-day average PM2.5 0.0162*** 0.0176*** 0.0277***

(0.0036) (0.0039) (0.0095)

Observation 527,645 528,046 514,684

R square 0.3647 0.3458 0.2184

Kleibergen-Paap rk Wald

F-value

183.2 321.4 186.4

Panel B (1) (2) (3)

7-day average PM*
2.5 UEBMI 0.0138*** 0.0131*** 0.0202***

(0.0014) (0.0013) (0.0038)

7-day average PM2.5 −0.0055 −0.0031 −0.0041

(0.0034) (0.0038) (0.0085)

UEBMI −0.7076*** −0.5950*** −1.5193***

(0.0688) (0.0678) (0.2225)

Observation 527,645 528,046 514,684

R square 0.3444 0.3344 0.2144

Kleibergen-Paap rk Wald

F-value

151.1 151.1 155.3

Control variables Y Y Y

Time fixed effect Y Y Y

Disease and hospital fixed

effects

Y Y Y

All standard errors of the regressions are robust. ***indicates significance at the 1% level.

Year, month, and week fixed effects are controlled for as time fixed effects, as shown in

Table 3. The cost of the visit was logarithmically treated. The control variables included

days of sunshine, average surface air temperature, average air pressure, average relative

humidity, average air temperature, evaporation, and wind speed. Other pollution indicators

included SO2, NO2, CO, PM2.5−10, and O3.

Table 7 show the effects on reimbursement and out-of-pocket
costs, respectively. The regression coefficients are all significant
at the 1% level. Converted to specific amounts, for every 10
µg/m3 decrease in PM2.5, the per-patient savings on average
health insurance expenditure will be CNY 1,501 (USD 233),
and the actual personal health care burden will be reduced by
CNY 368 (USD 57).

The following section examines how PM2.5 impacts visit
costs based on insurance reimbursement. Such differences may
arise from moral hazard issues related to these two aspects of
health insurance. First, patients expect lower treatment costs
after purchasing health insurance–known as “ex-ante moral
hazard”–and thus needlessly consume public resources. Second,
medical personnel may use different treatments according to
different reimbursement types, ultimately reflected in differences
in medical costs (46).

This study’s data set showed two patient classifications by
insurance type: basic medical insurance for urban employees
(UEBMI) and basic medical insurance for urban and rural
residents (URRBMI). The reimbursement rate of UEBMI is
higher than that of URRBMI, providing an opportunity to
identify the second moral hazard problem in this study. The
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FIGURE 4 | Non-linearity of PM2.5.

regression results of the interaction term between PM2.5 and
reimbursement type are shown in Panel B of Table 7. The
regression coefficients of the interaction term under different
payment methods are significantly positive, indicating that
PM2.5 has a significantly higher positive effect on health care
expenditures for UEBMI patients than URRBMI patients. This
result may be due to several factors. On the one hand, most
urban workers with stable jobs and higher incomes are more
willing to consume higher medical expenditures; however, it
may be that the reimbursement rate for urban workers’ health
insurance is higher, and physicians differentiate treatment and
medication based on insurance type, making the visit more
expensive. We believe that the latter is more critical because
patient characteristics have limited decision-making power
concerning the cost of the visit, as the attending physician largely
determines the treatment mode and cost. This result, therefore,
provides potential evidence for the existence of the “induced
demand” phenomenon.

Non-linearity Identification of PM2.5
Although we identified that air pollution significantly increased
health costs, policymakers need to consider not only the greatest
degree to reduce themedical cost but also economic development
opportunities; if the impact of air pollution on the cost of medical
care is non-linear, it is more conducive for policymakers to find
an appropriate point to balance the relationship between the two.

Ostro (47) was the first to focus on a threshold for the effect of
winter air pollution on mortality in London, and the discussion
of non-linearity has been addressed in many follow-up studies.
Most of the identification methods in the literature fall into two
categories: first, transforming continuous air pollution variables
into discrete ones (18, 41) to observe differences in the effects
of various levels of air pollution, and second, conducting an air
pollution value with a threshold dummy variable and identifying
the impact of interaction regression (7, 36).

In this study, the second method of identification was more
general. First, a dummy variable is generated to determine

whether the PM2.5 concentration exceeds the potential threshold.
A series of dummy variables are constructed based on the
distribution of PM2.5 in the data, starting from 50 to 130 µg/m3

in steps of 10 µg/m3; if the current PM2.5 exceeds the threshold,
the dummy variable is 1; otherwise, it is 0. The regression
equation is shown in Equation 15, where βj is the coefficient
of concern, and the coefficient represents the difference in the
effect of air pollution above the threshold compared to the effect
below the threshold. Figure 4 shows the regression results at the
different thresholds.

ln
(

feeit
)

= β0 + βjPM
∗

2.5itThresholdj

+β2PM2.5it + β3Thresholdj + λ1weatherit + λ2pollutionit

+φXit + hospitali + diseasei + T + εit (15)

Figure 4 reflects a marginal increasing effect of air pollution in
concentrations of PM2.5, below 90µg/m3, in the interval of 50–80
µg/m3 where the pollution index is concentrated. After reaching
a 90µg/m3, the non-linear effect of the marginal increment tends
to disappear.

Back-of-the-Envelope: Measuring the
Health Benefits of Air Quality Improvement
The health benefits of air quality improvement include mortality,
morbidity, medical visit costs, defensive consumption costs,
work time, and productivity (40). In the existing literature,
numerous studies examine mortality and morbidity; they
also provide economically meaningful measures, such as the
reduction of pollution to a certain level, the number of visits
(3), the magnitude of the decline in deaths (40), or defensive
consumption reduction (18, 25). This study focuses onmeasuring
the health benefits of air quality improvement in terms of
healthcare cost savings on the cost of visits and the reduced loss
of labor income corresponding to visit duration.

The economized health benefits measured in this study based
on the available data are a conservative estimate. Three aspects
reflect the conservativeness of the estimation. First, the study
sample only includes information about patients who have
received health insurance reimbursement, and the data can only
observe the population who have incurred health care behavior.
The data cannot observe the impact of air pollution on the
population that does not seek medical treatment. Second, there
is a starting line for public health insurance reimbursement.
The data mainly includes relatively high-cost patients, excluding
general outpatients with relatively minor medical expenses; thus,
the measured economic benefits may lower the real benefits.
Third, the disease types of interest in this study are limited to
respiratory and circulatory diseases. However, air pollution may
also have pathological effects on other diseases such as mental
illnesses (41). However, to ensure the reliability of the regression
coefficients, only the two predominant diseases were included in
the measurement.

The health benefits are calculated as follows:
Health gain for one unit of PM2.5 reduction
= (medical cost savings for one unit of PM2.5 reduction +

wage loss reduction for one unit of PM2.5 reduction) × (1 +

morbidity factor)

Frontiers in Public Health | www.frontiersin.org 13 March 2022 | Volume 10 | Article 855457

https://www.frontiersin.org/journals/public-health
https://www.frontiersin.org
https://www.frontiersin.org/journals/public-health#articles


Li et al. Health Benefits of Air Quality

TABLE 8 | Health benefits of measured air quality improvements.

Types Coef. of visit

cost

Per capita

visit cost

Annual visits Morbidity factor Medical cost

savings per 10

µg/m3 reduction

in PM2.5

Total

Cost of respiratory disease

visits

0.018 116,01 121,300 0.0015 253,678,711.31 546,300,926.75

Cost of circulatory disease

visits

0.012 111,36 196,238 0.0004 262,341,658.87

Coef. of visit

duration

Average

number of

visit days

Per capita

daily wage

Working

population

Morbidity factor Reduction in lost

wages per 10

µg/m3 reduction

in PM2.5

Respiratory disease

patients’ wage loss

0.02 11 98.36 970,40 0.0015 21,017,559.06

Circulatory disease patients’

wage loss

0.008 7.5 98.36 156990.4 0.0004 9,262,997.51

The regression coefficients of visit cost and visit duration were obtained through regression, and the sample average PM2.5 concentration, sample disease per capita visit cost, and

sample disease per capita for visit duration were obtained from the data description; the annual number of visits for the sample disease in 2016 was obtained using the sum of visit

records; the sample city per capita daily wage was sourced from the 2016 statistical bulletin on the development of human resources and social security in the city: urban per capita

disposable income was CNY 35,902, while the converted average daily income was CNY 98.36 per day; the average share of the working population was set at 80% according to the

average share of the working-age population, and the coefficient of the effect of PM2.5 on the morbidity of the sample diseases was obtained from Qiu et al. (32) and Li et al. (49) to

determine the first conservativeness problem.

Table 8 shows the calculation process and results, with a
conservative health gain of over CNY 546 million (USD 84.9
million) per year for each 10 µg/m3 reduction in PM2.5. Based
on the existing national secondary annual average PM2.5 of
35 µg/m3, a reduction in the current annual average PM2.5,
which would result in an annual health gain of at least
approximately CNY 1.278 billion (USD 198 million) or about
18% of the city’s 2016 environmental investment.11 Using the
impact factor for reimbursement costs and per capita, health
insurance reimbursement costs would result in at least CNY
1.032 billion (USD 160 million) in health insurance savings in
1 year or about 10.34% of the city’s 2016 health insurance pooled
fund expenditure.12

CONCLUSIONS

Identifying the health effects of air pollution is a hot research
topic in environmental and health economics, and measuring
the health benefits of air quality improvement is of sufficient
relevance in the context of the country’s ongoing efforts to tighten
air environmentmanagement. In this study, through a theoretical
analysis of the health stock model, the impacts of air pollution
on medical expenditures and visit duration were identified, and
the health benefits to be gained from air quality improvement
were estimated. The medical insurance reimbursement system
data matched with daily pollution information provide a better
identification setting in this study, which uses PM2.5 as the main
proxy for air pollution, addresses endogeneity in identification as

11The city invested more than CNY 7 billion in environmental protection in 2016,

according to data from the city’s 2016 Environmental Quality Bulletin.
12The city’s consolidated fund expenditure totaled CNY 9.984 billion in 2016,

according to data from the city’s 2016 Human Resources and Social Security

Business Development Statistics Bulletin.

much as possible by controlling for fixed effects and employing
thermal inversion intensity as an instrumental variable for air
pollution and selects 7 days as a moving average window for
PM2.5 based on sensitivity analysis. The baseline model results
showed that for every 10 µg/m3 decrease in PM2.5, patients’
health care expenditure would decrease by 16%. Visit duration
would be reduced by 14%, corresponding to an average reduction
in patients’ health care costs of CNY 1,699 (USD 263.6) and a
reduction of 1.24 days in normal working hours lost.

In this study, robustness checks were conducted in several
ways, including replacing wind speed with an instrumental
variable, constructing a DID model, changing the data structure,
and adding AQI warning variables. Heterogeneity analysis
revealed that PM2.5 has a more significant effect on visit costs
for patients with chronic respiratory disease and circulatory
inpatients and that PM2.5 more significantly affects the cost
of drugs and treatment than the cost of consumables. Further
analysis found that air quality improvement can reduce the
burden on both health insurance funds and patients themselves,
as demonstrated by the finding that for every 10 µg/m3

reduction in PM2.5, each patient will save 1,501 CNY (USD
233) on average health insurance expenditure. The actual
personal burden of medical expenses will be reduced by
368 CNY (USD 57). Health insurance reimbursement has a
moderating effect on the impact of air pollution on medical
costs, with patients with higher reimbursement rates facing
higher healthcare expenditures. This result may reflect induced
demand from the supply side of healthcare. There also exists a
non-linear relationship between PM2.5 and medical expenditure
for PM2.5 concentration under 90 µg/m3. Finally, relying on
regression coefficients and sample data, we found that for
every 10 µg/m3 reduction in PM2.5, the city’s health benefits
for respiratory and circulatory patients would be CNY 546
million (USD 84.9 million) and a reduction in the PM2.5
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concentration to the annual average secondary standard of 35
µg/m3 would result in annual health benefits of approximately
CNY 1.278 billion (USD 198 million) or ∼18% of the city’s
annual environmental investment, while savings on health care
expenditures would be CNY 1.032 billion (USD 160 million)
or about 10.34% of the city’s annual health care pooled
fund expenditure.

For the policy implications of the paper, first, we analyze
the relationship between air quality and medical cost. However,
our research is a case study based on a representative city; it
could be a mode reference on assessing the public health benefit
of environment quality improvement. Second, identifying the
outcome of air pollution is a hot topic for interdisciplinary
research in environmental and health economics. Measuring the
health benefits of air quality improvements also provides a useful
complement to existing research in the context of the country’s
ongoing air environment management. Third, we believe that
air pollution has additional economic costs beyond health costs,
particularly the induced demand and non-linearity shown in
the impact process, which will expand the traditional scope of
assessing environmental investment.

This study had several limitations. First, the data were from
one city; the findings are limited to the sample city and cannot be
generalized to the whole country. Second, our data cover only 2
years, from January 1, 2016, to December 31, 2017, representing
a relatively short time frame and, consequently, cannot measure
the long-term effects of air quality improvement. Third, our
research is limited to the data of the medical insurance system
and lacks multi-source data, which may affect the scientificity
of the results. We will find more data sources to complement
our research in future studies. We will continue to focus on
policy estimates of air quality to create a more comprehensive air
quality assessment.
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