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Detection of Progressive Glaucomatous
Optic Nerve Damage on Fundus Photographs
with Deep Learning

Felipe A. Medeiros, MD, PhD,1,2 Alessandro A. Jammal, MD,1 Eduardo B. Mariottoni, MD1

Purpose: To investigate whether predictions of retinal nerve fiber layer (RNFL) thickness obtained from a
deep learning model applied to fundus photographs can detect progressive glaucomatous changes over time.

Design: Retrospective cohort study.
Participants: Eighty-six thousand one hundred twenty-three pairs of color fundus photographs and spectral-

domain (SD) OCT images collected during 21 232 visits from 8831 eyes of 5529 patients with glaucoma or
glaucoma suspects.

Methods: A deep learning convolutional neural network was trained to assess fundus photographs and to
predict SD OCT global RNFL thickness measurements. The model then was tested on an independent sample of
eyes that had longitudinal follow-up with both fundus photography and SD OCT. The ability to detect eyes that
had statistically significant slopes of SD OCT change was assessed by receiver operating characteristic (ROC)
curves. The repeatability of RNFL thickness predictions was investigated by measurements obtained from
multiple photographs that had been acquired during the same day.

Main Outcome Measures: The relationship between change in predicted RNFL thickness from photographs
and change in SD OCT RNFL thickness over time.

Results: The test sample consisted of 33 466 pairs of fundus photographs and SD OCT images collected
during 7125 visits from 1147 eyes of 717 patients. Eyes in the test sample were followed up for an average of 5.3
� 3.3 years, with an average of 6.2 � 3.8 visits. A significant correlation was found between change over time in
predicted and observed RNFL thickness (r ¼ 0.76; 95% confidence interval [CI], 0.70e0.80; P < 0.001). Retinal
nerve fiber layer predictions showed an ROC curve area of 0.86 (95% CI, 0.83e0.88) to discriminate progressors
from nonprogressors. For detecting fast progressors (slope faster than 2 mm/year), the ROC curve area was 0.96
(95% CI, 0.94e0.98), with a sensitivity of 97% for 80% specificity and 85% for 90% specificity. For photographs
obtained at the same visit, the intraclass correlation coefficient was 0.946 (95% CI, 0.940e0.952), with a coef-
ficient of variation of 3.2% (95% CI, 3.1%e3.3%).

Conclusions: A deep learning model was able to obtain objective and quantitative estimates of RNFL
thickness that correlated well with SD OCT measurements and potentially could be used to monitor for glau-
comatous changes over time. Ophthalmology 2021;128:383-392 ª 2020 by the American Academy of
Ophthalmology
Detection of glaucoma progression is a fundamental part of
glaucoma management because it provides a means to iden-
tify patients who may require escalation in treatment.1,2

Although progression traditionally has been measured by
assessing changes in visual field sensitivity,3e5 many
patients show optic disc or retinal nerve fiber layer (RNFL)
changes in the absence of detectable deterioration on
perimetric tests, providing an opportunity to commence or
increase treatment before significant decline in vision.6e8 In
addition, detecting structural change can help to establish a
diagnosis of glaucoma in those suspected of having the dis-
ease.9 Given the wide variability in the normal appearance of
the optic nerve, confirmation of a diagnosis of glaucoma
frequently requires demonstration of progressive damage
over time.

Because of its ability to quantify neural loss objectively,
spectral-domain (SD) OCT has established itself as a widely
ª 2020 by the American Academy of Ophthalmology
Published by Elsevier Inc.
used tool for longitudinal assessment of structural changes in
glaucoma, presenting high reproducibility at a micrometer-
scale resolution.10 However, despite its increasing
availability, SD OCT devices remain exceedingly rare in
many clinical settings, notably in developing countries. In
addition, the use of SD OCT for screening purposes or for
monitoring glaucoma suspects outside of specialized centers
is difficult because of the prohibitive costs and the
requirement for well-trained technicians.

Recent advances in artificial intelligence algorithms,
notably deep learning neural networks, have led to exciting
prospects in automating the assessment of structural glau-
comatous damage using fundus photography.11e14 Fundus
photography is an attractive method to document and identify
optic nerve damage in glaucoma, given its low cost and
widespread availability. However, subjective evaluation of
photographs suffers from low reproducibility, even when
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performed by expert graders.15e17 Human graders frequently
underestimate or overestimate the likelihood of glaucoma in
cross-sectional evaluations and cannot identify longitudinal
changes reliably when masked for the time sequence of pho-
tographs.18 Although deep learning models have been trained
successfully to replicate human gradings of fundus
photographs for glaucoma,11 these models are bounded to
replicate these same errors, leading to low accuracy when
applied to clinical settings or screening situations.

This realization prompted us to develop a novel deep
learning algorithm that was trained to predict objective met-
rics of glaucomatous damage, rather than subjective gradings
by humans. This was achieved by training the algorithm to
analyze fundus photographs and to predict quantitative
measurements of glaucomatous damage provided by SD
OCT, such as RNFL thickness and neuroretinal rim mea-
surements, an approach that we named machine-to-machine
(M2M) algorithm.12,13 In previous publications, the M2M
predictions showed high correlation with the original SD
OCT observations.12,13 The M2M approach may offer
advantages compared with previous deep learning
approaches in glaucoma: training is objective and does not
require human labeling, predictions generally are more
accurate than human gradings,19 and the quantitative nature
of the predictions allows for flexibility in determining
cutoffs, rather than the yes-or-no binary outputs of previous
approaches. Also, given its quantitative nature, potential ex-
ists for longitudinal monitoring of change over time, which
would allow fundus photographs to be used as an objective
method for structural assessment of glaucoma in settings
where SD OCT may not be available.

In the present study, we investigated the ability of deep
learning predictions of RNFL thickness from fundus
photographs to detect glaucoma progression as measured by
SD OCT in a cohort of patients followed over time. We also
investigated the repeatability of the predictions, an essential
step in validating a proposed tool for detection of change
over time.
Methods

The dataset for this study was collected from the Duke Glaucoma
Registry, a database of electronic medical and research records at
the Vision, Imaging and Performance Laboratory of the Duke Eye
Center.20 The institutional review board from Duke University
approved this study with a waiver of informed consent because
of the retrospective nature of this work. All methods adhered to
the tenets of the Declaration of Helsinki for research involving
human subjects, and the study was conducted in accordance with
regulations of the Health Insurance Portability and
Accountability Act.

The database contained longitudinal information on compre-
hensive ophthalmologic examinations during follow-up, diagnoses,
medical history, visual acuity, slit-lamp biomicroscopy findings,
intraocular pressure measurements, and results of gonioscopy and
dilated slit-lamp funduscopic examinations. In addition, the
repository contained fundus photographs obtained with the Nidek
3DX (Nidek) and Visupac FF-450 (Carl Zeiss Meditec, Inc),
standard automated perimetry (Humphrey Field Analyzer II [Carl
Zeiss Meditec, Inc.), and Spectralis SD OCT (software version 6.8;
Heidelberg Engineering, GmbH) images and data. Standard
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automated perimetry was acquired with the 24-2 Swedish inter-
active threshold algorithm (Carl Zeiss Meditec, Inc.). Only patients
with open angles on gonioscopy were included. Visual fields were
excluded if they had more than 33% fixation losses or more than
15% false-positive errors. Patients also were excluded if they had
other ocular or systemic diseases that could affect the optic nerve
or the visual field. Therefore, tests performed after any diagnosis of
retinal detachment, retinal or malignant choroidal tumors, non-
glaucomatous disorders of the optical nerve and visual pathways,
uveitis, and venous or arterial retinal occlusion according to
International Classification of Diseases codes were excluded. In
addition, tests performed after treatment with panretinal photoco-
agulation, according to Current Procedural Terminology codes,
were also excluded.

Diagnosis of glaucoma was defined based on the presence of
glaucomatous visual field loss on standard automated perimetry
(pattern standard deviation of <5% or glaucoma hemifield test
results outside normal limits) and signs of glaucomatous neurop-
athy as based on records of slit-lamp fundus examination. Glau-
coma suspects were those with history of elevated intraocular
pressure, with suspicious appearance of the optic disc on slit-lamp
fundus examination, or with other risk factors for the disease.

Images were acquired with the Spectralis SD OCT to assess the
RNFL. The device uses a dual-beam SD OCT and a confocal laser-
scanning ophthalmoscope that uses a superluminescent diode light
with a center wavelength of 870 nm and an infrared scan to provide
simultaneous images of ocular microstructures. The Spectralis
RNFL circle scan was used for this study. The global average
circumpapillary RNFL thickness corresponds to the 360� measure
automatically calculated by the SD OCT software from a total of
1536 A-scan points acquired from a 3.45-mm circle centered on the
optic disc. Corneal curvature measurements were entered into the
instrument software to ensure accurate scaling of all measurements,
and the device’s eye-tracking capability was used during image
acquisition to adjust for eye movements and to ensure that the same
location of the retina was scanned over time. All scans that had a
quality score lower than 15 were excluded from this analysis.
Furthermore, scans that had average global RNFL thickness
measurements with implausible values were excluded (i.e., less
than 20 mm and more than 150 mm). Those cutoffs represent
measurements above the higher range of reported RNFL thickness
for normal control participants and less than the lower range
for glaucoma patients21e23 and may indicate the presence of
acquisition or segmentation errors in the presence of otherwise
good-quality scores.24

For each eye of each patient, we considered all the available
photographs that had been acquired at each visit over time and
matched them to the closest Spectralis SD OCT RNFL scans
acquired within a maximum of 6 months from the photograph date.
Of note, multiple photographs and multiple Spectralis scans were
obtained at each visit for some eyes, generating multiple pairs of
photographs and SD OCT images at each visit for each eye.
Having multiple pairs helped increase the variability of the sample
for training the deep learning network. In addition, the repeated
measurements at each visit also were used to assess the repeat-
ability of the model predictions, as described below.
Development of the Machine-to-Machine Deep
Learning Algorithm

A deep learning algorithm initially was trained to predict SD OCT
global RNFL thickness from assessment of color fundus
photographs. The trained M2M model then was used to predict
RNFL thickness measurements from fundus photographs of eyes in
an independent sample, and we investigated whether longitudinal



Table 1. Demographic and Clinical Characteristics of Eyes and Patients Included in the Test Sample

Glaucoma Suspect Glaucoma

No. of pairs of SD OCT images and photographs 16 534 16 932
No. of eyes 625 522
Age (yrs), mean � standard deviation 56.8 � 14.2 63.9 � 12.5
Female gender (%) 65.6 58.2
Race (%)
White 59.5 56.5
Black 40.5 43.5

SAP MD (dB), mean � standard deviation 0.01 � 1.13 e4.67 � 5.49
SAP PSD (dB), mean � standard deviation 1.57 � 0.38 4.72 � 3.62
SD OCT global RNFL thickness (mm), mean � standard deviation 96.1 � 11.2 77.7 � 17.6
M2M predicted global RNFL thickness (mm), mean � standard deviation 94.3 � 8.9 79.5 � 15.5
Follow-up (yrs), mean � standard deviation 5.1 � 3.1 5.5 � 3.4
Rate of change in SD OCT RNFL thickness (mm/yr), mean � standard deviation e0.93 � 0.47 e0.79 � 0.57
Rate of change in M2M predicted RNFL thickness (mm/yr), mean � standard deviation e0.80 � 0.62 e0.76 � 0.71
Follow-up change in SD OCT global RNFL thickness (mm), mean � standard deviation e4.8 � 5.0 e4.7 � 5.6
Follow-up change in predicted RNFL thickness (mm), mean � standard deviation e4.1 � 5.4 e4.5 � 6.2

MD ¼ mean deviation; M2M ¼ machine-to-machine; PSD ¼ pattern standard deviation; RNFL ¼ retinal nerve fiber layer; SAP ¼ standard automated
perimetry; SD ¼ spectral-domain.
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change in RNFL thickness predictions was associated with change
in the actual SD OCT measurements over time.

From a total of 86 123 pairs of SD OCT images and color fundus
photographs collected at 21 232 visits from 8831 eyes of 5529 pa-
tients, we set aside a test sample consisting of 50% of all patients
who had at least 2 longitudinal photograph visits during follow-up.
The remaining patients were used for training and fine tuning
(validation) of the model. This choice was justified by the fact that
patients with only 1 visit would not contribute to assessing change
over time, but rather would contribute to training and validating the
model for predicting RNFL thickness measurements. Importantly,
to prevent leakage and biased estimates of test performance, no data
of any patient was present in both the training and validation sample
and the test sample, that is, the randomization was carried out at the
patient level. Furthermore, application of the model to the test
sample was performed only after all steps of training and validation
had been completed and the model was considered final.

For training the deep neural network, a pair of training targets
consisted of a single optic disc photograph and the average RNFL
thickness value from the corresponding SD OCT scan.
Photographs initially were preprocessed to derive data for the deep
learning algorithm. In the case of stereophotographs, the photo-
graph was split, creating a pair of photographs from the stereo-
views. An object detection deep learning network (single-shot
detector) was used to extract the optic nerve and surrounding
region from each photograph. The images then were downsampled
to 256 � 256 pixels and pixel values were scaled to range from 0 to
1. Data augmentation was performed to increase heterogeneity of
the photographs, reducing the possibility of overfitting and
allowing the algorithm to learn the most relevant features. Data
augmentation included the following: random lighting, consisting
of subtle changes in image balance and contrast; random rotation,
consisting of rotations of up to 10� in the image; and random flips,
consisting of flipping the image vertically or horizontally.

We used the Residual deep neural Network (ResNet50) archi-
tecture.25 In brief, these networks use identity shortcut connections
that skip 1 or more layers and greatly decrease the vanishing
gradient problem when training deep networks. In the present
work, a ResNet50 that had been trained previously on the
ImageNet dataset was used.26 However, because the recognition
task of the present work largely differed from that of ImageNet,
further training was performed by initially unfreezing the last 2
layers. Subsequently, all layers were unfrozen, and training was
performed using differential learning rates. The network was
trained with minibatch gradient descent of size 64 and Adam
optimizer.27,28 The best learning rate was found using the cyclical
learning method with stochastic gradient descents with restarts.29
Statistical Analysis

Assessment of Longitudinal Change. The fully trained M2M model
was used to obtain predictions of RNFL thickness in the test sample.
A joint longitudinal mixed-effects model then was used to assess
whether change over time in RNFL predictions from fundus pho-
tographs was correlated with change on actual SD OCT RNFL
thickness measurements. These models have been described in detail
elsewhere and are used routinely for investigating how 2 processes
change over time, while considering the correlations among obser-
vations over time and among eyes of the same individual.30,31 The
performance of the deep learning algorithm in predicting actual
SD OCT RNFL thickness measurements in the test sample was
quantified by measuring the correlation between predicted and
observed measurements, as well as by calculating the median
absolute deviation and mean absolute error of the predictions.

In addition to the overall association between longitudinal mea-
surements, we were interested in whether the fundus photograph
predictions would be able to detect substantial, likely clinically rele-
vant, changes on SD OCT RNFL thickness over time. Although a
cutoff for clinically significant change on SD OCT is not well
established, information from previous studies on age-related RNFL
loss may help in providing some suitable levels. For Spectralis SD
OCT, it has been shown that 95% of healthy individuals show lon-
gitudinal change in global RNFL thickness at a rate slower than
approximately 1 mm/year.32,33 Therefore, we considered eyes with
statistically significant slopes of SD OCT RNFL thickness change
over time at a rate faster than e1 mm/year as progressors.
Nonprogressors were considered as those eyes that had
nonstatistically significant slopes or with change slower than e1
mm/year. We also investigated the ability of M2M RNFL
predictions to detect eyes with significant progression at rates faster
than e1.5 mm/year (moderate) and e2.0 mm/year (fast progression).
385



Figure 1. Scatterplot illustrating the relationship between change in spectral-domain (SD) OCT retinal nerve fiber layer (RNFL) thickness over time and
change in predicted RNFL thickness from fundus photographs (r ¼ 0.76; P < 0.001). Different colors for scatter points indicate eyes of progressors and
nonprogressors, as defined by SD OCT change. Size of points is proportional to the total amount of SD OCT RNFL thickness change during follow-up.
M2M ¼ machine-to-machine.
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Receiver operating characteristic (ROC) curves were used to
assess the ability of change in M2M-predicted RNFL thickness
from fundus photographs in discriminating nonprogressor eyes
from eyes with progression as defined by SD OCT. The ROC curve
provides the tradeoff between the sensitivity and 1 e specificity.
The area under the ROC curve (AUC) was used to summarize the
diagnostic accuracy of each parameter. An AUC of 1.0 represents
perfect discrimination, whereas an AUC of 0.5 represents chance
discrimination. Sensitivity at fixed specificities of 80% and 90%
also were reported.

To account for using multiple images of both eyes of the
same participant in the analyses, a bootstrap resampling pro-
cedure was used to derive confidence intervals (CIs) and P
values, where the cluster of data for the participant was
considered as the unit of resampling to adjust standard errors.
386
This procedure has been used previously to adjust for the
presence of multiple correlated measurements from the same
unit.34

Assessment of Repeatability. Repeatability of M2M pre-
dictions of RNFL thickness was investigated by measurements
obtained from multiple fundus photographs acquired during the
same day in the test sample. The repeatability of measure-
ments was assessed by the intraclass correlation coefficient
(ICC), coefficient of variation (CoV), and intravisit standard
deviation. The ICC was obtained from a mixed-effects model
with 3 levels of nesting (i.e., visit, eye, and patient levels).
The testeretest repeatability was defined as 2.77 times the
intravisit standard deviation, which indicated the interval
within which 95% of the differences between measurements
are expected to lie.35



Figure 2. Receiver operating characteristic (ROC) curves summarizing the
ability of the fundus photograph deep learning model to discriminate
progressors versus nonprogressors, as defined by spectral-domain OCT
retinal nerve fiber layer (RNFL) thickness change during follow-up. Curves
are shown for detecting overall progressors, as well as for detecting eyes
progressing at rates faster than e1.5 mm/year (moderate progressors) and
e2.0 mm/year (fast progressors).
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Results

The dataset included 86 123 pairs of optic disc photographs and SD
OCT scans collected during 21 232 visits from 8831 eyes of 5529
patients. The median number of days between the photograph and
corresponding SD OCT visit was 0 (interquartile range, 0e86
days). The test sample consisted of 33 466 pairs of fundus photo-
graphs and SD OCT images collected during 7125 visits from 1147
eyes of 717 patients. Eyes in the test sample were followed up for
an average of 5.3 � 3.3 years with an average of 6.2 � 3.8 visits.
Table 1 shows demographic and clinical characteristics of the eyes
in the test sample.

The mean prediction of global RNFL thickness from all fundus
photographs in the test sample was 84.6 � 14.4 mm, whereas the
mean average RNFL thickness from all the corresponding SD OCT
scans was 84.5 � 17.0 mm (P ¼ 0.77). A strong correlation was
found between the predicted and the observed RNFL thickness
values (R2 ¼ 63.6%; P < 0.001), with a median absolute deviation
of 6.85 mm and mean absolute error of 8.12 mm.

The average change in SD OCT global RNFL thickness for all
eyes in the test sample was e4.8 � 5.3 mm over the duration of
follow-up, whereas the corresponding total change for M2M RNFL
thickness predictions from fundus photographs was e4.3 � 5.8
mm. The median absolute difference in total change over the
duration of follow-up was 1.1 mm (interquartile range, 0.46e3.2
mm). A significant correlation was found between change over time
in predicted and observed RNFL thickness (r ¼ 0.76; 95% CI,
0.70e0.80; P < 0.001). Average rates of change for M2M pre-
dictions and SD OCT observations were e0.87 � 0.52 mm/year
and e0.77 � 0.67 mm/year, respectively. Figure 1 illustrates a
scatterplot of the relationship between rates of change over time
in predicted versus observed RNFL thickness values, with the
corresponding distributions in the sample. The correlations
between predicted and observed RNFL thickness were not
significantly different between glaucoma and glaucoma suspect
eyes (r ¼ 0.78 and r ¼ 0.76, respectively; P ¼ 0.31).

From the 1147 eyes in the test sample, 313 (27%) were considered
progressors. These eyes had amean slope of SDOCTRNFLchange of
e1.47 � 0.45 mm/year and a mean total change of e10.5 � 6.4 mm
during the follow-up period. The remaining 834 eyes were considered
nonprogressors and showed amean slope of SDOCTchange ofe0.65
� 0.34mm/year and amean total change of onlye2.6� 2.5mmduring
the follow-up period. Mean rates of change in M2M predictions of
RNFL thickness were e1.30� 0.71 mm/year and e0.58 � 0.53 mm/
year for progressors and nonprogressors, respectively, with corre-
sponding mean total changes during follow-up of e9.1 � 7.0 mm
versus e2.5 � 4.0 mm, respectively. The M2M RNFL predictions
showed an AUC of 0.86 (95% CI, 0.83e0.88) to discriminate pro-
gressors from nonprogressors. For specificity of 80%, the sensitivity
was 76%;whereas, for specificity of 90%, the sensitivitywas 50%. For
detecting progressors that had rates of change faster than e1.5 mm/
year, the M2M predictions showed an AUC of 0.92 (95% CI,
0.89e0.94). For specificity of 80%, the sensitivity was 91%; whereas,
for specificity of 90%, the sensitivity was 70%. For detecting fast
progressorswith rates faster thane2mm/year, theAUCwas 0.96 (95%
CI, 0.94e0.98). For specificity at 80%, the sensitivity for detecting
fast progression was 97%. For specificity at 90%, the sensitivity was
85%. Figure 2 shows ROC curves for the ability of the M2M
predictions to detect different rates of SD OCT change over time.

During a total of 2112 visits in the test sample, repeated fundus
photographs were obtained in the same visit and were used to es-
timate repeatability. The ICC was 0.946 (95% CI, 0.940e0.952),
with CoV of 3.2% (95% CI, 3.1%e3.3%). The average intravisit
standard deviation was 2.5 mm with calculated repeatability of 6.9
mm. No statistically significant relationship was found between
intravisit standard deviation and mean of the predictions (Spearman
r,e0.04; 95% CI,e0.08 to 0.001; P¼ 0.05). For SD OCT repeated
tests, the ICC was 0.988 (95% CI, 0.987e0.990), with CoV of 1.6%
(95% CI, 1.5%e1.7%). The average intravisit standard deviation
was 1.3 mm with calculated repeatability of 3.6 mm.

Figures 3 and 4 show several temporal sequences of fundus
photographs from eyes included in the study classified as
progressors and nonprogressors according to the rate of RNFL
thinning during follow-up. Slopes of change, calculated for the
actual RNFL thickness values measured by SD OCT and for the
RNFL thickness predictions of the M2M, also are plotted for
comparison.
Discussion

The present study showed that a deep learning algorithm
trained to estimate objective RNFL thickness measurements
using simple fundus photographs was able to detect signif-
icant glaucomatous changes over time that corresponded
well to the changes seen on SD OCT. To the best of our
knowledge, no previous study has investigated the potential
of deep learning for detecting glaucoma progression using
fundus photography.

Our current study confirms, now in a much larger sample of
patients, the previous finding that accurate predictions of
RNFL thickness can be obtained by applying deep learning to
fundus photography.12 Overall, the correlation between
predicted and observed RNFL thickness measurements was
strong, with r ¼ 0.80 and a median absolute deviation of
only 6.85 mm. However, the main purpose of the present
work was to investigate whether these predictions would be
387



Figure 3. Illustrative examples of eyes included in the study that showed progression detected by spectral-domain (SD) OCT retinal nerve fiber layer
(RNFL) thickness during follow-up. The sequence of fundus photographs shows 6 photographs, including the baseline (leftmost) and last (rightmost)
available photographs during follow-up and randomly chosen intermediate ones. Slopes of change are shown adjacent to the sequence of photographs,
colored in blue for the SD OCT slope and in red for the slope of predicted RNFL thickness from fundus photographs. A, B, C, Excellent agreement between
SD OCT and predicted RNFL from photographs, with clear changes also seen by inspection of the fundus photographs. Of note, disc hemorrhages can be
seen during follow-up in (A) and (C). D, Small, albeit statistically significant, changes on SD OCT, but the slope for predicted RNFL thickness from
photographs remained relatively flat. M2M ¼ machine-to-machine.
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accurate enough to detect change over time. We found that
changes in predicted RNFL thickness over time also were
correlated strongly to changes in actual SD OCT
measurements, with r ¼ 0.76, and were able to discriminate
progressors from nonprogressors, as defined by SD OCT
change. It is important to qualify these findings according to
the definition of progression used in our study and the
context in which deep learning-assisted fundus photography
eventually could be used. It would be unexpected for simple
color fundus photographs to detect changes at the same level as
a much more sophisticated and high-resolution imaging
technique such as SD OCT. If enough tests are available, SD
OCT theoretically can detect very small RNFL changes over
time, even considerably less than 1 mm/year.22,36 However,
such changes may be mostly the result of normal aging, as a
previous study by Wu et al shows.32 We therefore wanted to
investigate whether the M2M predictions would detect
388
changes of magnitude large enough to be of clinical
relevance. We considered statistically significant rates of
change with magnitude faster than e1 mm/year as
progression. Although the M2M predictions performed
reasonably well to detect overall progressors, a more
important result was the performance to detect fast
progressors, because these likely would be of much greater
risk for functional losses resulting from glaucoma
developing.37 For detecting fast progressors, the predictions
had an ROC curve area of 0.96, with a sensitivity of 97%
for a specificity of 80%. For a high specificity of 90%, the
predictions still detected 85% of fast progressors.

Our findings suggest that the M2M model applied to lon-
gitudinal optic disc photographs could be used to detect change
andmonitor structural glaucomatous progression reliably when
SD OCT is not available, or perhaps as a complement to SD
OCT assessment. As multiple studies have shown, many



Figure 4. Illustrative examples of eyes included in the study that were considered nonprogressors according to spectral-domain (SD) OCT retinal nerve fiber
layer (RNFL) thickness during follow-up. The sequence of fundus photographs shows 6 photographs, including the baseline (leftmost) and last (rightmost)
available photographs during follow-up and randomly chosen intermediate ones. Slopes of change are shown adjacent to the sequence of photographs,
colored in blue for the SD OCT slope and in red for the slope of predicted RNFL thickness from fundus photographs. A, B, Good agreement in the slopes. C,
Eye with advanced glaucoma that showed large variation on SD OCT RNFL thickness measurements, close to the floor. Predicted fundus photograph RNFL
thickness remained stable over time. D, Mild decline of predicted RNFL thickness over time, whereas SD OCT remained essentially stable. Interestingly,
this eye showed an inferior temporal disc hemorrhage over time, and also, changes in the inferior blood vessel seem to suggest an increase in the inferior
cupping and rim loss. M2M ¼ machine to machine.
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patients with glaucoma or suspected glaucoma may exhibit
RNFL thickness change in the absence of detectable changes in
perimetry.6e8,38 Progressive SD OCT RNFL loss has been
shown to be significantly predictive of future visual field
changes and also of decline in quality of life.39 By assessing
photographs objective and quantitative, our algorithm creates
opportunities for monitoring individuals suspected of disease
at nonspecialized settings, with the potential of reducing the
burden at highly specialized tertiary centers, which may be an
especially important consideration given the aging population.
This may be particularly important given recent concerns
brought by the coronavirus 2019 pandemic and the
requirements for social distancing.40 Of note, if used in the
context of a screening tool for monitoring changes in patients
with suspected glaucoma, a high specificity would be
desirable while being able to detect significant changes with
potential to trigger referral in most patients. If we consider
eyes with fast progression, for example, the total loss over a
5-year average follow-up would amount to approximately 10
mm. Such loss would be highly predictive of glaucoma devel-
opment, but it stillwould occurmuch earlier than any significant
vision loss. For patients already diagnosed with glaucoma, the
algorithm could still find applications in low-resource settings
where SD OCT is not available and monitoring of nerve
changes still relies on subjective funduscopy, cup-to-disc ratio
measurements, and drawings.

Most previous studies on deep learning applied to fundus
photography have attempted to replicate subjective gradings
by humans in diagnosing glaucoma damage.11,14 However,
subjective gradings are known to have low reproducibility
and to misclassify eyes with physiologic large cups or small
discs.15e17 Despite the reported high accuracy of such
389
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models, they essentially replicate some of the human biases
and may have low performance when applied in clinical
settings. In addition, they do not provide quantitative infor-
mation, and therefore, would not be suitable for monitoring
over time. In the assessment of glaucoma progression, a study
by Jampel et al17 showed similarly that experts exhibit only
slight to fair agreement when grading optic disc
photographs for change. In contrast, the motivation behind
the M2M model was to train a deep learning network to
provide objective quantification of neural damage from
fundus photographs that could be used not only to diagnose
and stage glaucomatous damage on cross-sectional
assessment, but also detect longitudinal changes.

A fundamental requirement of any test proposed to detect
longitudinal change is to exhibit low testeretest variability.
In our study, we were able to assess the repeatability of
M2M predictions by analyzing fundus photographs that had
been obtained on the same day. Both the ICC of 0.946 and
the small CoV of 3.2% indicated high repeatability. The
calculated repeatability of 6.9 mm indicated that 95% of the
differences between measurements would be expected to lie
within this value. This is compatible with the high accuracy
of the algorithm in detecting changes in faster progressors.
Importantly, no significant association was found between
the intravisit standard deviation of predictions and the
average value of the predictions, indicating that the pre-
dictions were repeatable throughout a large spectrum of
disease severity. Coefficient of variation and repeatability
interval were higher for the M2M predictions compared
with original SD OCT measurements, as one would expect.

The assessment of repeatability as performed in our study
had limitations. First, it was not planned prospectively, and
we used an opportunistic sample of photographs that
happened to have been obtained on the same visit day. It is
possible that some photographs were retaken because of
concerns about quality. However, this actually would
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decrease rather than increase the repeatability. In addition,
we did not evaluate testeretest reproducibility of
photographs obtained on different days and by different
photographers. These other factors may also influence the
variability of the predictions over time. Although photo-
graphs were obtained from 2 different cameras, it is unclear
how the model would perform in photographs obtained from
other cameras. Models evaluating quality of photographs
potentially may be combined with the M2M approach
potentially to improve the reliability of predictions. In fact,
media opacities may affect the quality of photographs as
individuals age, and this may affect the predictions of RNFL
thickness. However, changes in media quality with aging
also may affect SD OCT measurements to a large degree, as
shown by Fortune et al.41 This underscores the need for
progression definitions that account for expected age-
related changes, as carried out in our study.

As another limitation of our study, the M2M algorithm
was trained to estimate only the global average RNFL
thickness measurements. Although algorithms in principle
could be trained to predict sectoral measurements, the
increase in variability may offset the gains in detecting
change over time. Future studies should investigate and
compare these different approaches. Finally, our model will
benefit from external validation in populations from
different geographic areas, with different prevalence of
findings such as high myopia.

In conclusion, we demonstrated that a deep learning
model was able to obtain objective and quantitative
estimates of RNFL thickness that correlated well with
SD OCT measurements and could be used to track
RNFL changes over time. Given the widespread
availability and simplicity of fundus photography, such
a model could find application to screen for glau-
comatous progression in settings where SD OCT may
not be available or feasible.
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Pictures & Perspectives
C
olor-doppler Flow Imaging Might Help Diagnose Optic Nerve Glioma
A 10-year-old patient presented with painless progressive loss of vision in the right eye. Magnetic resonance imaging and ultrasound

(Fig A-B) showed a right serpiginous orbital mass (black arrow) in continuity with the optic nerve at both ends (white arrow). Color-
doppler flow imaging (CDFI, Fig C) revealed that the central retinal artery (Fig D, black arrowhead) was at the center of the mass,
strongly suggesting the diagnosis of optic nerve glioma (ONG). Optic nerve tumors are challenging to biopsy, and imaging remains
nonspecific. However, final diagnosis at this stage remains presumptive. Larger studies should be performed to evaluate if this CDFI sign
could be sufficient in diagnosing ONG (Magnified version of Fig A-D is available online at www.aaojournal.org).
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