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Cortical control of object-specific grasp relies on
adjustments of both activity and effective connectivity: a
common marmoset study
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Key points

e The cortical mechanisms of grasping have been extensively studied in macaques and humans;
here, we investigated whether common marmosets could rely on similar mechanisms despite
strong differences in hand morphology and grip diversity.

® We recorded electrocorticographic activity over the sensorimotor cortex of two common
marmosets during the execution of different grip types, which allowed us to study cortical
activity (power spectrum) and physiologically inferred connectivity (phase-slope index).

e Analyses were performed in beta (16-35 Hz) and gamma (75-100 Hz) frequency bands and
our results showed that beta power varied depending on grip type, whereas gamma power
displayed clear epoch-related modulation.

e Strength and direction of inter-area connectivity varied depending on grip type and epoch.

o These findings suggest that fundamental control mechanisms are conserved across primates
and, in future research, marmosets could represent an adequate model to investigate primate
brain mechanisms.

Abstract The cortical mechanisms of grasping have been extensively studied in macaques and
humans. Here, we investigated whether common marmosets could rely on similar mechanisms
despite striking differences in manual dexterity. Two common marmosets were trained to
grasp-and-pull three objects eliciting different hand configurations: whole-hand, finger and
scissor grips. The animals were then chronically implanted with 64-channel electrocorticogram
arrays positioned over the left premotor, primary motor and somatosensory cortex. Power
spectra, reflecting predominantly cortical activity, and phase-slope index, reflecting the direction
of information flux, were studied in beta (16—35 Hz) and gamma (75-100 Hz) bands. Differences
related to grip type, epoch (reach, grasp) and cortical area were statistically assessed. Results
showed that whole-hand and scissor grips triggered stronger beta desynchronization than finger
grip. Task epochs clearly modulated gamma power, especially for finger and scissor grips.
Considering effective connectivity, finger and scissor grips evoked stronger outflow from primary
motor to premotor cortex, whereas whole-hand grip displayed the opposite pattern. These findings
suggest that fundamental control mechanisms, relying on adjustments of cortical activity and
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connectivity, are conserved across primates. Consistently, marmosets could represent a good
model to investigate primate brain mechanisms.
(Received 13 May 2017; accepted after revision 31 July 2017; first published online 9 August 2017)
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Abbreviations AP, antero-posterior; ECoG, electrocorticography; ERD, event-related desynchronization; ERS,
event-related synchronization; LFP, local field potential; M1, primary motor cortex; ML, medio-lateral; PSI, phase-slope
index; SEP, somatosensory-evoked potential; 4-f, 3a-f and 3b-f, forelimb regions of Brodmann areas 4, 3a and 3b,
respectively; 4-nf, 3a-nf, 3b-nf, non-forelimb regions of Brodmann areas 4, 3a and 3b, respectively.
Introduction

The basic forelimb structure evolved to allow remarkable
feats of manual precision in primates (Mountcastle, 2005;
Padberg et al. 2007). The cortical control of grasping is
founded on the synergistic activity of a parietofrontal
network including premotor, primary motor and
somatosensory cortex (Fogassi et al. 2001; Fluet et al. 2010;
Gharbawie et al. 2011). The premotor cortex modulates
corticospinal outputs from primary motor cortex (M1) in
a muscle- and grasp-specific manner (Prabhu ef al. 2009),
whereas M1 interacts with the primary somatosensory
cortex to integrate proprioceptive and tactile feedback
(Salimi et al. 1999a,b; Gardner et al. 2007).

Although several studies have been conducted in
macaques and humans (Salimi et al. 1999a,b; Fogassi
et al. 2001; Gardner et al. 2007; Prabhu et al. 2009;
Fluet et al. 2010; Gharbawie et al. 2011), evidence
remains sparse on the cortical grasping circuits in
phylogenetically distant primates, who generally display
more rudimentary manual skills. Compared to macaque
monkeys, common marmosets present a lower degree of
forelimb specialization characterized by an absence of
precision grip, reduced object manipulation and little
tactile exploration (Coleman et al. 2001; Krubitzer &
Disbrow, 2008). Marmosets are further characterized
by a lissencephalic brain (Newman et al. 2009; Kelava
et al. 2012), and it is generally thought that they
lack direct cortico-motoneuronal projections to distal
hand muscles (Lemon & Griffiths, 2005; Kondo et al.
2015; Walker et al. 2016). The regions corresponding
to parietal areas 1 and 2 appear to be merged into one
(Krubitzer & Kaas, 1990), displaying low responsiveness
to tactile stimuli (Krubitzer & Kaas, 1990; Krubitzer &
Disbrow, 2008). Altogether, these features suggest some
basic differences in the cortical mechanisms of grasping
across species. However, comparative studies indicate
that the organization of cortical motor areas and, in
particular, cortico-cortical connections to M1 are rather
similar across species (Burman et al. 2014; Bakola et al.
2015), hinting that some basic mechanism might be
conserved.

Albeit several anatomical studies have characterized
cortical areas and networks in common marmosets
(Krubitzer & Kaas, 1990; Huffman & Krubitzer, 2001;
Burish et al. 2008; Burman et al. 2008, 2014), few
investigations were made on their functional properties,
and more precisely, in relation to skilled hand movements.
The main aim of this study is to shed light on this issue by
examining grip adaptation in relation to cortical activity
and physiologically inferred connectivity. Specifically, we
trained two common marmosets to reach for, grasp and
pull three objects, the shapes of which elicited different
hand configurations. In parallel, we studied local field
potentials (LFPs) obtained from epicortical recording
over the sensorimotor cortex. We used event-related
desynchronization/synchronization (ERD/ERS) in beta
(16-35 Hz) and gamma (75-100 Hz) bands (Crone et al.
1998a,b; Pfurtscheller et al. 2003; Miller et al. 2007) during
the execution of different grip types as the marker of
cortical activity. We also calculated the phase-slope index
(PSI) for estimating the effective connectivity between
cortical regions (Nolte et al. 2008). These allowed us to
investigate differences in activity and connectivity related
to grip type, task epoch, and cortical area.

Considering that cortical organization and connectivity
is highly conserved in primates (Padberg et al. 2007),
we could hypothesize that marmoset cortex possesses
similar cortical finger movement control mechanisms
to macaques or humans, despite striking differences in
hand morphology (Torigoe, 1985; Coleman et al. 2001)
and corticospinal connections (Lemon & Griffiths, 2005;
Kondo et al. 2015; Walker et al. 2016). In this case,
grip adaptation would rest on adjustments of cortical
activity and connectivity among sensorimotor areas (Aoki
et al. 2001; Davare et al. 2008). This would suggest
common principles of cerebral cortex function/structure
across different species of the primate order (see also
Padberg et al. 2007). An alternative hypothesis would be
that grip adaptation in marmosets relies on processes
that are different from cortical mechanisms of more
dexterous primates (e.g. subcortical structures; Castiello
& Begliomini, 2008).
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A secondary aim of this study is to verify whether
previously established electrocorticography (ECoG) fre-
quency analysis techniques are applicable to marmosets.
Cortical oscillatory activity is generally investigated
in alpha (8—13 Hz), beta (15—35 Hz) and gamma
(36—100 Hz) frequency bands (Crone et al. 1998a,b;
Aoki et al. 2001; Pfurtscheller et al. 2003; Miller et al.
2007). These frequencies have been related to movement
perception and execution, sensorimotor integration and
movement preparation, as well as cognitive processes
related to attention, learning and memory formation
(Basar et al. 2001; Engel & Fries, 2010; Cheyne, 2013).
In particular, beta (Spinks et al. 2008; Turella et al.
2016) and gamma power (Aoki et al. 1999, 2001; Miller
et al. 2007) are modulated by manual tasks. Beta LFP is
known to exhibit amplitude decrease during movement
in relatively broad sensorimotor areas, whereas gamma
LFP displays power increase during movement in relevant
focal brain areas in both macaques and humans (Crone
et al. 1998a,b; Pfurtscheller et al. 2003; Miller et al
2007). However, movement-related modulation within
these frequency bands has not yet been documented in
common marmosets.

Finally, this investigation allowed us to assess the
usefulness of micro-ECoG arrays purpose-built in
our laboratory. These electrodes were coated with
nanomaterials (Castagnola et al. 2013, 2014), reducing
impedance and increasing charge injection capacity, thus
making it possible to use them for both recording
and stimulation. Moreover, because of the thin dura of
lissencephalic marmoset brain (Bourne & Rosa, 2003;
Lui et al. 2014), the array was placed epidurally, which
dramatically reduces damage to cortical tissue, and
should guarantee stability of LFP signals over long-term
implantation (Yeager et al 2008; Slutzky et al. 2011;
Komatsu et al. 2015).

Methods

Ethical approval

The data presented here were recorded from two
purpose-bred adult marmoset monkeys (Callithrix
jacchus: MK1, male, 2.8 years, 305 g; MK2, male, 4.6 years,
352 g), housed at the RIKEN Brain Science Institute
(Wako, Japan). The animals were not food deprived, but in
order to maintain a high motivation for the task, daily food
was provided at the end of each testing session. Water was
always available ad libitum. All procedures were performed
in accordance with the Laboratory Animal Welfare Act
and The Guide for the Care and Use of Laboratory Animals
(National Institutes of Health, Bethesda, MD, USA) and
were approved by the Institutional Animal Research
Committee at RIKEN (IRB approval number H24-2-228).
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All adequate measures were taken to minimize pain or
discomfort.

Task

Recording sessions were conducted with the monkey
free to move in an experimental cage (surface,
28.5 cm x 28.5 cm; height, 29.0 cm). The cage included a
transparent acrylic door with an opening (width, 3.0 cm;
height, 7.0 cm; distance from the floor, 6.0 cm) that
allowed the monkey to reach for, grasp and pull an object
located at a distance of 3.0 cm (Fig. 1A). The object had to
be pulled by 1.0 cm from the starting point. After reaching
the target position, the monkey released the object and
received a food reward from the experimenter. The task
was performed with the arm contralateral to the recording
side. This was ensured by configuring the apparatus so that
the target was only reachable by the contralateral arm. The
training phase took about 2 months. Monkeys typically
performed a total of 10-30 successful grasping actions
during a standard recording session. Hand movements
were monitored throughout the experiments by a video
camera at 30 frames s~! (HDR-HC9, Sony Corporation,
Japan).

Obijects used

The objects presented to the monkeys were selected to
evoke different grip types according to their intrinsic
physical characteristics (Fig. 1B). The sphere (diameter,
25 mm) elicited a whole-hand grip involving the palm and
fingers. The stick oriented medio-laterally with respect to
the animal (ML-stick; diameter, 2 mm; length, 75 mm)
solicited more extensively the fingers and scarcely involved
the palm. The stick oriented antero-posteriorly with
respect to the animal (AP-stick; diameter, 2 mm; length,
75 mm) elicited a scissor grip that consisted of pinching
the object between two adjacent fingers.

Electrocorticogram (ECoG) arrays

LEPs were recorded over the sensorimotor cortex using
8 x 8 micro-ECoG arrays (Fig. 1C) purpose-built in
our laboratory. Contact diameter was 100 um and
inter-electrode distance was 900 pm in the medio-lateral
(ML) and 700 pm in the antero-posterior (AP) direction.
Electrodes were coated with a nanocomposite of poly-(3,4
ethylene-dioxythiophene) and carbon nanotubes, and
encapsulated in fibrin hydrogel (Castagnola et al. 2013,
2014). The use of nanomaterial coatings reduced electrode
impedance and increased charge injection capacity,
making it possible to use the electrode for both recording
and stimulation. In addition, the presence of multiple
perforations through the device ensured an effective

© 2017 The Authors. The Journal of Physiology published by John Wiley & Sons Ltd on behalf of The Physiological Society



7206

contact with the brain surface and the free flow of
cerebrospinal fluid.

Surgery

Anaesthesia was induced with intraperitoneal injec-
tion of medetomidine, midazolam and butorphanol
(0.05 mg kg™!, 0.5 mg kg! and 0.5 mg kg !,
respectively). Atropine (0.10 mg kg™~!) and prednisolone
(0.15mgkg ') were intramuscularly injected immediately
after the anaesthesia. During the surgery, anaesthesia was
maintained by inhalation of 1.5-2.5% isoflurane and
the oxygen saturation level was continuously monitored.
When intensive post-surgical care was required, the
animals were anaesthetized with isoflurane (0.5-3%) and
administrated with lidocaine (subcutaneous injection) for
analgesia.

For implantation of a sheet of ECoG electrode array,
a craniotomy of 9 x 5 mm (approx. coordinates relative
to bregma: 0-9 mm anterior and 2-7 mm lateral) was
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performed in the left hemisphere and the dura remained
intact. The ECoG sheet was implanted between the dura
and the skull. In non-human primates, the ECoG sheet
is usually implanted subdurally due to the thickness
of the dura mater which is likely to reduce signal
accuracy (Moran, 2010). However, in marmosets, the
dura is relatively thin compared to macaques and humans
(Bourne & Rosa, 2003; Lui et al. 2014), allowing high
quality recording through epidural implant (Komatsu
et al. 2015), similarly to experimental protocols in rats
(Yeager et al. 2008; Slutzky et al. 2011). The sheet was
laid onto the dura using a micromanipulator, and then a
piece of artificial dura mater was placed between the array
and the skull in order to maintain the electrode in place.
The piece of artificial dura was cut longer and narrower
than the electrode sheet, so that the anterior and post-
erior edges of the artificial dura could be placed under the
skull. Since the medial and lateral sides of the electrode
sheet were also under the skull, this procedure allowed
the electrode to be maintained in the correct position.

Reach Grasp
B
Sphere ML-stick AP-stick
(whole-hand grip) (finger grip) (scissor grip)

Figure 1. Experimental set-up
A, image sequence of the behavioural task.
Two epochs were identified: ‘reach’ (from

Ground electrode onset of hand movement until touch) and

(® = 0.5mm) ‘grasp’ (from touch until end of pulling
Recording electrode action). B, objects presented and hand
(@= 0'1_mm> postures used by the monkey to grasp them.
fﬁf’ﬂﬁfm) The animals were trained to reach for, grasp
14.0mm < N le »16.0mm and pull a sphere (whole-hand grip), a stick
oriented along the medio-lateral axis of the
0.15 T T T animal (ML-stick; finger grip) and a stick

: b W‘wwy-wwwmw

oriented along the antero-posterior axis of the
animal (AP-stick; scissor grip). C, LFPs were
recorded using 63-channel ECoG arrays. The
upper panels display an entire array (left) and a
zoom-in of the recording area (right). The

lower panel displays LFP activity recorded from

0.1s a single channel during a representative trial.
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The artificial dura also helped to avoid the dura getting
dry, and thus it could keep a better signal-to-noise ratio.
A head chamber made of Ultem (height, 15 mm; width,
18 mm; length, 16 mm), a polyetherimide polymer with
high dielectric strength, solvent resistance and mechanical
properties, was attached to the skull with stainless screws
and dental acrylic. The purpose of using the chamber
was to reduce risks of infection by isolating the tissues
within the chamber. Furthermore, in order to improve
stability of the recording, the inside of the chamber was
filled with silicone adhesive (Kwik-Cast, World Precision
Instruments, Sarasota, FL, USA) one week after surgery.
This time lapse was necessary to stabilize brain pressure,
which is generally considered unstable just after surgery.
Both brain swelling and shrinking might have led to,
respectively, under- and over-estimate the amount of
silicone adhesive.

Recording of local field potentials

The electrode array (63 recording channels) was connected
to a wireless headstage (Triangle Biosystems Inter-
national, Durham, NC, USA), and the signals were filtered
(1-1000 Hz) and digitized at 2713 Hz using the Digital
Lynx data acquisition system (Neuralynx, Bozeman, MT,
USA). Four electrodes (0.5 mm in the diameter) located at
each corner of the ECoG array acted as a linked reference.

Recording locations

In order to identify the cortical regions covered by the
array, histological mapping was performed at the end of
the experiment (Fig. 2A, B and E). Additionally, forelimb
motor representation (Fig. 2C and F) and somatosensory
representation (Fig. 2D and G) were estimated in the
course of the experiment.

Histological map. At the end of the experimental study,
the monkey was anaesthetized with ketamine (15 mgkg ')
and pentobarbital (75 mg kg™'). The animal was
perfused through the heart with phosphate-buffered
saline and paraformaldehyde. The postmortem brain was
measured and photographed. A block of cortex containing
the recorded areas was cut parasagittally and 50 pum
histological sections were mounted and Nissl stained.
Histological assessment allowed screening for cyto-
architectonic evidence of tissue damage, if any, associated
with the use of epidural ECoG arrays (Molina-Luna
et al. 2007). Next, the recording location of the entire
array over the cortex was reconstructed (Fig. 2B and E).
Histological borders were plotted as transition zones of
various width, reflecting sources of uncertainty such as
test—retest variability (assessed by repeated plotting by
the same observer on different days) and interference of
histology artifacts. Criteria described in previous studies
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(Krubitzer & Kaas, 1990; Burman et al. 2006, 2008,
2015) were used to distinguish between premotor, primary
motor and somatosensory areas. Briefly, Brodmann area
4, or M1, is characterized by the absence of layer IV and
the presence of large pyramidal cells in layer V (Fig. 2A).
Rostrally, area 6Dc of the premotor cortex is distinguished
by similar features to area 4, with smaller cells in layer V.
Area 6Dr has properties intermediate between area 6Dc
and granular areas (8b, 8aD and 8aV), comprising the
presence of a less defined layer IV compared to prefrontal
areas, and the absence of large pyramidal cells in layer V.
Area 6M is medial to area 6Dc and comprises an incipient
layer IV, as opposed to areas 4 and 6Dc, and large cells in
layer V. Area 6V, lateral to area 6Dc, is characterized by a
thin layer IV, large pyramidal neurons at the base of layer
IIT and large cells in layer V. Caudally to area 4, area 3a of
the somatosensory cortex comprises an identifiable layer
IV and large cells in layer V, although smaller than those
present in area 4. Area 3b has well-defined layers IV and
VI, and a thin layer V with small pyramidal cells. Area 1/2
is characterized by less densely packed layers IV and VI
than 3b.

Forelimb motor map. Forelimb motor maps (Fig. 2C
and F) were obtained as follows. First, approximately
1 week before the ECoG implantation surgery, two
multistranded stainless steel wires (AS634, Cooner Wire,
Chatsworth, CA, USA), spaced 5 mm apart, were
chronically implanted in the right extensor digitorum
communis muscle that extends the four medial digits of
the hand. During surgery, the animals were anaesthetized
following the same protocol as previously described for
ECoG array implantation. Electrical cortical stimulation
was applied through the ECoG electrodes while the
animals were awake. The ECoG channel used for
stimulation was randomly selected at each trial. The
stimulus train consisted of 5 biphasic pulses (250 us
cathodal and 250 us anodal) delivered at 1000 Hz,
and the maximum stimulator output was adjusted to
1.0 mA. Stimulus current was generated by an isolated
output source (SS-203]; Nihon Kohden, Tokyo, Japan) and
controlled from an analog output module (NI PCle-6321;
National Instruments). Electromyographic signals were
recorded, band-pass filtered (1-2000 Hz), and digitized
at 4800 Hz using a biosignal amplifier (g.USBamp; g.tec
medical engineering GmbH, Graz, Austria). The motor
threshold, an intensity eliciting muscle twitch with 50%
of probability, was estimated for each channel using
the maximum likelihood method (Awiszus, 2003). We
repeated cortical stimulation mapping four times within
one day, and the topographic profile of the motor
thresholds across channels, so-called forelimb motor map,
was defined. We then divided the histologically defined
area 4 into the forelimb region (4-f) and the non-forelimb
region (4-nf).

© 2017 The Authors. The Journal of Physiology published by John Wiley & Sons Ltd on behalf of The Physiological Society
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Figure 2. ECoG array location over the sensorimotor cortex

A, parasagittal sections illustrating the cytoarchitectural characteristics of premotor (6Dr, 6Dc, 6M), primary
motor (4) and somatosensory (3a, 3b) fields. B and E, reconstruction of array location over the cortex by
histological assessment for MK1 (B) and MK2 (E). The top black horizontal line represents the midline. Grey
lines indicate architectonic borders, reconstructed from sagittal sections. The thickness of the lines represents
zones of uncertainty. Blue circles refer to the location of each of the 63 recording electrodes. C and F, primary
motor forelimb representation for MK1 (C) and MK2 (F). Motor maps were composed of motor thresholds that
are intensities of epicortical stimulation eliciting electromyographic activity of forelimb muscle (extensor digitorum
communis). D and G, somatosensory forelimb representation for MK1 (D) and MK2 (G). Somatosensory maps
were composed of somatosensory-evoked potential (SEP) amplitudes elicited by median nerve stimulation.
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Forelimb somatosensory map. The forelimb soma-
tosensory map (Fig. 2D and G) was estimated on the
basis of somatosensory-evoked potentials (SEPs) obtained
by stimulation of the median nerve contralateral to
the recorded hemisphere. SEPs were induced by trans-
cutaneous electric stimulation applied via two electrodes
(diameter, 1 mm) placed over the median nerve of awake
animals. Stimuli consisting of square wave impulses of
2 ms with current intensity between 0.3 and 0.5 mA were
applied 200 times at a frequency of 2 Hz. SEP response size
was then calculated for each channel in order to obtain
a topographic profile of the forelimb somatosensory
representation. Histologically defined areas 3a and 3b were
divided into the forelimb regions (3a-f, 3b-f) and the
non-forelimb regions (3a-nf, 3b-nf) based on the result
of forelimb somatosensory map.

Data analysis

Analyses were performed only on data recorded during
successful trials, namely when the monkey completed
the reach, grasp and pull action without necessary
repositioning of the hand on the object. Combining
successful trials resulted in a pooled ensemble of =~ 85
trials per grip type for each monkey. Two task-related
epochs were defined (Fig. 1A): ‘reach’, from onset of hand
movement until object touch, and ‘grasp’, from touch until
end of pulling action. LFP data were cut around reach
and grasp epochs. The segments including large amplitude
artifacts, which are problematic for accurate independent
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component analysis (ICA) decomposition, as well as
saturated channels, were removed (Rogasch et al. 2014).
ICA was then applied to the concatenated data to remove
components reflecting residual artifacts. In particular,
independent components of which the weighted matrix
showed spatial discontinuity due to sudden amplitude
fluctuations in one channel (Mognon ef al. 2011) were
subtracted from the concatenated signals. In order to study
the activity evoked at each site for the different grip types
and epochs, the artifacts-free data that were segmented
into each epoch were analysed using fast Fourier trans-
form. Power spectra averaged across beta (16-35 Hz) and
gamma (75-100 Hz) bands were then estimated, because
beta LFP is known to exhibit amplitude decrease during
movement in a relatively broad sensorimotor area and
gamma LFP represents a spectrally broad power increase
that accompanies movement in relevant focal brain areas
(Crone et al. 1998a,b; Pfurtscheller et al. 2003; Miller
et al. 2007). In the present study, ERD/ERS showed
changes in power spectrum relative to the resting period,
expressed as percentages of the resting power. Statistical
significance of ERD/ERS was assessed by the bootstrap
method (P < 0.05; Fig. 3; Graimann et al. 2002). Finally,
to identify differences between conditions, we performed
three-way ANOVA with aligned rank transform, with
factors of ‘grip’” (whole-hand grip, finger grip, scissor grip),
‘epoch’ (reach, grasp) and ‘area’ (6Dr, 6Dc, 6M, 4-f, 4-nf,
3a-f, 3a-nf) followed by post hoc pairwise comparisons
using a Wilcoxon rank-sum test with a Bonferroni-Holm
correction (P < 0.05; Fig. 4).
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Figure 3. Event-related desynchronization (ERD) in beta band and event-related synchronization (ERS)
in gamma band over the sensorimotor cortex of MK1
Differences from the baseline resting power were statistically assessed by the bootstrap method (P < 0.05).
Statistically significant ERD/ERSs were represented as filled coloured circles, whereas the electrodes with
non-significant ERD/ERSs were represented as open circles. Blue denotes ERD and red denotes ERS, ranging
from —100% to 100%, respectively (scale presented in the lower right corner). Bad channels were excluded from
analysis and were not represented. The grey and striped zones correspond to primary motor and somatosensory

forelimb representations, respectively.
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In order to study the direction of information flow
between sensorimotor areas, we computed PSI which gives
a measure of the outflow/inflow resulting from inter-
actions between sites. PSI analysis is based on the slope
of the phase of the cross-spectrum between two sites. It
was shown to be insensitive to mixtures of independent
sources, to yield meaningful results even with non-linear
phase spectra, and to properly weight contributions from
different frequencies (Nolte et al. 2008). To perform this
analysis, all artifact-free data relative to a given grip
type and epoch were truncated to keep only the central
250 ms-bin. Trials were concatenated and PSI values in
the beta and gamma bands were calculated for all channel
pairs. PSI was tested for significance by a permutation
procedure that involved creating 1000 permuted versions
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of the LFP dataset, in which trial order was independently
permuted for each site (Fig. 5; Edgington, 1980; Brovelli
et al. 2004). This procedure had the effect of disrupting
task-related PSI and yielding PSI values due to chance. For
each pair of channels, PSI was retained as significant only
if greater than 95% of values computed on shuffled data,
thus corresponding to a one-tailed probability value of
P < 0.05. Next, to assess differences between conditions,
we performed three-way ANOVA with aligned rank trans-
form, with factors of ‘grip” (whole-hand grip, finger grip,
scissor grip), ‘epoch’ (reach, grasp) and ‘direction’ (6Dr
to 4-f, 4-f to 6Dr, 6Dc to 4-f, 4-f to 6Dc, 6M to 4-f,
4-f to 6M, 4-f to 3a-f, 3a-f to 4-f) followed by post hoc
pairwise comparisons using a Wilcoxon rank-sum test
with a Bonferroni-Holm correction (P < 0.05; Fig. 6).
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Figure 4. Area, epoch and grip-related normalized power in beta (A) and gamma (B) bands

Power value for each channel was normalized with respect to the baseline resting power. Channels were
then grouped according to cortical area, and data from both animals were pooled in a single ensemble.
Pairwise comparisons were performed using a Wilcoxon rank-sum test with a Bonferroni-Holm correction,
following three-way ANOVA with aligned rank transform (factors: cortical area, task-related epoch, grip type). All
measurements are expressed as mean 4 SEM. *P < 0.05, different from other grip type(s); °P < 0.05, different
from other epoch; *p < 0.05, different from premotor areas 6Dr, 6Dc and 6M; TP < 0.05, different from primary
motor areas 4-f and 4-nf; IP < 0.05, different from somatosensory area 3a-nf. R, reach; G, grasp. 6Dr, 6Dc, 6M, 4
and 3a refer to the corresponding Brodmann areas. -f, forelimb representation; -nf, non-forelimb representation.
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Table 1. Duration of reach and grasp epochs for whole-hand, finger and scissor grips, in MK1 and MK2

Action Grip 25th percentile (ms) 50th percentile (ms) 75th percentile (ms)
MK1 Reach Whole-hand 367 467 633
Finger 300 467 692
Scissor 400 500 800
Grasp Whole-hand 333 433 600
Finger 300 400 567
Scissor 400 517 633
MK2 Reach Whole-hand 333 400 500
Finger 300 400 533
Scissor 300 400 467
Grasp Whole-hand 433 533 600
Finger 333 467 567
Scissor 500 567 633
Results of 3 weeks. For each monkey and grip type, the 25th,
50th and 75th percentiles of reach and grasp duration are
Database

This study is based on a total of 514 recordings (i.e.
grasping trials) made during 39 experimental sessions
in two hemispheres of two common marmosets, MK1
and MK2. In MKI, a total of 266 successful recordings
were obtained in 27 experimental sessions over a period
of 5 weeks. In MK2, a total of 248 successful recordings
were obtained in 12 experimental sessions over a period

Beta (16-35 Hz)

presented in Table 1. Additional recordings were made to
measure baseline cortical activity in MK1 (450 recordings)
and MK2 (463 recordings).

Recording sites

The histological examination confirmed minimal
damage of the implanted areas, as revealed by their

Gamma(75-100 Hz)

Reach Grasp Reach Grasp
o R O Rl el .
S [ el eerRst eeRepe A LR L
: o R (TN I 54 ot A s
o [bgmmageny QIEE-E  HY Far: RHRd : % L
s BN npE 1 -
- - —_— ==
: NIREY
i 4 3a
o 11
g £ 3bJ'
o 1/2
z i
+— - T AR S PP — —wrh
| FEEREN “SR J"...l.; IS . T N
o H=: ma Hr' 1L & da F;.;L..'J..}. .A._.._i__l __?‘_._L._. ] = o 0.1 g
) 4 e I | Bl HE T =
2 3 B ki !-1": TR i .:‘ 4 3 5
A IS E .."-t-:%::L" L2 E {_1[ !‘.:‘lLJ. 0.05 8
e e RN
i Lk :-- :: { : : 1 P . - 0 Inflow

Figure 5. PSI values obtained in beta and gamma bands for MK1
Each coloured point represents the outflow from channel ‘i’ designated by the y-coordinate, to channel ‘j’
designated by the x-coordinate. Statistically significant values were represented as coloured points, whereas
non-significant values were left white. For each pair of channels, PSI was retained as significant only if greater than
95% of values computed on shuffled data (1000 shuffling times), thus corresponding to a one-tailed probability
value of P < 0.05. In each plot, lines delimit the channels located within different cortical areas. 6V, 6Dr, 6Dc, 6M,
4, 3a, 3b and 1/2 refer to the corresponding Brodmann areas. Shaded zones of area 4, 3a and 3b correspond to
the forelimb representation.
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cytoarchitectonic features (Fig. 2A). Together with the
absence of motor deficit in the behavioural task, this
observation demonstrates the safety of the experimental
procedure (see also Molina-Luna ef al. 2007). The
histological assessment further revealed that, in MK1,
recordings were mainly made from premotor (area 6V,
6Dr, 6Dc, 6M), M1 (area 4) and somatosensory (area
3a, 3b, 1/2) cortex in the left hemisphere (Fig. 2B). In
MK2, recordings were made from prefrontal (area 8),
premotor (area 6Dr, 6Dc, 6M), primary motor (area 4)
and somatosensory (area 3a) cortex in the left hemisphere
(Fig. 2E). For both monkeys, a subset of electrodes was
located over the forelimb representation of M1 (MKI1,
7; MK2, 6; Fig. 2C and F) and somatosensory (MK1, 6;
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MK2, 2; Fig. 2D and G) cortex. Regions of area 4, 3a
and 3b corresponding to the forelimb representation are
respectively designated as 4-f, 3a-f and 3b-f.

Modulation of beta and gamma power during
the task

In order to assess task-related power modulations in the
sensorimotor cortex, ERD/ERS was calculated for each
channel in the beta (16-35 Hz) and gamma (75-100 Hz)
bands. For both animals, beta ERD and gamma ERS were
observed over most recorded areas, for all three grip types,
during the reach and grasp epochs (MKI1, Fig. 3). This
finding confirmed the reliability of the recorded signal
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Figure 6. Epoch and grip-related outflow among the recorded areas, in beta (A) and gamma (B) bands
Pairwise comparisons were performed using a Wilcoxon rank-sum test with a Bonferroni-Holm correction, following
three-way ANOVA with aligned rank transform (factors: direction of outflow, task-related epoch, grip type). All
measurements are expressed as mean 4 SEM. *P < 0.05, different from other grip type(s); °P < 0.05, different
from other epoch; 2P < 0.05, different from outflow in opposite direction; #P < 0.05, different from outflow from
premotor areas 6Dr, 6Dc, 6M to primary motor cortex 4-f. R, reach; G, grasp. 6Dr, 6Dc, 6M, 4 and 3a refer to the
corresponding Brodmann areas. -f, forelimb representation; -nf, non-forelimb representation.
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which was consistent with well-known movement-related
power modulations (Crone et al. 1998a,b; Pfurtscheller
et al. 2003; Miller et al. 2007).

Three-way ANOVA with aligned rank transform was
performed on data from both animals and was pooled in a
single ensemble. These analyses yielded several significant
effects and pairwise differences, as described below.

Beta band (Fig. 4A). The ANOVA performed on
normalized beta power revealed significant main effects
ofgrlp (F2,44515 = 555, P< 0001), epoch (F1)44515 = 170,
P < 0.001) and area (Fs4455 = 148.4, P < 0.001).
In addition, significant interactions grip X area
(F12)44515 = 25, P < 001), epoch X area (F6)44515 = 29,
P < 0.01) and grip x epoch x area (Fipas15 = 2.1,
P < 0.05) were detected. When comparing grip types,
beta ERD was on average stronger for scissor grip
(-32.1 £ 0.3%) and whole-hand grip (—32.1 £ 0.3%)
compared to finger grip (—29.0 & 0.3%). Consistently, a
number of post hoc comparisons showed stronger ERD
for scissor grip (area 6Dc, grasp epoch; area 4-f, reach
epoch; area 4-nf, reach and grasp epochs; area 3a-nf,
reach epoch) and whole-hand grip (area 6M, reach and
grasp epochs; area 4-f, reach epoch; area 4-nf, reach
epoch) compared to finger grip (P < 0.05). This finding
is consistent with previous research in macaques showing
grip-related differences in beta power during stable hold
(Spinks et al. 2008).

When comparing cortical areas, somatosensory area
3a-f showed stronger ERD than premotor and primary
motor areas (finger and scissor grips, reach epoch;
whole-hand, finger and scissor grips, grasp epoch;
P < 0.05). Except for this effect, beta ERD was similar
across sensorimotor regions, in agreement with the
literature indicating a diffuse distribution over cortical
regions (Szurhaj & Derambure, 2006).

Gamma band (Fig. 4B). The ANOVA performed on
normalized gamma power revealed significant main
effects of ‘grip’ (Foussis = 11.0, P < 0.001), ‘epoch’
(F1,44515 =217.2, P < 0001) and ‘area’ (F6’44515 = 755.9,
P < 0.001). In addition, significant interactions
grip x epoch (F, 44515 = 13.9, P < 0.001) and epoch X area
(Fsa4515 = 28.3, P < 0.001) were detected. Normalized
gamma ERS was on average highest for finger grip
(72.7 £ 0.9%), intermediate for scissor grip (70.4 £ 0.8%)
and lowest for whole-hand grip (67.7 £ 0.8%). However,
post hoc comparisons showed few grip-related differences,
which consisted of stronger ERS for finger grip (area 6M,
grasp epoch) and scissor grip (area 4-f, grasp epoch)
compared to whole-hand grip (P < 0.05). By contrast,
several epoch differences were detected, with stronger
gamma ERS during grasp than reach epoch (area 6M,
area 4-f, area 4-nf: finger and scissor grips; area 3a-f:
whole-hand, finger and scissor grips; P < 0.05). It is
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important to note that this pattern, which reflects an
adjustment in cortical activity throughout the task, was
more consistently observed for finger and scissor grips
than whole-hand grip. Overall, these results confirm
the idea that gamma oscillations encode movement
parameters (Schalk et al. 2007; Mollazadeh et al. 2011).

Finally, some area differences emerged, as illustrated
by stronger ERS for area 4-f (reach and grasp epochs)
and 3a-f (grasp epoch) than 6Dr, 6Dc, 6M and 3a-nf
(P < 0.05). In agreement with previous work (Szurhaj
& Derambure, 2006; Miller et al. 2007), our results suggest
that strong gamma ERS was somewhat spatially specific
and concentrated in primary sensorimotor forelimb
representation.

Direction and strength of outflow depend on grip
type and epoch

In order to study the effective connectivity between cortical
areas, PSI was computed for all channel pairs. Figure 5
illustrates the connectivity patterns obtained for MKI1
in the different experimental conditions, in beta and
gamma bands. Only significant values, as determined by
the permutation method (one-tailed, P < 0.05), were
displayed. Information flow occurred among all recorded
areas and appeared to vary depending on grip type and
epoch. Different patterns seemed to arise in beta and
gamma bands, in agreement with the idea that these two
frequency ranges cover different functions.

To statistically determine whether connectivity differed
across grip types, epochs and directions of outflow, we
performed three-way ANOVA with aligned rank trans-
form, followed by pairwise comparisons using a Wilcoxon
rank-sum test with a Bonferroni-Holm correction (Fig. 6).
For this analysis, the data from both animals were pooled
in a single ensemble. Significant pairwise differences are
described below.

Beta band (Fig. 6A4). The ANOVA performed on beta
outflow revealed significant main effects of ‘grip’
(F2,3648 = 694, P < 0001), ‘epoch’ (F1,3643 = 1959,
P < 0.001) and ‘direction’ (F;3¢45 = 80.3, P < 0.001).
Moreover, significant interactions grip X epoch
(Fo3648 = 269, P < 0.001), grip x direction
(Fis364s = 16.6, P < 0.001), epoch x direction
(F7 3648 = 44.6, P < 0.001) and grip X epoch x direction
(Fi43648 = 18.6, P < 0.001) were found.

Pairwise comparisons showed minor grip-related
differences. Namely, finger grip triggered stronger
outflow than whole-hand grip (from 4-f to 6Dc; reach
epoch). Scissor grip also triggered stronger outflow than
whole-hand grip (from 4-f to 6Dr and 6Dc; reach epoch;
P < 0.05). These results suggest that strong beta outflow
from M1 to premotor cortex is crucial to hand preshaping
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for small objects (finger and scissor grips), requiring fine
adjustments of finger kinematics and forces.

Furthermore, regarding scissor grip, epoch differences
emerged that consisted of stronger outflow during reach
than grasp (from 4-fto 6Dr and 6Dc) and stronger outflow
during grasp than reach (from 6Dr to 4-f; P < 0.05). This
variation shows that, contrary to other grip types, scissor
grip requires significant connectivity adjustments in beta
band during the task.

Finally, comparisons between directions of outflow
revealed that, for finger and scissor grips, during reach,
outflow from area 4-f to 6Dc outweighed the opposite
pathway (P < 0.05). For scissor grip, this was also verified
when considering outflow from 4-f to 6Dr. These findings
confirm the previous observation that hand preshaping
for small objects requires a strong contribution of M1.

Altogether, our findings are consistent with evidence
in other species showing a modulation of premotor—-M1
interactions during different types of grasp (see Prabhu
et al. 2009 for data for macaque; Davare et al. 2008 for
human data). However, to our knowledge, this is the
first study to report changes in the dominant direction
of inter-area connectivity, depending on grip type and
task epoch.

Regarding somatosensory—-M1 connectivity, outflow
from 3a-f to 4-f was found to be stronger than the
opposite pathway, for whole-hand grip (reach epoch)
and finger grip (grasp epochs), whereas it did not reach
significance for scissor grip. Besides, for all grip types
during reach, outflow from somatosensory area 3a-f
exceeded outflow from premotor areas 6Dr, 6Dc¢ and 6M
to primary motor area 4-f. For finger grip, this pattern
was also verified during grasp. Overall, these results are
consistent with the crucial role of tactile/proprioceptive
information during grasping (see also Brovelli et al. 2004
for data for macaques; Filimon, 2010; Babiloni et al.
2016 for human data). Our results further confirm pre-
vious experiments in macaques showing strong directed
coherence from primary somatosensory cortex to M1 in
beta band (Witham et al. 2010).

Gamma band (Fig. 6B). The ANOVA performed on
gamma outflow revealed significant main effects of ‘grip’
(F2,3648 = 216, P < 0001), ‘epoch’ (F1,3648 = 859,
P < 0.001) and ‘direction’ (F; 3648 = 19.7, P < 0.001). Also,
significant interactions grip x direction (F4363 = 8.2,
P < 0.001), epoch x direction (F; 3645 = 5.7, P < 0.001)
and grip x epoch x direction (Fj4 3643 = 14.7, P < 0.001)
were found.

Pairwise comparisons showed remarkable grip-related
differences in premotor—primary motor connectivity, in
particular during the grasp epoch. Whole-hand grip
triggered stronger outflow than finger grip (from 6Dr, 6Dc
and 6M to 4-f; P < 0.05) and scissor grip (from 6Dr and
6Dc to 4-f). Conversely, finger and scissor grips elicited
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stronger outflow than whole-hand grip (from 4-f to 6Dr
and 6Dc). These results, in agreement with those obtained
in beta band, and consistent with previous work in the
literature (Davare et al. 2008; Prabhu et al. 2009), indicate
that the gamma oscillatory network contains clearly
distinct premotor—primary motor networks associated
with whole-hand grip vs. finger and scissor grips.

Minor epoch differences emerged for whole-hand grip
only, that consisted of stronger outflow during grasp than
reach (from 6Dc to 4-f) and stronger outflow during reach
than grasp (from 4-f to 6Dc).

Finally, comparisons between directions of outflow
unveiled some distinctions, especially during grasp, that
generally confirmed the previously described effects. In
particular, for whole-hand grip, outflow from premotor
areas 6Dr and 6Dc to primary motor area 4-f exceeded
outflow in the opposite direction (P < 0.05). By contrast,
for finger and scissor grips, outflow from 4-f to 6Dc
outweighed the opposite pathway. For finger grip, this
was also verified from 4-f to 6Dr and 4-f to 6M.

Altogether, these results confirm those obtained in
beta band, albeit with more significant grip-related
differences. In other words, in gamma frequencies, the
dominant direction of inter-area connectivity appeared
to vary depending on grip type. Grasping small objects
(finger and scissor grips) was associated with stronger
outflow from primary motor to premotor cortex. To our
knowledge, this is the first study to report these results in
common marmosets.

Besides premotor—primary motor interactions,
additional findings emerged when examining primary
motor—somatosensory connectivity. Outflow from 4-f to
3a-f exceeded outflow from 3a-f to 4-f, for whole-hand
grip during grasp epoch and for finger grip during
reach and grasp epochs. Further, finger grip induced
stronger outflow than scissor grip, from 4-f to 3a-f during
grasp epoch. Conversely, scissor grip elicited stronger
outflow than finger and whole-hand grips, from 3a-f
to 4-f during grasp epoch. These results suggest that
whole-hand and finger grips rest on different primary
motor—somatosensory interactions compared to the
scissor grip, when considering gamma oscillations.

Discussion

In this experimental study, we examined the epicortical
activity in sensorimotor cortices of two common
marmosets performing whole-hand, finger and scissor
grips. Reach (from onset of hand movement until touch)
and grasp (from touch until end of pull) epochs were
distinguished in order to identify possible adaptation of
the cortical signal throughout the task. The aim of this
investigation was to identify patterns of cortical activity
and effective connectivity characterizing different grip
types in common marmosets. Our results showed that beta
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power was clearly modulated by grip type, whereas gamma
power was more distinctly modulated by task epoch,
reflecting adjustments in cortical activity during the
task, in particular for finger and scissor grips. Moreover,
different strengths of outflow/inflow between cortical
regions were detected depending on grip type and epoch.
The implications of these results are discussed below.

Common marmosets display classical
movement-related power modulations

We found ERD in beta band (16-35 Hz) and ERS in
gamma band (75-100 Hz) for most recording sites over
the sensorimotor cortex of both monkeys. Beta ERD
was rather evenly distributed over premotor, primary
motor and somatosensory cortex, albeit somatosensory
area 3a-f showed stronger ERD than motor areas. Gamma
oscillations displayed stronger ERS over primary motor
and somatosensory forelimb representations, compared
to premotor areas. These distributions in beta and gamma
bands appear consistent with previous work in macaques
(Sanes & Donoghue, 1993; Kilavik ef al. 2013) and humans
(Crone et al. 1998a,b; Aoki et al. 2001; Pfurtscheller et al.
2003; Miller et al. 2007; Darvas et al. 2010) and confirm
the reliability of the present experimental procedure.

Local synchrony between neural populations is task
dependent

In the literature, low and high frequency task-related
changes in spectral power have been attributed to
alterations in synchrony between neural populations
around recording sites (Aoki et al. 1999; Pfurtscheller et al.
2003; Canolty et al. 2006; Miller ef al. 2009). Our results
demonstrated that beta and gamma power over sensori-
motor cortex respectively displayed substantial grip- and
epoch-related modulations. In particular, stronger beta
ERD was detected for scissor and whole-hand grips
compared to finger grip, in several premotor and primary
motor regions. With regard to gamma band, stronger
ERS was found during grasp than reach epoch in several
sensorimotor areas. These epoch differences were more
consistently observed for finger and scissor grips —
associated with small objects — than whole-hand grip.
There is evidence that substantial information on
grasping features, including kinematics and forces, is
contained in LFPs (Pistohl et al. 2012; Milekovic et al.
2015). However, intermediate frequencies (10—-45 Hz) are
known to provide smaller classification and decoding
accuracy than low (<7 Hz) and high (75-250 Hz)
frequencies (Schalk et al. 2007; Mollazadeh et al. 2008,
2011; Kubanek et al. 2009; Pistohl et al. 2012; Milekovic
et al. 2015). In fact, the issue of beta power modulation
by movement parameters is still controversial (Kilavik
et al. 2013). In humans, no difference was found between
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precision and side grips in terms of beta ERD (Zaepffel
et al. 2013) although, by contrast, reaching and grasping
tasks induced distinct, action-specific, modulation
(Turella et al. 2016). Previous lack of grip-specific effects
might in part be due to experimental protocols including
complex hand configurations associated with independent
finger control, and excluding more simple hand post-
ures such as hook or power grips (Zaepffel et al. 2013).
Indeed, in macaques, Spinks et al. (2008) demonstrated
that complex grips involving the thumb (e.g. precision
grip) were associated with lower beta power, whereas
simpler grips involving flexion of the four medial fingers
(e.g. hook grip) were associated with higher beta power,
as obtained from intracortical LFPs in ventral premotor
and primary motor cortex. This selectivity was essentially
evidenced during static hold rather than actual movement
(Spinks et al. 2008). During static postural maintenance,
beta rhythm in the motor cortex synchronizes with motor
unit activity, and may partly drive the tonic muscle
contraction, although conversely, muscle reafference could
drive cortical activity (Baker et al. 1997; Kilavik et al.
2013). In the present study, we showed that marmosets
display grip selectivity of beta ERD in premotor cortex and
M1. Direct comparison with a previous work in macaques
(Spinks et al. 2008) is rendered difficult by the difference in
tested grips, due to differences in the anatomy and function
of the thumb among species (Napier, 1961; Torigoe, 1985;
Krubitzer & Disbrow, 2008). Notably, we detected this
grip-related variation in beta ERD during actual forelimb
movement, as opposed to static hold in macaques (Spinks
et al. 2008), suggesting that additional mechanisms might
be recruited.

Considering gamma oscillations, previous investigation
in humans described power modulation during different
hand motor control tasks such as target tracking, threading
and sequential pinches (Aoki ef al. 1999, 2001; Miller
et al. 2007). In the present work, minor differences arose
related to grip type in marmosets. However, we showed
a number of differences between epochs in sensori-
motor cortex, for a subset of grips — namely finger and
scissor grips — associated with small objects. To our
knowledge, no identical results have been reported in
macaques or humans, although it is well-known that
gamma oscillations encode movement kinematics (Schalk
et al. 2007; Mollazadeh et al. 2008, 2011; Kubanek et al.
2009; Pistohl et al. 2012; Milekovic et al. 2015) that varies
across task epochs (Roy et al. 2000; Castiello, 2005; Takemi
et al. 2014). Our results are compatible with single-unit
studies pointing out that populations of neurons show
different patterns of activity depending on grip type and
task epoch (Umilta et al. 2007). In fact, epoch-related
variations in gamma power might reflect a mechanism
for movement adaptation during more challenging tasks,
which require precise monitoring of hand and digit
movements, in common marmosets.
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Strength of connectivity between cortical areas
differs across grip types and epochs

In order to better understand the interactions between
cortical regions, we estimated the direction of information
flow by using the PSI (Nolte et al. 2008). Our results
showed that whole-hand grip relies on stronger inter-
action from premotor cortex to M1, whereas finger and
scissor grips rely on stronger interaction from M1 to
premotor cortex. These results were mainly present in
gamma band during the grasp epoch. Moreover, minor
differences between epochs were detected, in beta band
for scissor grip and gamma band for whole-hand grip.
This result illustrated a small degree of adjustment in
premotor—primary motor connectivity throughout the
prehensile task.

These modulations of premotor—primary motor
connectivity in common marmosets are in agreement
with previous findings in macaques (Prabhu et al. 2009)
and humans (Davare et al. 2008, 2009), which attest
that cortical interactions are selectively adjusted during
specific types of grasp. Earlier studies demonstrated that,
both in macaques and humans, premotor cortex can
modulate corticospinal outputs through M1 in a muscle-
and grasp-specific manner (Davare et al. 2009; Prabhu
et al. 2009). In humans, transcranial magnetic stimulation
experiments further showed that ventral premotor cortex
exerts a net inhibitory influence on M1 at rest, whereas this
inhibition disappears during power grip, and is converted
into a net facilitation during precision grip (Davare et al.
2008).

What could explain PSI differences depending on grip
type in marmosets? We should consider that PSI is a
requisite of causality from one region to the other, but
not sufficient evidence of the direct influence. This means
a causal influence from M1 to premotor cortex via inter-
mediate regions, such as cerebellar nuclei, is shown as a
significant PSI from M1 to premotor cortex. By taking
this limitation of PSI into consideration, the grip-related
differences in connectivity evidenced here can be inter-
preted in terms of feedforward and feedback controllers
(Shadmehr & Krakauer, 2008; Scott, 2012). Literature
from the field of computational neuroscience suggests
that M1, known as a feedback controller, sends a copy of
motor command to cerebellum, known as the feedforward
controller. The feedforward controller uses the copy to pre-
dict the sensory consequences of the command. In order
to adjust the current motor command generated in M1,
this prediction is compared with the sensory feedback
resulting from actual movements in the dorsal premotor
and parietal cortex suggested as state estimators. Here, we
showed that for finger and scissor grips, information flux,
resulting from bidirectional premotor—primary motor
interactions, was predominantly directed from M1 to pre-
motor cortex. This result could potentially illustrate a
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major role of the motor command copies and the sensory
prediction to optimize the movement when grasping small
objects (Wolpert, 1997; Chersi et al. 2011; Hill et al. 2011).
Besides, this result enhances the crucial role of M1 for
fine adjustment of kinematics and forces directed to small
objects, as has largely been documented (Kakei et al. 1999;
Saleh et al. 2010; Pistohl et al. 2012).

Finally, considering primary motor—somatosensory
interactions, future investigations, with more detailed
study of somatosensory forelimb representation, would
be desirable to strengthen the validity of our findings.
One noticeable result consisted of major beta outflow
from somatosensory to motor cortex, and major gamma
outflow from motor to somatosensory cortex. This
finding, in line with previous investigations, suggests that
a beta oscillatory network is involved in the transfer of
sensory signals from somatosensory cortex to M1 (see
also, in macaques, Brochier et al. 1999; Brovelli ef al. 2004;
Gardner et al. 2007; Witham et al. 2010), whereas gamma
oscillations could intervene in the prediction of sensory
consequences of actions (Desmurget & Grafton, 2000;
Shadmehr et al. 2010).

Beta and gamma oscillations might represent
different physiological phenomena

In agreement with the literature in other primates, our
findings support the notion that, in common marmosets,
beta and gamma oscillatory networks cover different
physiological phenomena (Miller ef al. 2007). Analysis of
beta ERD showed a number of grip-related differences,
whereas the majority of differences in gamma ERS were
epoch related, albeit these were more consistently observed
onlyin a subset of grips. With regard to premotor—primary
motor connectivity, grip-related differences were mostly
detected in gamma band during the grasp epoch (i.e.
from the object touch until the end of pull). These
distinctions between the two frequency bands are in
line with a modelling work that suggests that beta and
gamma oscillations may play different functional roles
in neural communication and processing (Kopell et al.
2000). Indeed, low frequency changes were postulated to
originate in broad cortical areas, collectively regulated
by central structures (e.g. thalamus and basal ganglia;
Cassidy et al. 2002; Paradiso et al. 2004; Foffani et al.
2005; Miller et al. 2007). In these areas, distributed
populations of neurons are active to different extents
for different types of grasp, resulting in different over-
all discharge (Umilta et al. 2007) and LFP power (Spinks
et al. 2008). By contrast, high frequency changes were
suggested to reflect the integrated activity of local neuro-
nal populations immediately underneath the electro-
des (Hoogenboom et al. 2006; Womelsdorf et al. 2006;
Miller et al. 2007). Therefore, we can speculate that high
frequencies could more accurately mediate interactions
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between localized neuronal populations, resulting in more
substantial task-specific connectivity.

Usefulness of our experimental protocol for future
investigations

The final aspects to highlight from this study are its
methodological advantages. The surgical procedure was
minimally invasive. The ECoG sheets were implanted
epidurally with minimal damage to the brain tissue.
Further, the arrays, purpose-built in our laboratory
(Castagnola et al. 2013, 2014), allowed both recording
and stimulation over an extended time period (chronic
implant; recording period: MK1, 5 weeks, MK2, 3 weeks).
Applying this minimally invasive technology to the
marmoset, which has lissencephalic brain and thin dura
and yet presents typical primate characteristics (Rosa &
Tweedale, 2005; Newman et al. 2009; Kelava et al. 2012;
Burman et al. 2014; Bakola et al. 2015), could provide
an efficient future application for the research field,
particularly in terms of long-term experimentation such as
learning/developmental plasticity, ageing-related changes,
and mental disorders (Johnson et al. 1996; Pryce et al.
2004, 2011). Note that, although unit activities directly
measured from neurons provide temporally and spatially
precise information, both high-gamma and low-beta
oscillations in LFPs are known to be correlated with neural
firing rate (Ray ef al. 2008; Spinks ef al. 2008), suggesting
that LFPs are fairly well able to illustrate neuronal activities
in the brain.

In addition, marmosets present several advantages as
a primate model. They are especially easy to raise and
handle in laboratory conditions due to their small body
size, and are characterized by fast sexual maturation (Lu
et al. 2001; Okano et al. 2012; Mitchell et al. 2014). Also,
the ease of use of marmosets for molecular genetic studies
(Sequencing & Consortium, 2014) would further expand
the possibilities of the research field, for instance, to
investigate the molecular basis of specific neural circuitries
involved in certain behaviours (e.g. Iriki et al. 1996;
Ishibashi et al. 2002; Hihara et al. 2006; Quallo et al. 2009).

Finally, from a phylogenetic perspective, by comparing
cortical mechanisms associated with different hand
morphologies of marmosets, macaques and humans, our
protocol could provide opportunities to investigate the
evolutionary significance of hand control in primate
strains (Lui & Rosa, 2014).

Concluding remarks

Our results support the idea that, in common
marmosets, grip adaptation correlates to adjustments of
cortical activity and physiologically inferred connectivity.
Therefore, despite striking differences in manual dexterity,
marmosets seemingly rely on similar mechanisms to those
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previously identified in macaques and humans. This
conservation of fundamental control principles across
primates suggests that marmosets could represent a good
model to investigate primate brain mechanisms. However,
species differences in prehensile abilities, as illustrated
by the lack of an opposable thumb and reduced grip
diversity in marmosets (Napier, 1961; Torigoe, 1985;
Krubitzer & Disbrow, 2008), could have led researchers to
exclude the possibility of similar mechanisms. Since direct
cross-species comparisons, with identical techniques and
protocols, are rare (Peeters et al. 2009; Mars et al. 2011),
neurophysiological interpretations of species differences
should be taken with caution. One possibility is that
more dexterous primates are characterized by stronger
grip-related selectivity than less dexterous ones, when
considering other signal components than those tested
here, for example single-unit firing rates (Murata et al.
1997; Raos et al. 2006; Spinks et al. 2008) or decoding of
LFP signal (Schalk et al. 2007; Zhuang et al. 2010; Flint
et al. 2012; Pistohl et al. 2012). Moreover, in macaques
and humans, evidence suggests that grip type modulates
cortical interactions in terms of strength of connectivity
(Davare et al. 2008, 2009) or sites within a given area
(Murata et al. 2000; Umilta et al. 2007; Bonini et al. 2012),
whereas there are no distinct reports of changes in the
direction of inter-area information flux. Further research
is necessary to better characterize the cortical grasping
circuits that evolved along with prehensile specializations
in primates. In future studies, more elaborate tasks in
terms of motor/cognitive complexity would allow more
in-depth examination of cortical functions, such as the
contribution of premotor cortex and M1 with regard to
goal-directedness.
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