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Abstract: There is great demand for inferring causal effect heterogeneity and for open-source statisti-
cal software, which is readily available for practitioners. The mcf package is an open-source Python
package that implements Modified Causal Forest (mcf), a causal machine learner. We replicate three
well-known studies in the fields of epidemiology, medicine, and labor economics to demonstrate
that our mcf package produces aggregate treatment effects, which align with previous results, and
in addition, provides novel insights on causal effect heterogeneity. For all resolutions of treatment
effects estimation, which can be identified, the mcf package provides inference. We conclude that the
mcf constitutes a practical and extensive tool for a modern causal heterogeneous effects analysis.

Keywords: econometrics software; causal machine learning; statistical learning; conditional average
treatment effects; individualized treatment effects; multiple treatments; selection-on-observables

JEL Classification: C21; C870; J68

1. Introduction

Supervised machine learning algorithms, which learn a model by minimizing predic-
tion errors, do not generalize per se to evaluate treatment effects due to the missing data
problem. For each unit of observation, only one potential outcome is observed; hence, the
individualized treatment effect (ITE) remains unknown. This disallows to train a model by
minimizing the prediction error of the ITE. With the onset of causal machine learning in
recent years, flexible methods have been developed, which integrate supervised machine
learners into the classical analysis of causality. The causality literature defines the set of
conditions required to identify the causal parameters of interest and deals with the missing
data by imputing counterfactuals for adequate subpopulations [1], while the machine
learning (ML) literature provides methods to flexibly estimate treatment effects and deal
with a potentially large number of features. The causal machine learning literature has
also opened the door to systematic heterogeneous treatment effects estimation. There is
considerable interest in understanding heterogeneous treatment effects in various scientific
fields, including business, economics, epidemiology, marketing, and medicine (as discussed
in, e.g., [2]). The underlying premise is that treatment responses vary for subpopulations.
Uncovering this variation informs our understanding of the distributional implications of a
treatment and the underlying causal mechanisms, and potentially hints at more efficient
targeting rules.

Ref. [3] structure the rich universe of causal machine learners. They distinguish
between generic causal machine learners, which integrate a variety of off-the-shelf machine
learning estimators, e.g., [4], and estimator-specific approaches, where a specific machine
learner is adapted to the causal question, e.g., the tree-based methods [5–8].
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The causal forest by [7] is most related to the mcf estimator [9]. In each tree in the causal
forest, the feature space is recursively split to maximize the implied effect heterogeneity
greedily. The authors of [7] showed that this is equivalent to minimizing the mean squared
prediction error of treatment effects. Treatment effects are obtained as leaf-specific aver-
age differences averaged over all trees in the forest. Ref. [9] innovated the causal forest
estimator [5,7] in two dimensions. First, the splitting criterion in the tree growing step
is adapted to account for covariance structures in estimation errors of mean conditional
outcomes and selection bias. Ref. [9] demonstrated in extensive simulations that the bias
adjustment results in considerable performance improvements. Second, ref. [9] stipulated
a computationally efficient outcome-weight-based approach, which facilitates an approx-
imate inference of causal effects at all levels of resolution from estimating the modified
causal forest once.

Since June 2021, an open-source Python implementation of the estimator has been
made available on the Python Package Index (PyPI). The Python package provides an off-
the-shelf tool for practitioners to analyze effect heterogeneity for multiple treatment models
in a selection-on-observables setting. Related statistical software includes the Python
package EconML [10] and the R package grf [11]. Both implement forest-based causal
machine learners (orthogonal random forest, forest double machine learning estimator,
forest doubly robust estimator, the generalized random forest). However, in contrast to
the mcf, the cited packages do not infer causal effects at all levels of resolution in one
estimation round.

We present the package and demonstrate its core functionality—inference of hetero-
geneous causal effects at different levels of resolution—in the replication of three well-
published studies in the realm of epidemiology, medicine, and labor economics. Code
and data can be accessed on GitHub [12]. We found that the mcf matches results on ag-
gregate treatment effects estimation and provides additional insights on underlying effect
heterogeneity as measured by the individualized and group average treatment effects.

We contribute to the literature in five dimensions: First, we present the open-source
Python package that implements the mcf. Second, we provide novel results on causal effect
heterogeneity for benchmark studies in epidemiology, medicine, and labor economics. In
that scope, we demonstrate that the mcf matches previous results on aggregate treatment
effects and effectively deals with binary and multi-valued treatments and arbitrary out-
come and feature distributions. Third, for all resolutions of causal effect heterogeneity,
which can be statistically identified, we provide inference. Fourth, we uncover relevant
effect heterogeneity, which is potentially instructive for tailoring treatment assignments
in constrained settings. Fifth, we provide data, data documentation, and code to replicate
our results.

The remainder of this paper proceeds as follows. In Section 2, we delineate identifica-
tion, the estimands of interest, estimation, and the package’s infrastructure. For a detailed
discussion of the methodology, refer to [9]. Section 3 presents the results of our replications.
Finally, Section 4 concludes.

2. Framework

The mcf is a tree-based causal machine learner that produces valid causal estimates in
the selection-on-observables setting. To set the scene, we detail the identification setting,
define the causal parameters of interest at different levels of resolution, and outline the
core ideas of the mcf and the package’s infrastructure. For details of the algorithmic
implementation, we refer the reader to the official documentation [9,13].

The necessary assumptions to identify causal effects in the selection-on-observables
setting are the conditional independence assumption (CIA), exogeneity of the confounders,
common support, and stable unit treatment value assumption (SUTVA). The CIA stipulates
that treatment selection conditional on the set of so-called confounders is as good as random.
By the exogeneity assumption, confounders need to be invariant to treatment assignment.
The common support assumption demands that the probability of receiving a particular
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treatment is strictly bounded away from zero. Finally, SUTVA dictates that the observed
outcome equals potential outcomes for the observed treatment state, ruling out interference
between observational units or multiple versions of a treatment.

The causal parameters of interest comprise the individualized treatment effect (IATE),
the group average treatment effect (GATE), and the average treatment effect (ATE). The
IATE captures the expected causal impact of some treatment over another for a subpopula-
tion, which is defined by a particular realization of confounders and further variables that
are relevant for the heterogeneity analysis. To clarify, the number of comparisons that we
take interest in in the multi-treatment setting with k treatments, which includes the control
state, is k(k− 1)/2. The GATE aggregates the IATEs to more coarse subpopulations, and
the variables in the conditioning set are referred to as policy features. The conditioning
feature(s) are (is) a low-dimensional subset of the set of confounders. Finally, the ATE is the
expected causal impact for the entire population and hence obtained as a weighted average
of the IATEs. For all parameters defined above, the conditioning set can be extended
to include treatment group memberships. The causal parameters are then referred to as
average treatment effect of the treated (ATET) and group average treatment effect of the
treated (GATET), respectively.

The mcf is an instantiation of a causal forest, where splits in the tree growing process
minimize the estimation error of the IATEs greedily. Ref. [9] showed that the expected
mean-squared error (MSE) of the IATE can be decomposed into three parts: the two MSEs
of estimating the conditional mean responses of the two treatments, which are causally
compared, and the covariance of these two estimation errors (MCE). The estimates of the
MSEs and the MCE are obtained as sample analogues. If no exact matches are found in all
treatment leaves, the mcf uses the closest neighbor instead to compute the MCE. To guard
against selection issues in finite samples, the mcf splitting rule seeks to assign individuals
with different propensities of receiving a treatment to different partitions in the tree and
hence prefers splits with high propensity score homogeneity. Estimates are then obtained as
mean differences in the appropriate leaves. The mcf also builds upon the honesty principle,
e.g., [8].

In the multiple treatment setting, one can grow the forests separately for each of the
treatment comparisons or jointly for all unique treatment comparisons. For the latter case,
the splits are chosen to minimize the sum of the estimated mean squared errors of the
IATEs and the penalized propensity score heterogeneity. For inference, the mcf exploits
that every causal forest can be written as a weighted sum of outcomes. Maintaining that
observations are independent and identically distributed, ref. [9] derived an expression for
the variance, which admits a utilization of standard non-parametric machine learners. The
default method is k-Nearest Neighbor (k-NN) regression, but Nadaraya–Watson kernel
estimation is also supported.

The modified_causal_forest() function in the mcf Python package implements the mcf.
The user specifies treatment, outcome, confounders, policy variables, and the relevant
resolutions of causal effect heterogeneity. Optionally, the user may override the defaults
in the implementation—such as the grids for the parameter tuning in the forest growing
process and the mode of parallelization. A detailed exposition of the functional inputs is
given in the official documentation [13]. Whenever relevant, the documentation flags input
arguments as critical for runtime management.

3. Empirical Studies

In this section, we demonstrate the functionality of the mcf. For three distinct research
settings, we inquire to which extent the mcf matches previous estimation results on average
treatment effects and provides novel insights on underlying effect heterogeneity.

3.1. Maternal Smoking during Pregnancy

Infants born at low birth weight (LBW) are more likely to experience health and devel-
opment issues. Studies have found lower educational attainment, a poorer self-reported
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health status, and reduced employment and earnings for LBW infants, e.g., [14]. Study [15]
is a well-known study that examines the impact of maternal smoking during pregnancy on
birth weight, amongst other health outcomes. Adjusting for potential confounding factors,
the authors of [15] estimated a negative impact of maternal smoking on birth weight. Later,
ref. [16] deployed the [15] database to study multi-valued treatment effects. Ref. [16] found
evidence for both (i) treatment heterogeneities and (ii) non-linearities in the effect sizes. We
aimed to estimate the dose responses and to analyze IATEs along with GATEs to inform
about effect heterogeneities.

We used the linked birth–infant death data in [15], which was made available to us by
the author of [16]. The database compiles information for 511,940 births in Pennsylvania
for the years 1989 to 1991—including details on birth weight, pregnancy, and parental
characteristics. Smoking doses are defined as in [16]. We mapped the number of daily
smoked cigarettes to a multivalued treatment variable, T, which takes on 6 distinct values:
T ∈ {0, 1, 2, 3, 4, 5} for the cigarette-bin-categories {0, 1− 5, 6− 10, 11− 15, 16− 20, 21+}.
The bins were chosen to capture the mass points in the distribution, which occur roughly
every five cigarettes (a quarter of a US cigarette pack).

For identification, we stipulated the prototypical selection-on-observables setting.
We note that this is not an innocuous assumption as, for example, [17] convincingly
discussed. We informed our choice of confounders by [15,16]. We included parental
socio-demographics (age, education, and race), pregnancy-related information (number of
prenatal visits, adequacy of care, indicator if alcohol was consumed during the pregnancy,
number of months elapsed since last pregnancy), birth-related information (month of birth,
county of birth), and mother-related information (number of previous pregnancies, number
of children born dead, indicator if born abroad). A detailed summary is given in Table S14
in the Supplementary Materials file.

We explored treatment response heterogeneities for different values of (i) maternal
age, (ii) race, and (iii) number of care visits. The motivation for maternal age stems from the
consideration that oocytes (eggs) and embryos from older mothers tend to be more suscep-
tible to harmful environmental conditions such as smoking, e.g., [18]. Previous empirical
studies have informed the other grouping features, including [19] and [20], respectively.

We took a random draw from the largest treatment group in the training data to speed
up computations. The decrease in memory requirements and increase in computational
speed was achieved at relatively low cost in terms of statistical precision.

Overall, our estimation results are consistent with [15,16]. We found that smoking
tends to reduce birth weight and that dose matters. Smoking more cigarettes is more
detrimental in terms of birth weights (compare Table 1). The ATE for smoking one to five
cigarettes over no cigarette consumption decreases from −136 to −252 for smoking 16 to
20 cigarettes over no cigarette consumption. The more detrimental effect of higher cigarette
dosages is also suggested by the shifted distribution of the IATEs in Figure 1. However,
none of the IATEs is significantly different from the corresponding ATEs.

We found statistically significant GATEs for race, age, and number of prenatal visits
(compare Tables S1, S3, and S5 in the Supplementary Materials file). Figure 2 illustrates the
estimated GATEs for the different races. The effect is significantly different from zero for
races Other, Hispanic, and White, but not so for Black. The estimated GATEs for race, age
class, and number of prenatal visits are all not statistically significantly different from the
ATE (compare Tables S2, S4, and S6 in the Supplementary Materials file). We conclude that
the mcf does not indicate statistically significant effect heterogeneity.
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Table 1. ATEs in the maternal smoking during pregnancy study.

TC [16] mcf

T1-T0 −146 * −136 *
T2-T0 −217 * −213 *
T3-T0 −254 * −228 *
T4-T0 −255 * −252 *
T5-T0 −252 * −250 *
T2-T1 −71 * −77 *
T3-T1 −108 * −92 *
T4-T1 −109 * −115 *
T5-T1 −106 * −114
T3-T2 −37 −15
T4-T2 −38 * −38
T5-T2 −35 * −37
T4-T3 −1 −23
T5-T3 2 −22
T5-T4 3 1

Notes: TC denotes treatment comparison; estimates from [16] are printed in column two, estimates from the mcf
in column three. * denotes significance at the 5% level.

Notes: Reference treatment is no smoking during pregnancy.

Figure 1. Distribution of IATEs in the maternal smoking during pregnancy study.
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Notes: Treatment comparison is T5 versus T0.

Figure 2. GATEs for maternal race in the maternal smoking during pregnancy study.

3.2. Right Heart Catheterization

Right Heart Catheterization (RHC) is a surgical intervention widely used to monitor
critically ill patients. In a seminal contribution, ref. [21] investigated the efficacy of this
treatment measured by different outcomes (subsequent survival, length of stay, intensity of
care, cost of care). Deploying propensity score matching, [21] found that RHC is positively
associated with mortality, costs, and length of stay. The authors of [22–24] used alterna-
tive estimators and confirmed the findings in [21]. We matched previous results on the
average effects of RHC on survival. Extending previous work, we added insights on effect
heterogeneity, which the average treatment effect potentially masks.

The data we used are the same as in [21–24] and come from the SUPPORT prospective
cohort study [25]. The data were made available by [24] (among others) and comprise
information on 5735 critically ill and hospitalized adult patients between 1989 and 1994 in
five medical centers spread throughout the US. Out of the 5735 patients, 2184 individuals
received an RHC. In our analysis, we focused on survival within six months after treatment.
As before, identification was achieved by stipulating unconfoundedness. In total, we
included 55 features. For details refer to Table S15 in the Supplementary Materials file.

In the analysis of effect heterogeneity, we informed our choice of policy features by
expert opinions who classified eight features as high-priority factors [22]. The high-priority
factors include the nine primary disease categories, the estimated probability of surviving
two months, the acute physiology and chronic health evaluation score, the Glasgow coma
score indicator, age, an index of activities of daily living two weeks prior to admission,
mean blood pressure, and an indicator for resuscitate status on the first day.

Table 2 juxtaposes results on the estimated average effects of RHC on mortality after
six months from [22] and the mcf. Findings for the ATE and ATET are congruent in terms
of effect size and statistical significance and confirm that, on average, the RHC intervention
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decreases survival chances. Interestingly, as displayed in Figure 3, the distribution of the
IATEs shows that there is a non-negligible mass left to zero. Abstracting from estimation
uncertainty, some parts of the populations are estimated to benefit from the RHC interven-
tion. An analysis of the difference of IATEs against the ATE confirms that subpopulations,
which have IATEs at the tails of the distribution in Figure 4, have treatment effects that are
statistically different from the ATE.

Table 2. ATEs and ATETs in the RHC study.

Method Estimand Point Estimate p-Value

ps match ATET 0.063 0.005
gm match ATET 0.046 0.037

mcf ATE 0.048 0.013
mcf ATET 0.065 0.001

Notes: ps match and gm match refer to propensity score and genetic matching applied in [22], respectively. ATE
stands for the average treatment effect, ATET denotes the average treatment effect on the treated.

Notes: Treatment comparison is T1 versus T0.

Figure 3. Distribution of IATEs in the RHC study.
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Figure 4. Sorted IATEs versus ATE in the RHC study.

The mcf uncovered group effect heterogeneity, as Table 3 shows. Six out of eight
policy features exhibit significant differences of the GATEs from the ATEs, pointing to
effect heterogeneity in these policy features. Four policy features exhibit statistically
significant GATEs.

Exemplarily, Figure 5 summarizes the deviation of GATEs from the ATE for the policy
feature blood pressure. The corresponding data for Figure 5 are included in Table S7 in the
Supplementary Materials file. Figure 5 shows a significantly higher death risk for patients
with extremely low diastolic blood pressure from 35 to 57 and lower death risk for a blood
pressure from 106 to 145. Note that a diastolic blood pressure of zero may occur in cases of
severe hypotension, stiff arteries in the elderly, diabetes, arteriovenous malformation, aortic
dissection, or due to monitoring malfunction [26]. In the Supplementary Materials file we
provide further results on effect heterogeneity in Tables S8 and S9. Patients with APACHE
III scores ranging from 21 to 45 experience, on average, a significant increase in survival.
Those with scores ranging from 55 to 66 have a significantly lower survival probability. For
the policy feature summarizing the patient’s primary disease, Table S9 displays a significantly
higher death risk than the average for patients with non-traumatic coma.

Table 3. GATE results for the RHC study.

Feature Evaluation Points Number of Significant
GATEs

Number of Significant
GATEs-ATEs

adld3pc 27 0 0
age 50 3 9
aps1 49 15 26
cat1 9 0 1
dnr1 2 0 0

meanbp1 49 15 32
scoma1 11 0 2

surv2md1 50 1 1
Notes: The significance level was set to 10%; adld3pc is the index of activities of daily living two weeks prior to
admission; aps1 is the acute physiology and chronic health evaluation score; cat1 are the nine primary disease
classes; dnr1 is an indicator for resuscitate status on the first day; meanbp1 is the mean blood pressure; scoma1 is
the Glasgow coma score; surv2md1 is the probability of surviving two months based on support model estimation.
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Figure 5. GATEs —ATE for mean blood pressure in the RHC study.

3.3. The Workforce Investment Act Programs

The Workforce Investment Act of 1998 (WIA) is the central federal workforce develop-
ment legislation in the United States, which succeeded the Job Training Partnership Act
(JTPA) and became operational from 1999 to 2000. The WIA programs provide services for
education and training to increase the labor market prospects of adults, displaced workers,
and youth. Participation in WIA services often starts in so-called one-stop centers, which
are spread out over the US. In total, there are 3000 one-stop centers. More details on the
WIA are summarized in [27]. Individuals participate in WIA-funded services voluntarily.
The services for adults and dislocated workers fall into four categories: self-service core
services, staff-assisted core services, intensive services, and training services. There are
no eligibility criteria for the core services [28]. Individuals usually set up an individual
training account to participate in a training service and select training and provider. Case-
workers may encourage or discourage participation in specific programs. Unlike in some
European countries, caseworkers cannot sanction the clients [28,29]. The WIA was replaced
by the Workforce Innovation and Opportunity Act (WIOA) in 2013. Neither the basic set of
services nor eligibility were much affected by the new legislation [28,30].

Previous studies found a positive impact of receivers of training over the core and/or
intensive services for WIA participants [28], and for WIA participants over Employment
Service (ES) participants [31] or unemployment insurance claimants and ES participants.
The authors of [30] found relevant heterogeneity in levels of program participation for
the examined WIA population. For identification, refs. [28,31] relied upon a selection-on-
observables framework and [30] on the invariance of conditional distributions. The authors
of [28] added an analysis where selection is on unobservables but maintained bias stability
across time and found similar results.

We used the database from [30]. The database synthesizes information on 85,440
individuals served by WIA and WIOA programs in California between 2012 and 2016.
Treatment takes four values, T ∈ {1, 2, 3, 4}, where 1 indicates core services, 2 intensive
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service, 3 basic/general training, and 4 occupational training service. Following [30], we
defined the outcome as the differences in average earnings four quarters after exiting the
program and three quarters before entering it. As before, identification was achieved by
stipulating conditional independence of treatment assignment and potential outcomes
controlling for all observables. In total, we included 24 features. For details refer to
Table S16.

Table 4 juxtaposes results on the estimated average effects from [30]—columns two
to four—and the mcf—columns five to seven. Point estimates for the two estimators are
aligned. The effects range from $317 to $1957 for the mcf and from $99 to $1739 for the
doubly robust GMM estimation method based on inverse probability weighting applied
in [30]. We observed the largest effect for the treatment pair occupational training service
(T4) and core services (T1). Participating in occupational training compared to core services
increased earnings on average by $1957 ([30] estimated $1739). Note that the estimated
weights-based standard errors of the mcf are larger than the bootstrapped standard errors
of [30], which were based on resampling estimates of the influence function.

The superiority of occupational training over core services is also reflected in Figure 6.
Ignoring estimation uncertainty, the estimated IATEs for comparing occupational training
(T4) versus core services (T1) are prevailingly positive.

Table 4. ATEs in the WIA programs study.

[30] mcf
TC ATE SE p-Value ATE SE p-Value

T2-T1 99 41 0.02 335 63 0.00
T3-T1 1273 56 0.00 1640 87 0.00
T4-T1 1739 85 0.00 1957 126 0.00
T3-T2 1174 53 0.00 1305 81 0.00
T4-T2 1640 82 0.00 1622 122 0.00
T4-T3 466 89 0.00 317 136 0.02

Notes: TC stands for treatment comparison, ATE for average treatment effects, SE for standard errors.

Our group heterogeneity analysis focused on two policy features—claim to unemploy-
ment compensation and age. The authors of [30] showed that unemployment compensation
status is an important confounding feature and hence may give rise to effect heterogeneity.
Indeed, the GATE deviates statistically significantly from the ATE for the policy feature
unemployment compensation. The deviations are negative for subjects with a claim to
unemployment for T3 versus T1, T3 versus T2, and positive for T4 versus T3. Contrariwise,
the deviations are positive for subjects without a claim to unemployment for T3 versus
T1, T3 versus T2, and negative for T4 versus T2. The results also hint at meaningful effect
heterogeneity for the policy feature age as measured by a significant deviation of the GATE
from the ATE. For example, when comparing treatment groups T3 versus T1, the GATE
deviates positively from the ATE for ages 21 to 33 and negatively for ages 45 to 67 (compare
Figure 7). This hints at an optimal assignment rule that should target clients of different
ages and unemployment compensation statuses differently when resource or capacity
constraints are binding. Detailed results on the GATEs and GATEs minus the ATEs for
both policy features age and claim to unemployment compensation are included in Tables
S10–S13 in the Supplementary Materials file.
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Notes: Reference treatment is treatment 1.

Figure 6. Distribution of IATEs in the WIA programs study.

Notes: Treatment comparison is T3 versus T1.

Figure 7. GATEs —ATE by age in the WIA programs study.
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4. Discussion

The modified causal forest (mcf) matched results on aggregate treatment effects esti-
mation and provided novel insights on underlying effect heterogeneity. The distilled effect
heterogeneity exhibited meaningful patterns for the RHC and WIA studies in that some
populations benefited more or less than the average from the treatment intervention. The
generated insights hint at more efficient targeting rules when resource or capacity con-
straints are binding. Mirroring the burgeoning literature in optimal policy learning, since
version 0.1.0 the mcf includes a functionality to learn minimax regret optimal treatment
assignments when the policy class is restricted to decision trees.

The mcf is under ongoing development to incorporate new functionalities. Since
version 0.2.0, the mcf accommodates continuous treatment effects estimation as an experi-
mental feature. In addition, the mcf provides statistics on balancing and common support
to evaluate the quality of the obtained causal parameters. There is ongoing research to
formalize the underlying statistics and provide critical values for practitioners.

Supplementary Materials: The supporting information can be downloaded at https://www.mdpi.
com/article/10.3390/e24081039/s1. Tables S1–S13 compile results from the group average treatment
affects (GATEs) analysis. Tables S14–S16 provide an exhaustive variable description of the three data
sets used in the empirical analysis.
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