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Abstract: Several optimization models of irreversible reverse cycle machines have been developed
based on different optimization criteria in the literature, most of them using linear heat transfer
laws at the source and sink. This raises the issue how close to actual operation conditions they
are, since the heat transfer law on the phase-change processes is dependent on ∆T3. This paper
addresses this issue by proposing a general model for study and optimization of thermal machines
with two heat reservoirs applied to a Carnot-like refrigerator, with non-linear heat transfer laws and
internal and external irreversibility. The optimization was performed using First and Second Law
of Thermodynamics and the Lagrange multipliers method. Thus, several constraints were imposed
to the system, also different objective functions were considered, allowing finding the optimum
operating conditions, as well as the limited variation ranges of the system parameters. Results
show that the nature of the heat transfer laws affects the optimum values of system parameters for
obtaining maximum performances and also their magnitude. Sensitivity studies with respect to
system several parameters are presented. The results contribute to the understanding of the system
limits in operation under different constraints and allow choosing the most convenient variables in
given circumstances.
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1. Introduction

The second half of the last century saw the emergence of a new branch of Thermodynamics,
called Thermodynamics in Finite Time, due to the process duration that was considered by the heat
transfer rate [1,2]. The corresponding approach emphasized a maximum power regime [3] for an
endo-reversible, but exo-irreversible engine. The engine efficiency at maximum power regime is less
than the Carnot cycle one, and it introduced the particular form of the “nice radical”.

Since then, quite a lot of works analyzing the exo-irreversible engines have been developed [4,5].
Generally, they have considered only the external irreversibility of the thermal machine, which is due
to the heat transfer at finite temperature difference between the sources and the working fluid. Also,
mainly the linear form of the heat transfer law was used.

The same approach applied to the study of heat pumps shows no more optimum for the useful
effect (heat flow delivered at the hot end), because the temperature of the working fluid has no upper
limit imposed on the hot end [6]. The same happens for the refrigerating machine, where there is no
lower limit to the cold end (as for thermal engine).
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To the first reported work (to our knowledge) [6], other papers followed [7–9] dealing with
heat pump or refrigerating machine optimization, but introducing an additional constraint (mostly
mechanical power or useful effect imposed). The optimization is not reserved only to vapor mechanical
compression machines, but it has been extended since that time to the trithermal and quadrithermal
ones [10–12]. However, one notes that most of the reported studies deal with thermostats at sources
and sinks and linear heat transfer laws.

Proposals have been made to extend the analysis by using other forms of the heat transfer
law [13–15]. Further progress has been made by introducing an irreversibility factor (ratio), most
often constant [16], that accounts for the internal irreversibility of the machine (endo-irreversibility).
A step further [17] represents the internal irreversibility considered in the model as internal entropy
production rate,

.
Si. This method is preferred to the one of ratios, as we still see in recent work [18].

It provides a more general approach compared to the use of the irreversibility factor [16,19,20]. Also,
it aims the entropic analysis of machines and processes and is more and more important as an
instrument getting modeling closer to real operation [21–27].

The present work proposes a general model of study and optimization of irreversible Carnot-like
refrigerating machines and extends the previous studies [28–31]. In terms of optimization, it is well
known that several objective functions can be chosen: maximum of coefficient of performance (COP),
minimum of energy consumption, minimum of total entropy production, or economic objectives [32].
Environmental concerns have also become predominant [33], and recently led to the introduction of a
new objective called Ecological COP (ECOP) [34]. Two objective functions will be considered here for
each of the two studied cases: maximum refrigeration load and minimum total entropy production rate when
COP is imposed, respectively, maximum COP and minimum total entropy production rate, for imposed
refrigeration load. We limit the presentation only to these cases as the main target is to show how
the method is applied and what the relevance of the obtained results is, but it could be extended and
applied for other cases of imposed constraints, such as consumed mechanical power or heat transfer
restricted at the hot source, for which objective functions could be sought.

The mathematical approach includes the most general laws of science, namely the First and
Second Laws of Thermodynamics. The equations of heat transfer at the hot and cold side of the
machine are modeled by non-linear functions of the temperature difference between the reservoirs and
the cycle working fluid. The internal irreversibility is introduced by the method of internal entropy
production rate, above mentioned. Three variation laws with temperature for the internal entropy
production are considered in an attempt to approach analytical treatment of actual operation.

The purpose of this work is to study the influence of the non-linearity of the heat transfer law on
the performance. This will extend the model validity beyond the convective and radiative heat transfer
laws [13]. The results highlight the existence of optimal operating regimes of the reverse cycle machine
subjected to dimensional and operating constraints. The sensitivity study with respect to the model
parameters provides interesting results related to the limitation of the variation range of the variables of
the model, and different operating regime of the refrigeration machine. The new and important results
reported here are presently extended by the study of other cases of imposed constraints.

2. Materials and Methods

2.1. Proposed Application Study

The model of study and optimization of Carnot-like machines is applied here to an irreversible
refrigeration machine. Its architecture and the corresponding irreversible cycle consisting of two
isothermal processes and two adiabatic irreversible ones are illustrated in Figure 1. The irreversibility
is present in the T-S diagram by the entropy production on the adiabatic processes (compression and
expansion), which is mainly due to internal losses. On the isothermal processes, it is marked by the
different heat transfer compared to the corresponding reversible processes (also more reduced at the
source and larger at the sink).
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Usually, the internal irreversibility of the machine, introduced in the model as a parameter, is
represented by the corresponding internal entropy production term,

.
Si. It takes into account the

internal irreversibility generated on each cycle process, summing the throttling losses, friction ones,
etc. To this one an external irreversibility is added, being generated by finite temperature heat transfer
processes between the working fluid and the heat reservoirs.
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Figure 1. Irreversible Carnot-like refrigeration machine: (a) Scheme; (b) Irreversible cycle in T-S 

diagram. 
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Figure 1. Irreversible Carnot-like refrigeration machine: (a) Scheme; (b) Irreversible cycle in T-S diagram.

As shown in Figure 1, the two heat reservoirs are thermostats, of constant temperatures THS and
TLS, the first one being actually the environment. The refrigeration machine is considered operating in
steady state regime.

2.2. Mathematical Model

The model of study and optimization of reverse cycle machines is developed by using the most
general laws in Thermodynamics, the First and Second Law, to which generalized forms of heat
transfer laws applied to the source and sink are added.

By taking account of the sign convention adopted here, that considers the heat transfer rate
positive when entering the cycle, and negative for leaving it, and the consumed work transfer rate
(power request) as negative, the expression of the First Law of Thermodynamics can be written as:

.
W =

.
QH +

.
QL, (1)

with
.

W—mechanical power supplied;
.

QH—heat transfer rate rejected by the working fluid at the
source (hot heat exchanger);

.
QL—refrigeration load.

When looking the machine irreversibility, the Second Law of Thermodynamics takes different
expressions, as applied to two possible systems. Thus, once considering only the internal irreversibilities
(endo-irreversible machine) by the internal entropy production term, it becomes:

.
QH
TH

+

.
QL
TL

+
.
Si = 0, (2)

with TH—temperature of the working fluid at the machine hot temperature side; TL—temperature
of the working fluid at the machine low temperature side;

.
Si—entropy production due to internal

irreversibilities of the machine.
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Then, when the whole system is considered (cycle and the two heat reservoirs), the total entropy
production term appears in the Second Law expression:

.
QH
THS

+

.
QL
TLS

+
.
ST = 0, (3)

with THS—source temperature at the machine hot part; TLS—source temperature at the machine cold
part;

.
ST—total entropy production (internal and external).
For the heat transfer rates present in the above equations, two forms of non-linear heat transfer

laws between the heat reservoirs and working fluid are considered:

.
QH = KH,gen(THS–TH)

nH (–1)nH–1 ;
.

QL = KL,gen(TLS–TL)
nL , (4)

.
QH = KH,gen

(
TnH

HS–TnH
H
)

;
.

QL = KL,gen
(
TnL

LS –TnL
L
)
, (5)

where ni is the exponent of the heat transfer law (H—hot sink or high temperature side, L—cold source
or low temperature side).

In practical application these non-linear forms correspond to phase-change heat transfer
(Equation (4), with ni = 3), respectively radiation heat transfer (Equation (5) with ni = 4). One note
that making ni = 1, one gets the linear approximation, so called, convective heat transfer law or
Newton’s law.

For the refrigeration machines performance evaluation, according to its definition, the coefficient
of performance is:

COP =

.
QL∣∣∣ .
W
∣∣∣ . (6)

By combining the two expressions of the Second Law, given by Equations (2) and (3), the total
entropy production rate results as:

.
ST =

.
Si +

.
QH

(
1

TH
–

1
THS

)
+

.
QL

(
1

TL
–

1
TLS

)
. (7)

The three positive terms contained in the above expression accounts for different type of
irreversibility, namely (1) the internal one by

.
Si, and (2) the external one due to finite temperature heat

transfer processes between the heat reservoirs and working fluid.
Without insight in the internal irreversibility mechanism of machine processes, it is difficult to

establish a variation law for the internal entropy production. Thus, in order to provide generality to
the model, the following approaches were considered [35,36]:

(a) constant .
Si = const, (8)

(b) linear variation law with working fluid temperature difference:

.
Si = const(TH–TL), (9)

(c) logarithmic variation law with working fluid temperature ratio:

.
Si = const

(
ln

TH
TL

)
. (10)
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2.3. Dimensionless Model

The same concern for developing a general model for the optimization of refrigeration machines
and easily adapted to different characteristics and constraints of the studied case, led to the adoption
of the non-dimensional form of the equations. Therefore, the following terms and expressions will be
further used:

• Dimensionless temperatures are expressed relative to the reference temperature THS which is also
the ambient one:

θSL =
TLS
THS

, θH =
TH
THS

, θL =
TL

THS
. (11)

• Dimensionless energy fluxes are expressed relative to the product
.

mcpTHS, where
.

mcp is the heat
rate capacity of the working gas corresponding to the end of the compression process:

- at the sink or machine cold part (positive):

q̃L =

.
QL

.
mcpTHS

= CTQL,gen(θLS–θL)
nL , (12a)

- at the source or machine hot part (always negative)

q̃H =

.
QH

.
mcpTHS

= CTQH,gen(1–θH)
nH (–1)nH–1, (12b)

- power supply:

w̃ =

∣∣∣ .
W
∣∣∣

.
mcpTHS

=
q̃L

COP
. (13)

• Non-linear thermal conductances are expressed relative to the product
.

mcpT−(nH−1)
HS :

- total one:

CTQT,gen =
(UA)TT(nH–1)

HS
.

mcp
, (14)

- of the two heat exchangers:

CTQL,gen =
(UA)LT(nH–1)

HS
.

mcp
, (15)

CTQH,gen =
(UA)HT(nH–1)

HS
.

mcp
. (16)

• Internal and total entropy production terms use the same heat rate capacity,
.

mcp, as reference:

s̃i =

.
Si
.

mcp
, (17)

s̃T =

.
ST
.

mcp
. (18)
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• The dimensionless constraint relative to a fixed total heat exchanger conductance will have
as equivalent:

CTQT,gen = CTQH,gen + CTQL,gen, (19)

which will be considered as optimization constraint finite parameter, while CTQH,gen and CTQL,gen
are system optimization variables.

According to the adopted sign convention and the refrigeration machine scheme, the temperatures
hierarchy is TL < TLS < THS < TH, that imposes the following constraints:

θL < θLS < θHS < θH , θHS = 1,

q̃H < 0 , q̃L > 0 , w̃ < 0 , s̃i > 0.
(20)

These constraints will always be valid for any refrigerator being studied, regardless of the presence
of any other restrictions imposed by the user or the machine design.

2.4. Optimization Method and Studied Cases

The dimensionless variables that will be used in the optimization procedure are θL and
CTQL,gen, θH and CTQH,gen, while the considered parameters are: θLS, CTQT,gen, s̃i, and the imposed
performance characteristics.

The optimization is achieved for two cases where different performances are imposed. For a
refrigeration machine, the most important performances are the COP and the refrigeration load.

The first studied case corresponds to an imposed value of the COP, together with an imposed internal
entropy production rate. The objective functions could be: maximum refrigeration load, minimum total
dissipation (minimum total entropy production), or minimum power consumption.

Among them, results will be reported here when the maximum refrigerating load is sought,
respectively, minimum total entropy production rate.

The second optimization is done for an imposed refrigerating load, together with an imposed internal
entropy production rate. Thus, other objective functions will be sought, such as maximum COP, minimum
total dissipation, or minimum power consumption. Again, only the first two objective functions
previously cited will be considered in this analysis, for the sake of comprehensible presentation but
the method is similarly applied.

The optimization procedure uses the Lagrange Multipliers Method that will lead to a system of
equations for each objective function, and its solution will provide optimal values of the control
variables of the system, θL, CTQL,gen, θH, CTQH,gen, leading to the corresponding system performances
achieved in the considered constraint operation. Thus, the Lagrangian function corresponding to the
present study is expressed as:

L = FO + λ1C1 + λ2C2, (21)

where: FO is one of the considered objective functions stated above; λ1 and λ2 are the corresponding
Lagrange multipliers; C1 and C2 are the problem constraints represented by the First Law of
Thermodynamics including the imposed performance characteristic constraint and Second Law of
Thermodynamics applied to the cycle including the internal entropy production restriction.

The optimal values of the model variables are obtained by solving the following system
of equations:

∂L
∂var

)1→n_var ,
∂L
∂λ1

= 0 ,
∂L
∂λ2

= 0. (22)
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2.4.1. Imposed Coefficient of Performance

The First Law of Thermodynamics combined with Equation (13) and Equations (12a)–(12b) that
takes into account the expressions of generalized heat transfer laws provides:

CTQH,gen(1–θH)
nH (–1)nH–1 + CTQL,gen(θLS–θL)

nL 1 + COP
COP

= 0. (23)

By generalizing the above expression, the first constraint equation (C1) of the model results as:

CTQH,gen f + CTQL,gen
1 + COP

COP
ξ = 0, (24)

where the following notations of the new functions were used:

f = (1–θH)
nH (–1)nH–1

ξ = (θLS–θL)
nL ,

(25)

One notes that f is a function of θH only, while ξ is a function of θL only. The Second Law of
Thermodynamics combined with Equations (12a)–(12b) and applied to the cycle gives:

CTQH,gen(1–θH)
nH (–1)nH–1

θH
+

CTQL,gen(θLS–θL)
nL

θL
+ s̃i = 0, (26)

and considering the two function introduced by Equation (25), the second constraint (C2) of the system
results as:

CTQH,gen
f

θH
+ CTQL,gen

ξ

θL
+ g = 0. (27)

One notes that g is a function of both θH and de θL according to the three variation laws adopted
for the entropy production rate dependence on temperature, Equations (8)–(10).

1. Refrigeration Load as Objective Function

The first objective function considered in the optimization procedure is the refrigeration load:

FO = q̃L = CTQL,gen(θLS–θL)
nL = CTQL,genξ. (28)

The Lagrangian is expressed in this case as:

CTQL,genξ + λ1
[(

CTQT,gen–CTQL,gen
)

f + CTQL,genξ(1 + COP)/COP
]
+

+λ2
[(

CTQT,gen–CTQL,gen
)

f /θH + CTQL,genξ/θL + g
]
= 0.

(29)

The derivatives indicated in Equation (22) are calculated for the considered variables (CTQL,gen,
θH, θL) and the two multipliers (λ1, λ2), as follows:

∂L
∂CTQL,gen

= 0 : ξ + λ1[– f + ξ(1 + COP)/COP] + λ2(– f /θH + ξ/θL) = 0, (30)

∂L
∂θH

= 0 : λ1
(
CTQT,gen–CTQL,gen

)
f ′ + λ2

[(
CTQT,gen–CTQL,gen

) θH f ′– f
θ2

H
+ g′H

]
= 0, (31)

where f’ and g’H are the derivatives of function f and g respectively, with respect to θH;

∂L
∂θL

= 0 : CTQL,genξ ′ + λ1CTQL,gen
1 + COP

COP
ξ ′ + λ2(CTQ L,gen

θLξ ′–ξ

θ2
L

+ g′L
)
= 0, (32)



Entropy 2018, 20, 953 8 of 23

where ξ’ and g’L are the derivatives of function ξ and g respectively, with respect to θL;

∂L
∂λ1

= 0 :
(
CTQT,gen–CTQL,gen

)
f + CTQL,gen

1 + COP
COP

ξ = 0, (33)

∂L
∂λ2

= 0 :
(
CTQT,gen–CTQL,gen

) f
θH

+ CTQL,gen
ξ

θL
+ g = 0. (34)

By combining Equations (30)–(32) and after terms rearrangement one equation results that
associated with Equations (33), (34) and (19) leads to a system that is solved by Newton-Raphson
method with respect to CTQL,gen, θH and θL, since CTQH,gen is expressed by the last equation of
the system.

f 2

θ2
H f ′
− f g′H

CTQH,gen f ′ =
ξ2

θ2
Lξ ′
− ξg′L

CTQL,genξ ′

CTQH,gen f + 1+COP
COP CTQL,genξ = 0

CTQH,gen
f

θH
+ CTQL,gen

ξ
θL

+ g = 0

CTQH,gen = CTQT,gen − CTQL,gen

(35)

Note that the system has to be solved for each of the three non-dimension functions g
corresponding to the internal entropy production rate, Equations (8)–(10).

2. Total Entropy Production Rate as Objective Function

One considers here a second objective function, the total entropy production rate, expressed as:

FO = s̃T = –q̃H–
q̃L
θLS

= –CTQH,gen f –CTQL,gen
ξ

θLS
. (36)

The Lagrangian becomes in this case:

–
(
CTQT,gen–CTQL,gen

)
f –CTQL,gen

ξ
θLS

+

+λ1
[(

CTQT,gen–CTQL,gen
)

f + CTQL,genξ(1 + COP)/COP
]
+

+λ2
[(

CTQT,gen–CTQL,gen
)

f /θH + CTQL,genξ/θL + g
]
= 0.

(37)

The derivatives corresponding to the three variables (CTQL,gen, θH, θL) and the two multipliers
(λ1, λ2) are:

∂L
∂CTQL,gen

= 0 : f –
ξ

θLS
+ λ1(– f +

1 + COP
COP

ξ) + λ2(–
f

θH
+

ξ

θL
) = 0, (38)

∂L
∂θH

= 0 :
(
CTQT,gen–CTQL,gen

)
f ′(λ1–1) + λ2

[(
CTQT,gen–CTQL,gen

) θH f ′– f
θ2

H
+ g′H

]
= 0, (39)

∂L
∂θL

= 0 : −
CTQL,genξ ′

θSL
+ λ1CTQL,gen

1 + COP
COP

ξ ′ + λ2
[
CTQL,gen

θLξ ′–ξ

θ2
L

+ g′L
]
= 0, (40)

where f’, g’H, ξ’ and g’L have the same meaning as in Equations (31) and (32):

∂L
∂λ1

= 0 :
(
CTQT,gen–CTQL,gen

)
f + CTQL,gen

1 + COP
COP

ξ = 0, (41)

∂L
∂λ2

= 0 :
(
CTQT,gen–CTQL,gen

) f
θH

+ CTQL,gen
ξ

θL
+ g = 0. (42)
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Similar to the previous case, the corresponding equation system results as:

f 2

θ2
H f ′
− f g′H

CTQH,gen f ′ =
ξ2

θ2
Lξ ′
− ξg′L

CTQL,genξ ′

CTQH,gen f + 1+COP
COP CTQL,genξ = 0

CTQH,gen
f

θH
+ CTQL,gen

ξ
θL

+ g = 0

CTQH,gen = CTQT,gen − CTQL,gen

(43)

The comparison of the systems from Equations (35) and (43) shows that they are identical, meaning
that no matter the objective function is considered, the same system of equations results. Thus,
the optima of the two objective functions (maxima and minima, respectively) correspond to the same
values of the model variables resulting from the solution of the equation system. The interpretation
of this result lies on the fact that the total entropy production given by Equation (3) and written in
non-dimensional form becomes:

s̃T = −q̃H −
q̃L
θLS

. (44)

By considering Equation (1) in non-dimensional form and Equation (13), Equation (44) is re-written as:

s̃T = −q̃L

(
1

COP
− 1 +

1
θLS

)
. (45)

As COP and θSL are imposed for the system operation, the optimum for q̃L will lead to optimum
for s̃T in the same time. More specific, maximum of q̃L will lead to minimum of s̃T , since the minimum
of entropy production is directly correlated to minimum of consumed power, which at its turn is linked
by Equation (13) to maximum of q̃L for imposed COP.

2.4.2. Imposed Refrigeration Load

The same optimization method is applied in this case, but the terms in equations are expressed
function on the imposed non-dimensional refrigeration load, q̃L, instead of COP. Thus, the first
constraint equation (C1) of the model, given by Equation (24) in the previous case, becomes:

q̃L − CTQL,genξ = 0, (46)

while the second constraint equation (C2) remains the same as in the previous case of imposed COP,
given by Equation (27).

The objective function FO in Equation (21) is either the COP, or the non-dimensional entropy
production s̃T . The Lagrangian is computed and a similar system of equations as Equations (35) or (44)
is obtained and solved with respect to the same variables CTQL,gen, θH, θL:

f 2

θ2
H f ′
− f g′H

CTQH,gen f ′ =
ξ2

θ2
Lξ ′
− ξg′L

CTQL,genξ ′

q̃L − CTQL,genξ = 0

CTQH,gen
f

θH
+ CTQL,gen

ξ
θL

+ g = 0

CTQH,gen = CTQT,gen − CTQL,gen

(47)

3. Results

The optimization method described above leads to a system of non-linear equations that is
numerically solved in Matlab by applying Newton-Raphson method. The system parameters set
to constant values in the numerical simulation are: total coefficient of heat transfer CTQT,gen = 2,
non-dimensional low source temperature θLS = 0.87 (corresponding to a temperature of the cold source
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of −5 ◦C in case of an ambient temperature of 35 ◦C) and the internal entropy production s̃i for which
different cases have been simulated, as given by Equations (8)–(10), where the “const” term was set
to a constant value of 0.005. Since the obtained results are similar for the three variation profiles,
for the sake of comprehensibility, only the results for constant internal entropy production will be
further presented. The other constant values considered correspond to the imposed constraints, such as
coefficient of performance COP or non-dimensional refrigeration load q̃L.

The system is solved with respect to the unknown solutions CTQL,gen, θL and θH. The obtained
physical solutions allow computing the system performances in terms of q̃L or COP and the other
non-dimensional energy rates q̃H, w̃. Also, the total entropy production s̃T is computed.

The results are presented for the two considered cases, namely imposed COP and imposed
refrigeration load, respectively.

3.1. Imposed Coefficient of Performance

For the numerical simulation, it’s value has been set to COP = 1.5 and for the internal entropy
production s̃i = 0.005 was considered. After solving the system of equations, two physical solutions
θL and θH are obtained. These two solutions correspond to two different operating regimes, namely
one of maximum refrigerating load, denoted by subscript 1, and the other leading to minimum total
entropy production, denoted by subscript 2 in the figures. As it was analytically proved, the extrema
in both regimes correspond to the same optimum values of system parameters. Results are further
presented for the case of linear and non-linear heat transfer laws.

3.1.1. Linear Heat Transfer Laws

In Figure 2a, non-dimensional energy rates and total entropy production are presented for the
two operating regimes function on the control variable θL. The upper part of the plots corresponds
to the maximum refrigerating load regime, while the lower one corresponds to the minimum total
dissipation regime. One might notice that the most convenient operating parameters are those located
in the left part of the maximum values, since here the consumed power and total dissipation are lower
for lower cold source temperatures.Entropy 2018, 20, x FOR PEER REVIEW  2 of 16 
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The non-dimensional refrigerating load is plotted versus θL generating loop curves as shown in
Figure 2b. One chosen value for the refrigerant temperature θL might indicate the operation at two
refrigerating loads, on the upper part and the lower one respectively

Also, one desired value of the refrigerating load could be associated to a refrigerating temperature
closer to the reference one (ambient) as seen in the right-hand-side of the plot, or contrary to a lower
temperature value in the left-hand-side. The choice of the operating regime depends on the system
settings and the other variables that are behind (θH, CTQL,gen, etc).

Figure 3 presents a T-s like diagram. The possible range values are emphasized for the refrigerant
temperatures at the hot and cold reservoirs. Also one might notice that the second solution of the
system of equations (θL2, θH2) corresponds to the lower dissipation rates, but also to the lower energy
rates. Thus, the second solution might not be of interest from the operation regime point of view.Entropy 2018, 20, x FOR PEER REVIEW  3 of 16 
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Figure 3. The two solutions of the non-dimensional refrigerant temperatures function on s̃T for the
case with imposed COP and s̃i constant.

A sensitivity study with respect to COP was performed. It revealed the possible range for system
variables and the associated performances. For the maximum refrigeration load regime, as higher
COP values constraint the operation, as lower the refrigerating loads are and the range for refrigerant
temperature becomes narrower, as emphasized by red upper curves in Figure 4a. For the minimum
total dissipation regime (blue down curves in Figure 4a), the higher COP is imposed, the higher
refrigerating load is. This particular behavior of the system is explained by the refrigerant temperature
variation and heat exchanger inventory distribution in terms of CTQL,gen and CTQH,gen associated
to this solution of the equations system. Also one might notice that when the system operates at an
imposed COP value, there is a certain refrigerant temperature θL leading to a maximum value of the
refrigerating load. The corresponding total entropy production is presented in Figure 4b.

The effect of internal entropy rate s̃i on system variables and performances was studied, too.
Its value is closely related to the built machine. Figure 5 reveals that higher s̃i values are accompanied
by a narrower range for system variables and obviously lower performances. It is interesting to notice
that when operating at higher values of the refrigerant temperature θL, the effect of s̃i is more reduced
as emphasized by the curves tangent region in the right-hand-side of the plot. Contrary, its effect is
very important in the region of lower refrigerant temperatures—left-hand-side of the curves.
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Figure 5. Imposed COP and s̃i constant - sensitivity study with respect to s̃i. Non-dimensional
refrigeration load for the two regimes.

Figure 6 presents the maximum values for the refrigeration load that could be achieved for a
given set of COP and s̃i values. It also emphasizes the effect of s̃i on the possible operating range
of the system under these constraints. Lower s̃i values let the system operates on a wider range of
COP values. Increasing s̃i values limits the system performances in terms of achievable COP and,
diminishes the maximum refrigeration load attainable limit (the upper curves) for a given COP value.
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Figure 6. Maximum refrigeration load for a given set of COP and s̃i constant values.

3.1.2. Non-Linear Heat Transfer Laws

In Figure 7, one might analyze the effect of different nature of heat transfer laws at the source and
sink on the non-dimensional refrigerating load (Figure 7a) and total entropy production (Figure 7b).
Symmetric and non-symmetric combinations of exponents nH and nL have been chosen. The value
of 3 corresponds to a phase change process. The nature of the considered heat transfer laws affects
the optimum values of system parameters for obtaining maximum system performances and also the
magnitude of system performances.
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Figure 7. Imposed COP and s̃i constant - sensitivity study with respect to heat transfer laws nature at
both reservoirs (a) Non-dimensional refrigerating load; (b) Non-dimensional total entropy production.

As revealed by Figure 7a, a phase change process at the cold source (nL = 3) involves lower
refrigerating loads and shifts the maximum achievable one towards lower temperature values; the
peak of the curves is shifted towards left with respect to the linear case (nH = nL = 1). By constraining
the operation at a COP value of 0.4 leads to a maximum achievable non-dimensional refrigerating load
of about 0.28 in the case of linear heat transfer laws, and 0.06 respectively for the case of phase change
processes at both reservoirs. The justification relies on the temperature difference between the two
heat sources and the refrigerant that also depends on the heat transfer law, becoming lower for the
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phase change processes. We also notice that the nature of the heat transfer law influences the range for
possible values of the system variables, especially in the case of phase-change processes.

A sensitivity study with respect to COP values associated to different combinations of heat
transfer laws emphasize the results obtained in Figure 8. One might notice that the different considered
combinations of exponents nH and nL lead to different possible ranges for COP as a constraint.
Maintaining the same settings for the machine as previously (CTQT,gen = 2, θLS = 0.87, s̃i = 0.005),
one observes that:

• in the case of linear heat transfer laws at both reservoirs, the COP values could be imposed up to
a maximum value of 2.2 (Figure 4);

• when a phase change process in considered at the cold source (Figure 8a,b), the maximum possible
COP is about 0.9;

• if the phase change process in considered at the hot sink (Figure 8c,d), the maximum possible
COP is about 1.1;

• while in the case of phase change process at both reservoirs (Figure 8e,f), the COP is limited to
0.5. In fact, this is the reason for which a value of 0.4 was considered for COP in the simulations
presented in Figure 7.
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Figure 8. COP and s̃i constant constraints - sensitivity study with respect to heat transfer laws nature
at both reservoirs for different combinations (nH, nL).

Figure 9 presents the combined effect of heat transfer laws and s̃i constraint values on the
non-dimensional refrigerating load and possible range values of refrigerant cold temperature. The
first observation regards the s̃i constraint values. Linear heat transfer laws allow the system to
operate at higher internal irreversibilities (Figure 9a) when needed, while a phase change process
occurring at a heat source limits the operation to lower internal irreversibilities (Figure 9b,c). The most
restrictive case is the one at which phase change processes occur at both reservoirs (Figure 9d), for
which the maximum acceptable constraint in terms of s̃i is about 0.015 under the other given settings
(CTQT,gen, θLS). The second observation refers to the range of achievable θL values. The limit case of
endoreversible operation (s̃i = 0) is obviously the most generous in all cases, while the most restrictive
one is the case of phase change processes occurring at both reservoirs. For a given value of s̃i = 0.04
for example, the linear case allows θL to be obtained from 0.4 to 0.9 (Figure 9a). When phase change
occurs at the cold source (Figure 9b), θL is limited to the range 0.42–0.58, while if the phase change
occurs at the hot sink (Figure 9c), the range is 0.55–0.81. The four combinations of heat transfer laws
(Figure 9d) do not allow at all the system operation in this case.Entropy 2018, 20, x FOR PEER REVIEW  9 of 16 
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Figure 9. Imposed COP and s̃i constant – non-dimensional refrigerating load for different combinations
of heat transfer laws at both reservoirs (nH, nL).

The above results contribute to the understanding of the system limits in operation under different
constraints and allow the engineer to choose the most convenient variables in certain circumstances.

3.2. Imposed Refrigeration Load

Similar to the previous case, a numerical simulation was carried out when imposing the refrigeration
load instead of COP. The considered imposed values for the non-dimensional parameters are q̃L = 0.1
and s̃i = 0.005. The other parameters have the same values, namely θLS = 0.87 and CTQT,gen = 2.

This time the system of equations reveals only one physical solution θL and θH. This solution
corresponds to maximum COP operating regime and in the same time to minimum total entropy
production one, as proved before (the extrema in both regimes correspond to the same optimum
values of system parameters). Results are further presented for the case of linear and non-linear heat
transfer laws.

3.2.1. Linear Heat Transfer Laws

For the case of linear heat transfer laws, the results are plotted in Figure 10. One might
notice a large range for the refrigerant cold non-dimensional temperature θL and the existence of
an optimum value corresponding to minimum non-dimensional power consumption w̃ and minimum
total entropy production s̃T (Figure 10a). This optimum value leads also to maximum COP as revealed
by Figure 10b. Numerically, this point tends to equal distribution of CTQ between sources, namely
CTQL,gen = CTQH,gen. The results are similar to the previous case where the imposed value of COP
leads to an optimum value of θL corresponding to maximum q̃L.

In Figure 11, the non-dimensional temperatures θL and θH are plotted versus dimensionless total
entropy production s̃T . Obviously, the cycle operating between minimum difference in refrigerant
temperatures is accompanied by the minimum total dissipation (left extrema in Figure 11). As this
difference increases, the total dissipation increases.

A sensitivity study with respect to the refrigerating load emphasizes the variation range for
dimensionless cold refrigerant temperature θL limiting the values of COP (Figure 12a). The behavior is
similar to the one presented for the previous case in Figure 4a limiting the values of q̃L when imposing
COP. For each imposed q̃L value, an optimum θL value exists for which the system COP is maximum.
Higher values of constraint refrigeration load q̃L diminishe the COP values and shift the maximum
COP towards lower cold refrigerant temperature values θL. For the chosen set of system parameters,
a dimensionless refrigeration load of 0.3 is the maximum attainable in the range of 0.35–0.62 for θL
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values. The internal entropy production effects are emphasized in Figure 12b. The most important
effect is noticed on limiting the COP values, rather than limiting θL.
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Figure 10. Imposed q̃L and s̃i constant (a) Non-dimensional energy rates and total entropy production;
(b) COP variation with respect to θL.
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Figure 11. Non-dimensional refrigerant temperatures at hot and cold reservoirs for the case of imposed
q̃L and s̃i constant.

Figure 13 presents the variation of maximum COP values and the corresponding minimum energy
rates and total entropy dissipation with dimensionless refrigerating load. A maximum value among
the COP maxima is obtained for q̃L = 0.04 in the given conditions. These types of plots could be
used to set the system operating regimes for maximum performances under some imposed constraint.
Figure 13b emphasizes the variation of dimensionless consumed mechanical power with maximum
COP, at logarithmic scale, for increasing q̃L values. This plot puts into evidence that the chosen
operating regime is a trade-off between COP and refrigerating load q̃L, for high value of q̃L. The lower
part of the curve corresponds to low values of q̃L and w̃, and the value of maximum COP appears as a
transition point.
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Figure 12. COP variation for the case with imposed q̃L and s̃i constant (a) Sensitivity with
respect to dimensionless refrigerating load; (b) Sensitivity with respect to dimensionless internal
entropy production.
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Figure 13. q̃L influence: (a) Dimensionless energy rates and COP variation–sensitivity with respect to
q̃L; (b) Dimensionless consumed power versus maximum achievable COP.

3.2.2. Non-Linear Heat Transfer Laws

The effect of different combinations of heat transfer laws on the system COP is emphasized in
Figure 14. The most favorable combination from COP point of view is the case of linear heat transfer
laws at both sides, while the most constrainable is the one considering phase change processes at both
sides. These two combinations constraint the COP values and also the range for allowable θL values.

Figure 15 presents a sensitivity study with respect to q̃L and s̃i values associated to different
combinations of heat transfer laws. This study is similar to the one presented in Figure 8 when imposing
COP instead of q̃L. One might notice that the different considered combinations of exponents nH and
nL lead to different possible ranges for q̃L as a constraint and for θL as control variable. Maintaining
the same settings for the machine in all cases (CTQT,gen = 2, θLS = 0.87, s̃i = 0.005), one observes that:

• in the case of linear heat transfer laws at both reservoirs, the q̃L values could be imposed up to a
maximum value of about 0.3 (Figure 12a); the limits in θL are quite large and the θL values are
naturally decreasing as q̃L decreases;
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• when a phase change process in considered at the cold source (Figure 15a,b), the maximum
possible q̃L is about 0.15, half of the above-mentioned value; also the limits for θL values are
much reduced;

• if the phase change process in considered at the hot sink (Figure 15c,d), the maximum possible
q̃L is about 0.6, so twice with respect to the linear case; the limits for θL values are comparable to
those obtained for the linear case;

• while in the case of phase change process at both reservoirs (Figure 15e,f), the q̃L is limited to 0.35,
and thus the effects of the two phase change processes are cancelling each other when comparing
to the linear laws; θL values are more reduced in this case.
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Figure 15. COP variation for the case of imposed q̃L and s̃i constant, for different combinations of heat
transfer laws - sensitivity study with respect to q̃L and s̃i.

One might deduce from these results that when a system is supposed to undergo a deep cooling
process, the nature of the heat transfer law is very important. In this regard, Figure 16 reveals the effect
of chosen heat transfer law for such applications, when the required dimensionless refrigerating load
is more important, here q̃L = 0.3.Entropy 2018, 20, x FOR PEER REVIEW  16 of 16 
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One might notice that for this application, the best alternative is to choose a linear heat transfer
law at the sink and a phase change process at the hot source (nH = 3, nL = 1). This combination leads to
maximum COP for a required cold temperature and also it allows the system operation over a wider
range of θL values. From Figure 15c one may also notice that this combination ensures the system
operation at heavier refrigerating loads.

4. Conclusions and Perspectives

A general model for the study and optimization of irreversible refrigeration Carnot-like machines
was presented. The study started with machines optimization under different constraints and ended
with important aspects related to the intrinsic phenomena affecting the systems operation.

The results confirm that the First and Second Law of Thermodynamics are very useful tools in
optimization problems under constraints.

The system limits in operation under different constraints were emphasized from the point of
view of possible values for system control variables (such as θL), for imposed constraint (COP or q̃L)
and achievable performances (q̃L or COP, s̃T , other dimensionless energy rates). Moreover, the results
are useful in deciding the most convenient values and heat transfer laws in particular circumstances
and for specific applications.

The above results contribute to the understanding of the system limits in operation under different
constraints and allow the engineer to choose the most convenient variables in given circumstances.

Optimal variables are found for the best performances that the system could achieve under
specified constraints. Also the limits of the system operation are determined.

Further development of the model for other constraints (imposed w̃ or q̃H) is in progress. Also,
a comparison of the direct and reverse machine models and results are under consideration. It seems
very promising and gives a new perspective on their optimization through a unitary approach.
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List of Symbols

A heat transfer area, [m2]
COP coefficient of performance, [-]
CTQgen generalized number of heat transfer units, [-]
f, g functions defined in the model
Kgen generalized conductance, [W K−n]
.

mcp heat rate capacity, [W K−1]
n exponent of the heat transfer law, [-]
.

Q heat transfer rate, [W]
q̃ dimensionless heat transfer rate, [-]
.
S entropy production, [W K−1]
s̃ dimensionless entropy production, [-]
T temperature, [K]
U overall heat transfer coefficient, [W m−2 K−1]

.
W mechanical power, [W]
w̃ dimensionless mechanical power, [-]
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Greek Symbols
λ Lagrange multiplier
θ non-dimensional temperature
ξ function defined in the model
Subscript
gen generalized
H working fluid, at the machine hot temperature side
HS source, at the machine hot temperature side
i internal
L working fluid, at the machine low temperature side
LS source, at the machine low temperature side
T total
Abbreviations
C constraint
FO objective function
L Lagrangian function
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