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The rapid expansion of microbiota research has significantly advanced our understanding of
the complex interactions between gut microbiota and cardiovascular, metabolic, and renal
system regulation. Low-grade chronic inflammation has long been implicated as one of the
key mechanisms underlying cardiometabolic disease risk and progression, even before the
insights provided by gut microbiota research in the past decade. Microbial translocation into
the bloodstream can occur via different routes, including through the oral and/or intestinal
mucosa, and may contribute to chronic inflammation in cardiometabolic disease. Among
several gut-derived products identifiable in the systemic circulation, bacterial endotoxins
and metabolites have been extensively studied, however recent advances in microbial DNA
sequencing have further allowed us to identify highly diverse communities of
microorganisms in the bloodstream from an -omics standpoint, which is termed
“circulating microbiota.” While detecting microorganisms in the bloodstream was
historically considered as an indication of infection, evidence on the circulating microbiota
is continually accumulating in various patient populations without clinical signs of infection
and even in otherwise healthy individuals. Moreover, both quantitative and compositional
alterations of the circulating microbiota have recently been implicated in the pathogenesis of
chronic inflammatory conditions, potentially through their immunostimulatory, atherogenic,
and cardiotoxic properties. In this mini review, we aim to provide recent evidence on the
characteristics and roles of circulating microbiota in several cardiometabolic diseases, such
as type 2 diabetes, cardiovascular disease, and chronic kidney disease, with highlights of
our emerging findings on circulating microbiota in patients with end-stage kidney disease
undergoing hemodialysis.
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INTRODUCTION

Cardiometabolic disease, including type 2 diabetes, chronic
kidney disease (CKD), and cardiovascular disease is a
significant global healthcare problem with growing prevalence
and substantial social and economic burden (Aron-Wisnewsky
and Clément, 2016; Ralston and Nugent, 2019). The number of
people with cardiovascular disease, type 2 diabetes, and CKD
worldwide is reported to be 523 million (Roth et al., 2020), 422
million (Collaboration, 2016), and 847 million (Jager et al.,
2019), respectively. In 2010, the global financial burden of
cardiometabolic disease was estimated to be US$6.3 trillion,
which is projected to double by 2030 (Arena et al., 2015).

Cardiometabolic disease stems from various factors,
including genetic, behavioral and environmental factors
(Ralston and Nugent, 2019). Low-grade chronic inflammation
represents a key pathophysiological mechanism shared in
common between the various cardiometabolic disease entities
(Donath et al., 2019). A variety of mechanisms have been
suggested to contribute to the perpetuation of inflammatory
responses in cardiometabolic disease, including release of
adipokines from obese visceral adipose tissue, renin-
angiotensin-aldosterone system (RAAS) activation, cellular
senescence, and accumulation of toxic metabolites (Carrero
and Stenvinkel, 2010; Oishi and Manabe, 2020; Sumida et al.,
2020). Over the past few decades, substantial efforts have been
made to alleviate the chronic inflammation in cardiometabolic
disease mainly by targeting these etiological factors, which have
not been very successful; and the considerable disease burden
resulting from chronic inflammation remains to be resolved.
Therefore, an urgent need exists to identify novel modifiable risk
factors that could help develop effective therapeutic approaches
for premature morbidity and mortality in patients with
cardiometabolic disease.

With recent advances in ‘-omics ’ technologies ,
bioinformatics, and modelling approaches, a growing body of
evidence suggests that microbial communities (i.e., microbiota)
along the digestive tract may contribute to chronic low-grade
inflammation in cardiometabolic disease (Aron-Wisnewsky and
Clément, 2016; Warmbrunn et al., 2020), which in turn suggests
that the microbiota could serve as a novel therapeutic target
against cardiometabolic disease (Fernández-Ruiz, 2021; Sumida
et al., 2021a). In a recent prospective study examining the long-
term effects of a Mediterranean-style diet on the gut microbiome
composition and on cardiometabolic disease risk (i.e., glucose
homeostasis, lipid metabolism and inflammation), a healthy
Mediterranean-style dietary pattern modified the risk of
cardiometabolic disease in part through alterations of the gut
microbiota (Wang et al., 2021). Given the enormous microbial
load (i.e., >100 trillion individual microorganisms) in the human
gastrointestinal tract and their substantial modulation of most
metabolic activities (Whitman et al., 1998), it is not surprising
that many diseases, including cardiometabolic disease, are
related to altered gut microbiota (a.k.a. gut dysbiosis) and
resultant changes in gut-derived metabolites. In contrast, the
contributions of extraintestinal microbial communities
circulating in the blood, which is also known as “circulating
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 2
microbiota”, have been scarcely documented, let alone explored
for their potential pathophysiological role in cardiometabolic
disease. However, evidence that supports the roles of circulating
microbiota in the onset and progression of cardiometabolic
disease is steadily accumulating and receiving increasing
attention. In this mini review, we summarize the current
understanding of the circulating microbiota in shaping the
development and progression of cardiometabolic disease with
clinical and research implications from this rapidly evolving
field, and highlight some of the emerging findings on the
association of circulating microbiota with risk of cardiovascular
disease in patients with end-stage kidney disease (ESKD)
on hemodialysis.
CIRCULATING MICROBIOTA

While the colonization of microbes at specific body sites that are
exposed to the external environment (e.g., the oral cavity and the
gut) is both well-recognized and widely accepted (Markova, 2017),
the concept of presence of microbial communities in an otherwise
“sterile” milieu, such as the bloodstream, is relatively new.
Traditionally, the detection of microbes in the bloodstream
carried out by culturing specific microbes is interpreted as an
indication of infection. However, the concept of the existence of
classically “sterile”milieu in the blood of healthy humans has been
challenged by mounting evidence showing the existence of blood
microbes in otherwise healthy individuals (McLaughlin et al.,
2002; Damgaard et al., 2015; Paisse et al., 2016). Following the
seminal study by Nikkari et al. in 2001 that reported the detection
of bacterial DNA in blood specimens from healthy individuals
(Nikkari et al., 2001), several studies have reported the presence of
blood microbes among both healthy blood donors (McLaughlin
et al., 2002; Damgaard et al., 2015; Paisse et al., 2016) and various
patient populations without overt infections (Rajendhran et al.,
2013; Sato et al., 2014; Lelouvier et al., 2016), primarily by
amplification and sequencing of the bacterial 16S ribosomal
RNA (rRNA) gene. The application of archaeal 16S rRNA and
fungal Internal Transcribed Spacer (ITS) rRNA sequencing and
whole-genome shotgun sequencing techniques have also
demonstrated the presence of archaea, fungi, and viruses in
blood of healthy individuals (Dinakaran et al., 2014; Panaiotov
et al., 2018; Castillo et al., 2019). It is important to note that the
detection of microbial signatures in these studies is based largely
on microbial DNA signatures and not viable bacteria directly, and
hence do not necessarily challenge existing dogma, but rather
provide deeper insights into the concept of sterility and
homeostasis in the cardiovascular system.
SOURCES OF CIRCULATING
MICROBIOTA

The source of a circulating microbiota remains a topic of
considerable deliberation, and it is still controversial whether
the circulating microbiota is allochthonous or autochthonous
May 2022 | Volume 12 | Article 892232
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(Castillo et al., 2019). Currently, the presence of circulating
microbiota is thought to be largely attributable to microbial
translocation from other body sites rich in microbiota
(Velmurugan et al., 2020). The initial entry of microorganisms
into the systemic circulation has been thought to occur
prenatally by vertical transmission of maternal microbiotas in
the umbilical cord, placenta, and/or amniotic fluid, although the
conventional dogma suggests that the placental barrier prevents
such a microbial translocation into infants during pregnancy
(Funkhouser and Bordenstein, 2013). The other possible major
sources of circulating microbiota include gastrointestinal tract,
mouth, and skin (Whittle et al., 2018). Aside from the microbial
translocation as a result of injuries, infections, and non-surgical
procedures (e.g., intravenous injections and catheter placement),
microbial translocation from these body sites is most likely to
occur through loosening of epithelial barriers due to their
structural and functional alterations. For example, microbial
translocation from the oral cavities into the systemic
circulation has been reported in oral diseases, such as gingivitis
and periodontitis (Emery et al., 2021), and even after chewing,
tooth brushing and dental flossing, all of which can lead to the
oral mucosal barrier disruption (Forner et al., 2006; Lockhart
et al., 2008). The identification of known members of the oral
microbiota in the coronary artery tissues from patients with
sudden cardiac death may also support these findings
(Lehtiniemi et al., 2005), and prior work has also demonstrated
the recovery of viable bacteria from atheromatous plaques
(Rafferty et al., 2011).

The impairment of intestinal barrier integrity is another
important mechanism that allows microbial translocation from
the gut into the systemic circulation. This so-called “leaky gut”
phenomenon has been well-studied and recognized in certain
populations, such as those with inflammatory bowel disease
(Maloy and Powrie, 2011), portal hypertension (Lutz et al.,
2015), and heart failure (Verbrugge et al., 2013; Yuzefpolskaya
et al., 2020). In recent years, this phenomenon has also been
recognized in a variety of chronic diseases and conditions,
including diabetes mellitus, CKD, and cardiovascular disease,
partly due to gut dysbiosis, lifestyle and dietary factors (e.g.,
high-fat diet and alcohol intake), medications (e.g., non-steroidal
anti-inflammatory drugs), and intestinal ischemia and/or edema
(de Kort et al., 2011; Kitai and Tang, 2018; Nagpal et al., 2018;
Sumida and Kovesdy, 2019). Among possible gut-derived
products that can be identified in the bloodstream, bacterial
lipopolysaccharide (i.e., endotoxin) and metabolites (e.g., indoxyl
sulfate and trimethylamine N-oxide) have been most extensively
investigated for their unique atherogenic and immunostimulatory
properties (Evenepoel et al., 2009; Wiesner et al., 2010; Tang et al.,
2013; Bowman et al., 2017; Donath et al., 2019); however, the
translocation of gut microbiota into the systemic circulation may
also occur as a result of the increased gut permeability, as
supported by a few studies demonstrating a similarity in the
microbial signatures between the fecal and blood samples of
patients with cardiometabolic disease (Sato et al., 2014; Lelouvier
et al., 2016). Importantly, both quantitative and compositional
changes in the microbiota translocated into the systemic
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 3
circulation have been implicated in the pathogenesis of
cardiometabolic disease.
CIRCULATING MICROBIOTA AND
CARDIOMETABOLIC DISEASE

Changes in Circulating Microbial DNA
Levels and Cardiometabolic Disease
Bacterial DNA fragments can be detected by amplifying the
highly conserved 16S rRNA subunit or through whole genome
sequencing approaches (Jiang et al., 2009). Among various
microbial components, bacterial DNA fragments are readily
detectable and are easily discerned from human DNA (Szeto
et al., 2018), and have thus been suggested as a better quantitative
marker of the bacterial load circulating in the blood compared to
measuring bacterial lipopolysaccharide (i.e., endotoxin) which is
limited to detect only Gram-negative bacteria (Wiedermann
et al., 1999). Furthermore, circulating bacterial DNA has been
suggested to have unique pathogenic roles through recognition
as pathogen-associated molecular pattern ligands (PAMPs) in
host immune and cardiovascular systems.

Bacterial DNA contains unmethylated cytosine–guanine
dinucleotide (CpG) flanked by two purine 5’ and two
pyrimidine 3’ (Klinman et al., 1997). These DNA structures are
recognized by toll-like receptors (TLRs), specifically endogenous
TLR-9 (as a bacterial DNA receptor). This in turn triggers a cell
signaling pathway including activation of the nuclear factor
kappa B and the mitogen-activated protein kinases (Krieg,
2002). In inflammatory immune cells like polymorphonuclear
neutrophils, bacterial DNA products exert profound effects on
chemokine expression, regulation of adhesion molecules, cellular
trafficking, and phagocyte activity. They promote the survival of
mononuclear cells by inducing interleukin-6 (IL-6) (Schindler
et al., 2004; Navarro et al., 2007) and rescues polymorphonuclear
neutrophils from constitutive apoptosis (El Kebir et al., 2008).
The activation of host immune system induced by bacterial DNA
can in turn induce a plethora of other compounding pathological
pathways that include metabolic dysfunction (e.g., through
insulin resistance) and endothelial injury (e.g., through
induction of endothelial cell apoptosis) (Merino et al., 2008;
Donath et al., 2019), eventually contributing to the pathogenesis
of cardiometabolic disease. In fact, elevated levels of circulating
bacterial DNA have been reported in individuals with
cardiometabolic disease who had no clinical evidence of
systemic infection (Amar et al., 2011; Kwan et al., 2013;
Dinakaran et al., 2014; Szeto et al., 2018).

In addition to its proinflammatory and atherogenic
properties, it has been shown that bacterial DNA induces
suppression of cardiac myocyte contraction in a dose-
dependent manner (Paladugu et al., 2004). In line with this
observation, higher plasma bacterial DNA levels have been
demonstrated to be independently associated with subsequent
risk of composite cardiovascular events (comprised mostly of
hospitalization for heart failure) in peritoneal dialysis patients
May 2022 | Volume 12 | Article 892232
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without overt infections (Szeto et al., 2015). Of interest,
compared with bacterial endotoxin levels, the association with
cardiovascular events was more pronounced for bacterial DNA
levels (Szeto et al., 2015), suggesting that circulating bacterial
DNA could play a more dominant role in the development and
progression of cardiovascular disease.

Changes in Circulating Microbial
Composition and Cardiometabolic Disease
Compositional changes in the microbiota are usually represented
by alpha (a) diversity (e.g., assessed by Shannon, Simpson,
Chao1 and Richness indices) and relative abundance of
microbial communities. While the advent of sequencing
technology has greatly advanced our understanding of the roles
of compositional alterations of the gut microbiota in various
diseases (Ley et al., 2006; Schwabe and Jobin, 2013; Ramezani
and Raj, 2014; Wang and Kasper, 2014; Autenrieth, 2017),
studies reporting the compositional changes in circulating
microbiota and their association with cardiometabolic disease
are still extremely limited (Table 1).

Circulating Microbiota in Type 2 Diabetes
Reports on the circulating microbiota in diabetes relate exclusively
to type 2 diabetes, and to our knowledge no correlation studies
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 4
have been reported in type 1 or gestational diabetes. In a case-
control study nested from a longitudinal cohort study examining
the association of blood 16S rDNA concentrations with incident
diabetes and obesity in non-diabetic and non-obese adults, the
pyrosequencing analysis demonstrated that Proteobacteria phylum
represented the highest relative abundance (~90%) in the blood of
individuals who developed diabetes, with Ralstonia being the most
dominant genus within the Proteobacteria phylum (Amar et al.,
2011). In a recent nested case-control study of 15 cases with
incident type 2 diabetes and 100 matched controls without type
2 diabetes, the researchers investigated the composition of the
circulating microbiota using bacterial 16S rRNA sequencing and
found that both cases and controls had diverse bacterial
communities in their pre-diagnostic blood samples, dominated
largely by Proteobacteria phylum (~99%) (Qiu et al., 2019).
Although there was no difference in a diversity (assessed by
Simpson, Shannon, and Chao1 indices) between the two groups,
the relative abundance of Aquabacterium, Pseudonocardia, and
Xanthomonas genera was significantly lower among diabetic cases
compared with non-diabetic controls, while that of Alishewanella,
Actinotalea, Pseudoclavibacter, and Sediminibacterium genera was
significantly higher among cases than controls. Of interest, the
study also showed that individuals carrying the Bacteroides and
Sediminibacterium genera in the blood at baseline had significantly
TABLE 1 | Reported compositional changes in circulating microbiota associated with cardiometabolic disease.

Cardiometabolic
disease

Associated changes in circulating microbiota Detection
methods

Samples
used

Reference

Type 2 diabetes • Proteobacteria phylum represented the highest relative abundance (~90%)
• Ralstonia was the most dominant genus within the Proteobacteria phylum

Amplicon
sequencing for V1–
V2 regions of
bacterial 16S rRNA

Peripheral
blood
leucocytes

(Amar
et al., 2011)

• Proteobacteria phylum represented the highest relative abundance (~99%)
• Aquabacterium, Pseudonocardia, and Xanthomonas genera were lower, while Alishewanella,

Actinotalea, Pseudoclavibacter, and Sediminibacterium genera were higher in patients with
type 2 diabetes than non-diabetic individuals

Amplicon
sequencing for V5–
V6 regions of
bacterial 16S rRNA

Plasma (Qiu et al.,
2019)

Cardiovascular
disease

• Higher Proteobacteria phylum was associated with higher risk of incident cardiovascular
events

Amplicon
sequencing for
bacterial 16S rRNA

Peripheral
blood
leukocytes

(Amar
et al., 2013)

• Proteobacteria phylum was higher in patients with cardiovascular disease than healthy
individuals

Amplicon
sequencing for V3
region of bacterial
16S rRNA

Whole
blood

(Rajendhran
et al., 2013)

• Norcardiaceae and Aerococcaceae families and Gordonia, Propionibacterium,
Chryseobacterium, and Rhodococcus genera (cholesterol-degrading bacteria) were lower in
patients with (vs. without) myocardial infarction

Amplicon
sequencing for V3–
V4 regions of
bacterial 16S rRNA

Whole
blood

(Amar
et al., 2019)

Chronic kidney
disease

• Proteobacteria phylum, Gammaproteobacteria class, and Enterobacteriaceae and
Pseudomonadaceae families were higher in patients with CKD than healthy individuals

Amplicon
sequencing for V3–
V4 regions of
bacterial 16S rRNA

Buffy coat (Shah et al.,
2019)

End-stage kidney
disease

• Proteobacteria and Actinobacteria phyla were lower and higher, respectively, in ESKD
patients with (vs. without) a fatal cardiovascular disease

Amplicon
sequencing for V3–
V4 regions of
bacterial 16S rRNA

Serum (Sumida
et al.,
2021b)
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lower and higher risk of incident type 2 diabetes, respectively,
independent of potential confounders (Qiu et al., 2019), although
precise mechanisms underlying these associations remain to
be determined.

Circulating Microbiota in Cardiovascular Disease
The profiles of blood microbes in the context of cardiovascular
disease were traditionally restricted to infection-related cardiac
complications, such as rheumatic heart disease and infectious
peri-, myo- and endocarditis, diagnosed primarily by classical
serological and/or culture-based methods (Fong, 2009).
However, recent evidence regarding the association between
circulating microbiota and cardiovascular disease has
questioned this paradigm that links the presence of blood
microbes to infectious cardiac complications.

In a pioneering population-based study examining the
longitudinal association of circulating microbiota identified using
the 16S rRNA sequencing with cardiovascular events in 3,936
adults without clinical evidence of infection, there was a significant
association between relative abundance of Proteobacteria phylum
(identified in peripheral blood leukocytes) and risk of incident
cardiovascular events, independently of traditional cardiovascular
risk factors (Amar et al., 2013). Subsequently, a cross-sectional
study reported similar findings that, compared with apparently
healthy individuals, patients with cardiovascular disease had a
significantly higher relative abundance of Proteobacteria phylum
in their whole blood (Rajendhran et al., 2013). Although these
observational studies cannot conclude a causal relationship, there
are several plausible explanations for the association between
circulating microbiota and cardiovascular disease. In addition to
the aforementioned immunostimulatory, atherogenic, and
cardiotoxic properties of bacterial DNA fragments, the phylum
Proteobacteria, which was found to be predominant in the blood of
patients with cardiovascular disease in previous studies, has unique
proinflammatory and proatherosclerotic properties (Rizzatti et al.,
2017) and may thus, as a culprit pathogen, contribute to the
development and progression of cardiovascular disease.
Additionally, a decrease in the relative abundance of cholesterol-
degrading bacteria, such as Norcardiaceae and Aerococcaceae
families and Gordonia, Propionibacterium, Chryseobacterium, and
Rhodococcus genera, has been implicated in the pathogenesis of
atherosclerotic plaques, leading to the risk of ischemic heart disease
(Amar et al., 2019).

Circulating Microbiota in Chronic Kidney Disease
Patients with CKD, particularly in those with ESKD undergoing
dialysis therapy, are susceptible to infection due in part to altered
immune responses , mult iple comorbidit ies , use of
immunosuppressants, and use of vascular access (Ishigami and
Matsushita, 2019), and hence a number of studies have reported
the existence of bacterial DNA in the blood and its association
with inflammatory response in these patients (Navarro et al.,
2007; Bossola et al., 2009; Kwan et al., 2013; Shi et al., 2014).
Nevertheless, there is a paucity of data on the characteristics and
roles of the circulating microbiota in patients with CKD and
ESKD. In a recent pilot study comparing the composition of
circulating microbiota between non-diabetic CKD patients
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 5
without kidney replacement therapy and healthy individuals,
patients with CKD (vs. healthy individuals) displayed a
significant reduction in a diversity (Chao1 index) and had a
significantly higher relative abundance of Enterobacteriaceae and
Pseudomonadaceae families, Gammaproteobacteria class, and
Proteobacteria phylum in their buffy coat samples (Shah
et al., 2019).

More recently, using serum samples of 34 hemodialysis
patients enrolled in a pilot case-control study (17 cases with a
fatal cardiovascular event and 17 matched controls without such
an event during a median follow-up of 2.0 years), the researchers
performed a comprehensive taxonomic profile of the circulating
microbiota by 16S or ITS rRNA sequencing (for bacteria, archaea,
and fungi) and compared the composition of circulating
microbiota between cases and controls (Sumida et al., 2021b).
They found that patients who died of a cardiovascular event (i.e.,
cases) had significantly less Proteobacteria and greater
Actinobacteria phyla compared with those who remained alive
(i.e., controls) (Figure 1), although the levels of 16S rRNA and
bacterial a diversity were similar between groups (Sumida et al.,
2021b). Furthermore, the proportion of Proteobacteria and
Actinobacteria phyla were significantly correlated with blood
levels of nuclear factor erythroid 2−related factor 2 (Nrf2), a
master regulator of antioxidative responses, and were marginally
associated with a greater risk of cardiovascular mortality,
independently of age, sex, race, dialysis vintage, and type of
vascular access (Sumida et al., 2021b). These data may suggest
that circulating levels of Nrf2 play a key role in the risk of
premature cardiovascular mortality associated with the
circulating microbiota in patients with ESKD. Of note, this
study utilized serum samples to assess the circulating
FIGURE 1 | Relative abundance of Proteobacteria and Actinobacteria phyla in
serum of hemodialysis patients with (cases) and without (controls) a fatal
cardiovascular event. *P < 0.05. Error bars indicate the standard error of the mean
(SEM). Reprinted with permission from Sumida et al. (2021b).
May 2022 | Volume 12 | Article 892232
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microbiota, in spite of the perceived concern regarding the ability
to detect microbial DNA in the cell-free fraction of blood. In most
previous studies, the circulating microbiota was assessed using
leukocyte-containing blood fractions (Navarro et al., 2007; Paisse
et al., 2016; Shah et al., 2019), the nature of which may differ from
that of the circulating microbiota identified in the cell-free blood
fraction. More specifically, compared with circulating microbial
signatures that can be identified predominantly in the buffy coat
(rich in white blood cells and platelets) presumably as a result of
the microbial entrapment by white blood cells, the circulating
“cell-free” microbiota located in plasma or serum fraction may
exert its potential pathophysiological effects on immune cells
(through their receptors [e.g., TLR-9]) and on cardiac myocytes
in a more direct manner, which in turn suggests the potential of
the circulating cell-free microbiota as a more clinically applicable,
non-invasive diagnostic/prognostic biomarker compared with the
circulating microbiota identified from other leukocyte-containing
blood fractions (Sumida et al., 2021b). The observed lower
proportion of Proteobacteria phylum among cardiovascular
cases (vs. controls) in this study may appear contradictory to the
findings of other studies. Possible explanations include differences
in blood fractions used to assess the circulating microbial
composition, differences in the studied patient populations, with
hemodialysis patients suffering from higher comorbidity burden,
and/or differences in the relative abundance of other microbial
taxa (e.g., high Staphylococcus genus which belongs to the phylum
Bacillota) in cardiovascular cases in this study (Sumida et al.,
2021b). Uncovering the cause(s) for these differences deserves
further investigation. Nonetheless, a prior study that reported
lower proportion of Proteobacteria phylum in subgingival plaque
to be associated with higher systemic inflammation may support
the finding from hemodialysis patients, suggesting a potential
influence of oral microbiota on the circulating microbiota in these
patients (Demmer et al., 2017).
FUTURE DIRECTIONS AND CHALLENGES

It has now become evident that highly diverse microbial
communities exist in the systemic circulation of various
populations and that both quantitative and compositional
changes in the circulating microbiota may contribute to the
development and progression of cardiometabolic disease.
However, many important questions remain unanswered
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 6
regarding the nature of circulating microbiota, including the
sources, pathophysiological roles, localization across different
blood fractions, and distinction from potential contamination,
all of which need to be clarified in future in-depth basic, clinical
and population-based research. In an ongoing quest to improve
outcomes of patients with cardiometabolic disease, perhaps the
time has come to go beyond the “gut feeling” and rigorously
incorporate the potential pathophysiological insights gained
from the circulating microbiota towards the development of
novel biomarkers for diagnosis and prognosis, especially in
personalized therapeutic approaches to premature morbidity
and mortality in cardiometabolic disease where patterns
are emerging.
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