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Situated approaches to cognition maintain that cognition is embodied, embedded,

enactive, and affective (and extended, but that is not relevant here). Situated approaches

are often pitched as alternatives to computational and representational approaches,

according to which cognition is computation over representations. I argue that, far from

being opposites, situatedness and neural representation are more deeply intertwined

than anyone suspected. To show this, I introduce a neurocomputational account of

cognition that relies on neural representations. I argue not only that this account is

compatible with (non-question-begging) situated approaches, but also that it requires

embodiment, embeddedness, enaction, and affect at its very core. That is, constructing

neural representations and their semantic content, and learning computational processes

appropriate for their content, requires a tight dynamic interaction between nervous

system, body, and environment. Most importantly, I argue that situatedness is needed

to give a satisfactory account of neural representation: neurocognitive systems that are

embodied, embedded, affective, dynamically interact with their environment, and use

feedback from their interaction to shape their own representations and computations

(1) can construct neural representations with original semantic content, (2) their neural

vehicles and the way they are processed are automatically coordinated with their content,

(3) such content is causally efficacious, (4) is determinate enough for the system’s

purposes, (5) represents the distal stimulus, and (6) can misrepresent. This proposal hints

at what is needed to build artifacts with some of the basic cognitive capacities possessed

by neurocognitive systems.

Keywords: neural representation, neural computation, semantic content, situated cognition, embodiment,

embeddedness, enactivism, affect

THE PROBLEMS OF CONTENT

Explaining cognition in terms of neural computations over neural representations, as
mainstream cognitive neuroscience does, raises tough foundational questions. Among the
most difficult are a cluster of related problems pertaining to the putative semantic
content of neural representations. I will refer to them as the problems of content:
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1. The source of original content (cf. Haugeland, 1998; Jacob,
2019). The semantic content of public language and other
public symbolic systems is derivative—that is, it seems to
derive from other entities, the symbols’ users, whose states
appear to possess semantic content of their own. For instance,
the word “burro” means butter in Italian but donkey in
Spanish; the very same physical symbol—the same sequence
of phonemes or letters—can mean different things in different
languages. The most plausible explanation is that the content
of words such as “burro” derives from the speakers of the
different languages within which the words occur. In contrast,
if intelligent agents operate via representations internal to
their neurocognitive systems, the semantic content of their
internal representationsmust be original—it cannot be derived
from other semantically contentful sources on pain of vicious
regress. But there is no consensus on how neurocognitive
states can acquire original semantic content.

2. The coordination between vehicles and their content
(cf. Fodor, 1994, p. 12ff, 86; Piccinini, 2004, p. 405).
Representational explanation requires that vehicles be
processed computationally in a way that matches their
content. For example, suppose we want a computer to
perform inferences about animals. The inferences the
computer performs must match the meaning of its various
symbols: for instances, from “there is a dog” the computer
may infer “there is a barking animal” but may not infer
“there is a meowing animal”; the opposite must hold for
“there is a cat.” In ordinary artificial computers, the match
between computations and the semantic content of the
vehicles is accomplished by the programmer, who can
independently access both the computational vehicles and
their content and program the computer accordingly. In the
case of neurocognitive systems, however, there is no external
programmer. Thus, it is unclear how computational vehicles
and the computations performed over them can be matched
to appropriate semantic contents. It seems that any putative
mechanism tasked with matching vehicles and the way they
are processed to the vehicles’ semantic content must have
independent access to both vehicles and their contents, so
that it can match them accordingly. This would require that
vehicles and contents be accessible independently of one
another within the neurocognitive system, which does not
seem possible.

3. The causal efficacy of content (cf. Stich, 1983; Dretske, 1988;
Fodor, 1994). Insofar as representations explain behavior, they
appear to do so in virtue of their content. For instance, suppose
that my dog Cinnamon licks my face because she is happy
that I’m back home, and this is cashed out in part in terms
of Cinnamon’s neural representation whose semantic content
is that I’m back home. Such semantic content is supposed to
contribute to the explanatory power of representations. For,
if Cinnamon’s representation, causing her to lick my face,
had a different content—e.g., that the cat is meowing—then
a representational explanation of why Cinnamon is licking
my face would fail. But what causes behavior is the vehicle
that carries the content, which is what the system physically
processes. Since the causal work is done by the vehicle, the

semantic content has no causal work left to perform. In
addition, semantic content appears to be relational in a way
that undermines its causal efficacy. For semantic content is
a relation between the vehicle and what it represents, and
that does not seem to be the sort of thing that can play a
causal role. If these observations are correct, then semantic
content plays no causal role. If so, content is epiphenomenal
and representational explanation is illusory. The genuine
explanation of behavior is causal and, therefore, it can’t appeal
to semantic content.

4. The determinacy of content (cf. Shea, 2018; Neander
and Schulte, 2021). It seems to many that a notion
of representation worthy of its name should come with
determinate semantic content—the kind that can be expressed
by a proposition and evaluated as true or false or, in the
case of concept-like representations, the kind that can be
expressed by a linguistic predicate. But theorists disagree about
what content neural representations have. A classic example is
what the frog’s eye tells the frog’s brain (Lettvin et al., 1959).
Even theorists who agree pretty closely on what determines
the semantic content of neural representations have offered
different interpretations of the internal signals that allow frogs
to detect, catch, and eat bugs. They have proposed that the
signals’ content is (i) fly (there now), (ii) something small, dark,
and moving (there now), or (iii) food (there now). There is no
consensus on how to resolve this disagreement. This suggests
that putative neural representations lack determinate contents
after all, which in turn suggests that neural vehicles are not
representations properly so called.

5. The distality of content (e.g., Dretske, 1988; Shea, 2018;
Neander and Schulte, 2021). Between a stimulus and a neural
state, there is a causal chain involving many intermediate
causes, all of which correlate with the internal state and
all of which may be said to cause the internal state. For
instance, a visual stimulus such as a flower in a garden causes
patterns of light waves that travel through the air, which
cause activation patterns in the retinas, which cause spike
trains to travel through the optic nerve, which cause activation
patterns in the lateral geniculate nucleus of the thalamus, etc.
Many naturalistic theories of content assign content at least
in part based on the relation between a representation and
what causes it (Adams and Aizawa, 2021). If the content of
a representation is determined by what causes it, however, it’s
unclear why a neural state should represent the distal cause—
e.g., the flower—rather than any of its more proximal causes.

6. The possibility of misrepresentation (e.g., Dretske, 1986; Fodor,
1994; Neander and Schulte, 2021). If a system can represent, it
should also be able to misrepresent. For instance, if visibility
is poor, a system might mistake a horse for a cow, thus
representing a horse as a cow. As noted above, however,
many naturalistic theories of content appeal to the relation
between a representation and what causes it. Accordingly,
if a representation is caused by a horse, its representational
content should be horse, not cow. But then it’s unclear how a
representation can ever misrepresent. There is no consensus
about how a naturalistic theory of content can account for the
possibility of misrepresentation.
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The difficulty of one or more of these problems has led
many theorists, including many theorists of situated cognition,
to reject neural computations, neural representations, or
both (e.g., Casper and Artese, 2020). According to such
theorists of situated cognition, cognition is situated—that
is, embodied, embedded, enactive, and affective—as opposed
to representational and computational (e.g., Thompson,
2007). Many others continue to maintain that cognition
involves computation over representation, and some have
correctly pointed out that cognition being representational and
computational is compatible with cognition being situated (e.g.,
Clark, 1997; Miłkowski, 2017). Even among such compatibilists,
however, there is no consensus on how to fully solve the problems
of content.

I will argue not only that situatedness is compatible with
computation and representation, but also that the situatedness of
neurocognitive systems and, as a consequence, the situatedness of
neural computations and representations is the very key to solving
all the problems of content at once. Specifically, I will argue that
neurocognitive systems that are embodied, embedded, affective,
dynamically interact with their environment, and use feedback
from their interaction to shape their own representations and
computations (1) can construct neural representations with
original semantic content, (2) their neural vehicles and the way
they are processed are automatically coordinated with their
content, (3) such content is causally efficacious, (4) is determinate
enough for the system’s needs, (5) represents the distal stimulus,
and (6) can misrepresent.

Caveat 1: The most successful account of the semantic content
of internal representations is informational teleosemantics
(Dretske, 1988; Neander, 2017; Shea, 2018). Roughly, according
to informational teleosemantics, the semantic content of
(indicative) representations is the information they have
the function to carry. Existing versions of informational
teleosemantics go at least part of the way toward solving problems
1 and 4-6. This is largely because teleosemantics already includes
an important element of situatedness: the teleofunctions that
give teleosemantics its name are wide functions—functions that
reach into the organism’s environment. That said, problems 2
and especially 3 are harder to crack; I will argue that solving
them along with fully solving the others requires amore thorough
appeal to the organism’s situatedness. As I will point out,
the recent literature contains hints that the solutions to the
problems of content are to be found in the situatedness of
neural representations. The considerations to follow are intended
to (i) improve on existing versions of teleosemantics by (ii)
making points that are either overlooked or only implicit in
the teleosemantics literature, thereby (iii) showing how the
situatedness of neurocognitive systems contributes to solving the
problems of content and (iv) providing a unified solution to the
problems of content.

Caveat 2: I will not propose a complete account of
intentionality. For present purposes, intentionality is the
property of indicative mental states, such as beliefs, to the
effect that they can be attributed a propositional content
with full-blown truth conditions, as opposed to the kind of
accuracy conditions that I will adopt as a standard for the

kind of (nonpropositional) neural representations that make
up the bulk of the cognitive economy of most animal species.
Explaining intentionality involves explaining fully determined
propositional contents, referential opacity, representation of
nonexistent objects, and other phenomena that go beyond the
scope of this essay. What I will do is propose a solution to some
of the most difficult problems faced by an account of basic neural
representations with original semantic content, problems which
lie at the foundation of any naturalistic theory of intentionality.
Fully accounting for intentionality itself is a separate project,
which will require additional work (for steps in that direction,
see Morgan and Piccinini, 2018; Piccinini, 2020b).

Caveat 3: I will set phenomenal consciousness aside. The
relationship between neural representation (and computation)
and phenomenal consciousness is challenging territory that lies
outside the scope of this paper (for more detailed discussion
of options and some hints at the direction that appears most
promising, see Piccinini, 2020a, Ch. 14 and Anderson and
Piccinini, unpublished, Ch. 7).

Caveat 4: In addition to embodiment, embeddedness,
enaction, and affect, situated approaches also include the thesis
of extended cognition, that is, that some cognitive states or
processes occur outside the skull. Whether cognition is extended
does not affect my argument, so I will remain neutral about that.

BASIC FRAMEWORK

I will adopt a theoretical framework defended in detail by
Piccinini (2020a, 2022). Here I will briefly recap the main
aspects that are relevant to this project. This section is intended
primarily for philosophers; non-philosophers can skip it without
too much loss.

The universe consists of many objects that stand in
compositional relations: small objects compose larger objects,
which compose ever larger objects until all objects, taken
together, compose the whole universe. Objects have natural
properties, including relational properties. There are three types
of property: qualities, such as shape and size; causal powers, such
as the ability to fire action potentials; and structural properties,
such as beingmade of neurons and glial cells arranged in a certain
way. An object’s properties are invariant aspects of the properties
of that object’s parts. A composite object itself is an invariant
under certain transformations in its parts.

The objects we are concerned with are substantive wholes,
namely, objects whose (proper) parts change their properties
when they come to stand in organizational relations such that
the parts compose such wholes. For instance, pluralities of
disconnected neurons and glial cells cannot perform nontrivial
cognitive functions. When they are connected together and
sustained by an organism’s metabolism, however, neurons and
glial cells form nervous systems, thereby acquiring the ability to
send signal to one another and, collectively, to perform nontrivial
cognitive functions.

It’s important to note that causal powers require disposition
partners for their manifestation and are typically individuated
by the manifestations they have when they encounter their
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partners (Martin, 2008). For instance, the very notion of a signal
presupposes that the signal is sent to one or more receivers.
Accordingly, the power to send a neuronal signal presupposes a
communication channel through which a neuron sends the signal
to one or more receivers. Thus, causal powers include an intrinsic
aspect—what the object can contribute to a manifestation—and a
relational aspect—what the object must be related to in order for
the manifestation to occur.

It’s also important to note that a property can be both the
manifestation of an object’s causal powers as well as a causal
power of its own. For instance, a truck’s momentum is both a
manifestation of its power to set itself in motion and a causal
power of its own, which can be transferred to other objects in
case of collision. Later I will argue that semantic content is a case
of this sort: both the manifestation of some of a neurocognitive
system’s causal powers and a causal power of its own.

Some systems contain mechanisms. For present purposes,
mechanisms are subsystems composed of different types of part,
each with its own specialized powers, and the parts are organized
in such ways that each part meets disposition partners in some
of the mechanism’s other parts and portions of the environment
of the system. As a result, mechanisms have powers that their
parts, when they are not organized to form the mechanism, could
never have.

Some special mechanistic systems are organisms. What counts
as an organism is a difficult question that I cannot address
in depth here. Suffice it to say that organisms have special
closure properties such that their parts are mutually involved
in maintaining the organization of the system1. Organisms
include sets of entities each of which can be produced from
other entities within the set (Kauffman, 1993), organisms
exert work to maintain internal constraints that in turn
are necessary to produce the work (Kauffman, 2002), their
processes are mutually constrained in such a way that each
constraint is generated by at least one other constraint (Montévil
and Mossio, 2015), and their behavior, broadly construed
to include metabolism, must result at least sometimes in a
mutually supportive set of conditions that include survival,
development, reproduction, and helping others (Piccinini, 2020a,
p. 68). I call the latter four conditions goals in the following
minimal sense: they require work and, if all members of a
population fail to fulfill them, eventually the population goes
extinct. Thus, for organisms to continue to exist, the four
goals must be pursued and fulfilled at least sometimes by
some organisms.

Since organisms have goals that they must pursue, their
traits (parts and their properties) as well as the artifacts they
build and use may contribute to such goals. Contributing
to such goals in a stable way is what I call the biological
function(s) of such traits and artifacts. Token traits and artifacts
that belong to a type some of whose tokens are able to
perform a function may be said to have that function even
though they cannot perform it or cannot perform it at the
appropriate rate in appropriate situations. Thus, this is a

1This self-organizing feature of organisms has long been emphasized by what is

sometimes called autopoietic enactivism (Varela et al., 1974; Ward et al., 2017).

normative notion of function: traits and artifacts can function
incorrectly, malfunction, or completely fail to perform their
function2.

Some organisms have specialized control organs—namely,
nervous systems—whose function is to direct the behavior
of the organism as a whole in response to environmental,
physiological, and developmental conditions. Fulfilling control
functions requires transducing different kinds of external
signals into internal vehicles that allow the control organ to
integrate different sources of information, build and update
internal models of the body and environment, and use such
models to guide and direct behavior. Since the function of
the vehicle is to encode different sources of information
as well as guide the control of a complex organism, the
vehicles themselves are defined in terms of such functions,
not any particular ways in which the vehicles are physically
implemented. I call such vehicles medium-independent, and
the manipulation of such vehicles in a rule-governed way,
which is needed to perform control functions, computation
in a generic sense. While neural processes are computational
in a generic sense, there are good reasons to conclude
that they are sui generis computations—neither digital nor
analog3.

NEURAL STRUCTURAL REPRESENTATION

There is a widespread consensus that the notion of
representation that is relevant to cognitive neuroscience is
that of structural representation4. To a first approximation,
a structural representation is a model of a target that can
guide behavior with respect to its target. For example,
a map of a territory is a structural representation.
More precisely, I define a structural representation
as a system that has the function of possessing the
following four features: (i) a partial isomorphism
(homomorphism5) to its target, (ii) being activated by
signals coming from its target, (iii) the ability to guide

2Some complex organisms have sentience and sapience, which give rise to

nonbiological functions, which are stable contributions to nonbiological goals.

Nonbiological functions are not especially relevant here.
3Roughly, digital computations can operate over sequences of discrete states,

analog computations can operate over continuous variables, and neural

computations operate over spike trains; within spike trains, spikes are distinct

from one another, which makes them somewhat similar to discrete states, but

their frequency and sometimes their timing are functionally significant, which

makes them somewhat similar to continuous variables. Since the vehicles of neural

computation shares similarities and differences with the vehicles of both digital and

analog computation, neural computation is sui generis. A more detailed treatment

is in Piccinini (2020a, especially Chs. 6 and 13).
4The following account of neural representation and its content was influenced

most directly by Piccinini (2020a, Ch. 12), which is a descendant of Thomson and

Piccinini (2018), and by Lee (2021). Other important recent sources that influenced

me on the problems of content and related matters include Gładziejewski (2015),

Ramsey (2016), Gładziejewski and Miłkowski (2017), Miłkowski (2017), Neander

(2017), Buckner (2018, forthcoming), Dewhurst and Villalobos (2018), Lee (2018),

Shea (2018), Millikan (2021), Poldrack (2021), and Bielecka andMiłkowski (2020).
5Some authors prefer the notion of similarity to that of homomorphism. For a

recent account of semantic information carried by structural representations in

terms of similarity, see Miłkowski 2021.
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behavior with respect to its target, and (iv) the ability
to be decoupled from signals coming from its target
(and therefore to guide behavior with respect to its
target even when its target is not directly activating the
representation)6.

Ramsey argues that, in addition to defining structural
representation in such functional terms (a model that can guide
behavior), we also need an account of the semantic content
of structural representation (Ramsey, 2007, 2016). He points
out that many theorists either fail to distinguish between the
functional role of structural representations and their semantic
content or they simply ignore the functional role.7 Ramsey
concludes that, in addition to an account of functional role
along the lines I gave above, we also need an account of
the representations’ semantic content. The most successful
account of the semantic content of structural representations
is informational teleosemantics, which says, roughly, that the
semantic content of a structural representation is the information
it has the function of carrying about its target (Dretske,
1988; Neander, 2017; Shea, 2018). For present purposes, that
a state carries information about a target means that the
occurrence of that state raises the probability that the target is
also occurring.

I agree that the notion of structural representation is the
relevant one, and I will endorse a version of informational
teleosemantics. I add that neural representations have special
features such that, when the relevant notion of structural
representation and the relevant teleosemantic theory are
formulated properly, the vehicles of neural representations and
their semantic content are two sides of the same coin. That is,
the same functional properties that turn a system of internal
states into a neural representational system are also sufficient
to give such internal states their semantic content8. I will also
argue that, once we gain an adequate account of the ontology of
original semantic content, the content of neural representations
is an aspect of their causal powers—the power to track their
target and, as a consequence, to guide behavior with respect to
their target.

For present purposes, a neural structural representation is a
state of a simulation of a target, where a simulation is a system of
states, homomorphic to their target, which can evolve to match
the evolution of their target to some degree of approximation. In

6The notion of representation primarily under discussion here is that of indicative

representation, whose function is to fit the world. There are also imperative

representations, whose function is to change the world to fit them. I discuss

imperative representations in Piccinini (2020a, Ch. 12).
7Facchin 2021 has recently questioned whether structural representations’

functional role is genuinely representational. Roughly, he argues that (a)

receptors are not genuinely representational, yet (b) some receptors are structural

representations; therefore, (c) some structural representations are not genuinely

representational. Even as Facchin presents his argument, it leaves room for some

structural representations to be genuinely representational, which is all I need. In

any case, Facchin does not establish (a); instead, he makes a plausible case that

(a’) some receptors are not genuinely representational. Needless to say, (c) doesn’t

follow from (a’) and (b).
8For an account that goes somewhat in the same direction, see Shea (2018, p. 10,

Chs. 3 and 4).

addition, a neural structural representation is a state of a system
whose functions includes the following:

1. To build and maintain a simulation of its body
and environment.

2. To use the simulation to guide behavior by issuing
motor commands.

3. To use information from the body and environment together
with its own motor commands to update the simulation.

A system that performs the above functions has all the
four features of structural representations. By definition, the
simulation it builds and maintains is homomorphic to its target
and can guide behavior. By relying on information from the body
and environment to update its internal states, the system gets
activated by signals from its target. Finally, since the simulation
is a dynamical model that can evolve on its own in a way that can
match its target, its states can be decoupled from their target.

A system that performs the above functions already has all
that’s needed for its states to have semantic content according to
informational teleosemantics9. This is because, since one of the
system’s functions is building a simulation of its environment and
updating it using information from the environment, the states
of the simulation carry information about environmental states.
Wemay conclude that one of the states’ functions is tracking their
targets, or we may prefer to say that they track their target, when
they do, due to the function of the system as a whole; regardless,
this is enough for a viable teleosemantics. It is in virtue of the
information they carry about their targets that such states can
guide behavior with respect to their targets.

Now let’s consider the metaphysics of the semantic content of
this kind of structural representation. Recall from the previous
section that causal powers include an intrinsic aspect—what the
object can contribute to a manifestation—as well as a relational
aspect—what the object must be related to in order for the
manifestation to occur. Each state of the sort of simulation we are
discussing has an intrinsic aspect—the ability to receive, process,
and send signals—and a relational aspect—the relations to the
rest of the system. It is the relations to the rest of the system,
which in turn is related in appropriate ways to the body and
environment, which enable each internal state to receive and
send signals carrying information about their target and to guide
behavior on that basis.

On one hand, the system has learned to activate each internal
state to track specific targets and predict the target’s evolution.
Thus, when the system functions correctly, each internal state
sends its signals under appropriate circumstances (information
is flowing in either directly from the target or from other internal
states that carry information about the target, including past
states of the system). On the other hand, when the system
functions correctly, each internal signal can be used to guide

9My version of teleosemantics is not based on the usual, selectionist account of

functions, according to which functions are selected effects (e.g., Neander, 2017);

it is based on the goal-contribution account of function I briefly reviewed in the

previous section according to which functions are stable contributions to the goals

of organisms. One advantage of this innovation is that it makes it possible for

semantic content to be causally efficacious.
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behavior in the relevant way—i.e., with respect to its target. As a
result of the combination of its intrinsic and relational properties,
each internal state has the causal power to track its target, predict
the target’s evolution, and guide behavior with respect to its target
(to the extent that the system is performing its representational
function)10.

The semantic content of a neural representation is a
manifestation of its power to track its target and predict its
evolution. It is also the causal power to guide behavior with
regards to its target. Content is often represented by using that-
clauses; for example, “the cat is on the mat” means that the cat is
on the mat. This is an inadequate way of expressing the content
of neural representations, at least in the general case. On one
hand, typical neural representations do not enter the kind of
explicit inferential relations that linguistic representations, whose
content is expressed by that-clauses, can enter. In addition, their
correctness conditions are a matter not of truth or falsehood but
of degrees of accuracy with which a target is tracked. On the
other hand, however, neural representations are rich in detail,
connected to other representations, dynamical, and predictive of
their target’s evolution in a way that linguistic representations
are not. Thus, the content of a neural representation of the cat
being on the mat may be very roughly approximated as follows:
cat on mat there now and will likely evolve in such and such
a way. Notice that I didn’t use a that-clause, because typical
neural representations are not propositional representations but
simulations of their target.

A specific content may be distributed over a relatively large
ensemble of neurons. Yet content is relatively localized in the
sense that it is carried by a specific vehicle born by a specific
bearer (neuron/ensemble/circuit) and not diffused through the
whole neurocognitive system, or even a large part thereof.
Yet content (qua causal power) also depends on the causal
role that the firing of a neuron/neural ensemble/neural circuit
plays within the neurocognitive system, so it depends on the
structural and functional relations between the vehicle (and
therefore the vehicle bearer, the neuronal structure) and other
relevant portions of the system. Since content is acquired by
the neurocognitive system through learning via feedback from
the environment (more on this below), it is acquired holistically
thanks to the action of a system larger than the bearer of the
content, and it depends on the holistic relations between its
bearer and the rest of the system for its existence qua content. Yet
content is also somewhat localized in the sense of being possessed
by a small part of the system in virtue of the specific causal role
that subsystem plays within the whole system.

In other words, the content of a neural representation is a
manifestation of a causal power (the power to track a target), yet
this content is created by a broader learning process involving a
larger system, and the fact that it functions as content is made
possible by the broader causal role that the content plays in
guiding behavior within the system.

In summary, there are three causal processes pertaining to
content: the learning process that creates the content, the causal

10Shea (2018, p. 36, 39) has independently argued that content arises out of a

combination of a vehicle’s intrinsic and relational properties.

process that defines the content (as tracking a certain target and
predicting its evolution), and the causal process that makes it
possible for the content to guide behavior.

THE SITUATEDNESS OF NEURAL

REPRESENTATION

For neural representations to exist at all, the system that
constructs and maintains them—the neurocognitive system—
must be embodied, embedded, enactive, and affective. This
situatedness of neural representations is needed because neural
representations and the computations that are interdependent
with them emerge diachronically through the dynamical
interaction between the nervous system, its body, and its
environment in a way that must take into consideration the
organism’s needs. Let’s unpack this point, one step at a time.

Neurocognitive systems are made out of neurons and other
cells; the neurons, connected into networks, are the main
components performing cognitive functions. The structure and
functions of neurocognitive systems are innately constrained.
The structure and functions of an organism’s body affect how its
neurocognitive system develops and what processes it performs
(Chiel and Beer, 1997). In addition, developmental processes
that are at least partially under genetic control determine
the differentiation of the neurocognitive system into different
systems (cortex, cerebellum, hippocampus, etc.), the formation
of different subsystems (cortical areas, columns, nuclei), much of
the wiring between systems and subsystems, themain biophysical
properties of different types of neurons, the transduction of
external stimuli into firing rates within sensory systems, the
transduction of firing rates into muscle contractions at the
neuromuscular junction, and so forth. All these factors constrain
the type of representations and computations neurocognitive
systems can perform and the kinds of behaviors they can exhibit
(e.g., Kim et al., 2017; Wang et al., 2018). That said, one of
the most important features of neurocognitive systems, which
is also built through development, is their plasticity, that is,
their ability to change their structure and functions in response
to their dynamic interaction with body and environment.
Plasticity is the basis for the ability to learn, which in turn
allows neurocognitive systems to construct and shape their
representations and computations.

The study of how biological neural networks learn has
influenced and has been influenced by the study of artificial
neural networks. Comparing the types of learning that occurs
in biological vs. artificial neural networks will help us highlight
how important situatedness is to learning in biological neural
networks and what might still be missing from current
AI technology.

Artificial neural networks can learn in three main ways:
supervised, unsupervised, and by reinforcement. Supervised
learning occurs when an agent external to the network calculates
the error produced by the network, uses such error to adjust
the structure (and therefore the functions) of the network to
improve performance, and repeats this process until the network
exhibits the desired performance. This is often done by feeding
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the network labeled data during the training period, that is,
inputs that already include information about how the network is
supposed to classify the data. In contrast, unsupervised learning
occurs when the network itself adjusts its structure (and therefore
its functions) in response to its inputs in order to find, extract,
and represent similarities, invariants, and associations within its
inputs, without receiving external feedback on how to improve
its performance. Finally, reinforcement learning occurs when a
network performs actions in response to its input, receives a
reward signal in response to successful actions, and uses the
reward signal to adjust which actions it will select in the future
(Sutton and Barto, 2020).

Both supervised and traditional unsupervised learning have
limits. Supervised learning is limited by the requirement of
labeled data, which may or may not be always available in
large enough quantity. Unsupervised learning is limited by the
absence of any external information on how the inputs should
be processed; thus, it works best for tasks that require merely
extracting patterns from inputs. To overcome these limitations,
a more recent approach involves a type of unsupervised learning
called self-supervised learning: artificial neural networks that
learn by extracting supervisory signals from the data themselves,
without relying on explicit labels supplied by external agents.
By relying on the structure of the data, self-supervised learning
networks attempt to predict one portion of an input from another
portion, and then use any resultant discrepancy to improve their
representations and computations. Adding the ability to learn
from rewards and punishments turns a neural network into
a reinforcement learning network, which allows it to learn by
trial-and-error how to respond to different situations.

None of the training methods for artificial neural networks
are a perfect fit for the type of learning that occurs within
neurocognitive systems. Unlike in supervised learning, there are
no external agents labeling the data that enter neurocognitive
systems or calculating how the structure of neurocognitive
systems should be adjusted to improve performance. Therefore,
neurocognitive systems do not undergo supervised learning as it
occurs in artificial neural networks. In addition, unlike traditional
unsupervised learning, neurocognitive systems are not limited to
processing their inputs in the absence of external feedback.

The types of AI learning that are closest to what
neurocognitive systems do are self-supervised learning and
reinforcement learning. Like artificial systems undergoing
self-supervised learning, neurocognitive systems can extract
structure from their inputs, attempt to predict how the inputs will
evolve, and use any discrepancy to improve their representations
and computations (cf. (Buckner, forthcoming)). But even self-
supervised learning falls short because, in general, self-supervised
learning does not involve direct feedback from either the system,
the body, or the environment about the effects of the system’s
actions—if nothing else, because typical artificial neural networks
do not act in the world through a body in real time. In contrast,
neurocognitive systems are constantly directing their body to
act within their environment, use efference copies of their own
motor commands to adjust their expectations about how their
sensory inputs will change, and collect information about the
effects of their motor commands on both body and environment

shortly after issuing the commands. Thus, neurocognitive
systems can and do use constant, real-time feedback to correct
their structure so as to improve their performance.

This lacuna is addressed in part by reinforcement learning.
Like artificial systems undergoing reinforcement learning,
neurocognitive systems can adjust their action selection by
responding to rewards and punishments. There are at least four
important differences. First, neurocognitive systems learn in the
real world within a relatively short amount of time, whereas
current AI techniques are too inefficient to learn realistic tasks
in the real world within a reasonable time; learning occurs
within simulated worlds and then the acquired knowledge may
be transferred to the real world with some degree of success
(OpenAI et al., 2019a,b). Second, neurocognitive systems—
unlike ordinary artificial neural networks—include an internal
system of evaluative signals, so neurocognitive systems are
not limited to learning from external evaluative signals. Third,
neurocognitive systems use several different types of internal
reward and punishment signals instead of just one type of
evaluative signal. Fourth, insofar as neurocognitive systems can
learn from external evaluative signals, such as a parent or
teacher telling them “Yes” or “No,” they have to first learn to
interpret such signals. To distinguish the type of learning that
neurocognitive systems engage in from standard AI techniques, I
will call it active learning11.

Themost important feature that active learning shares with AI
methods is that the learning process itself shapes the computations
at the same time that it builds the representations. This marks a
critical difference from conventional computers. In conventional
computers, the processor manipulates data in accordance with
instructions, its circuitry usually remains the same over time,
while instructions and data are stored in separate memory
registers. Computer instructions have internal semantic content
that correspond to the operations performed by the processor,
while data can mean anything at all—their content need not have
anything to do with the computational operations performed on
them. Usually, the operations performed on data match their
contents, but this happens only because programmers and users
ensure that they do. In fact, computer data need not even mean
anything at all. Because of this, if computer data have semantic
content at all, as they usually do, they have derivative content.

In contrast, in learning neural networks, the operations
performed by the units are what activates their representational
states, and the representational properties of the states are
what allows the network to perform subsequent computational
operations efficiently. This mutual dependence exists because
both the computational operations and the representations are
constructed, jointly and at the same time, by one and the same
learning process (cf. Shea, 2018, p. 217). As a result, within
learning neural networks, computations and representations are
mutually constitutive of each other and, thus, automatically

11The label “active learning” is used in pedagogy for a method of learning in

which students are not merely listening to lectures or reading material (i.e., passive

learning) but are actively engaged with the material through discussions, writing

assignments, role play, etc. I am repurposing this label for the type of learning that

neurocognitive systems spontaneously engage in.
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coordinated. This is not enough to conclude that neural networks
have original, causally efficacious semantic content, but we will
soon see that it is an important step in that direction12. What is
also needed in order to acquire original semantic content is that
the network be embodied, embedded, and enactive.

Before getting there, I want to point out another,
underappreciated difference between neurocomputational
systems and conventional computers. Within conventional
computers, the only kind of information processing that takes
place is the computation of outputs based on inputs and internal
states. In contrast, neurocomputational systems are constantly
engaged in two types of information processing at once. Like
conventional computers, they yield outputs as a function of
their inputs and internal states. Unlike conventional computers,
they also learn—that is, they use a number of information
sources together with their self-organizing capacity to alter their
structure and, therefore, their future functions.

It’s worth pointing out what sorts of information sources
neurocomputational systems can use to actively learn. They
include the timing and frequency of their vehicles (primarily,
neuronal spikes), the channels through which input signals arrive
(visual, auditory, olfactory, etc.), the correlation between one
portion of a signal and another portion, and the dependencies
between various sorts of input signals (from the environment,
body, or neurocognitive system itself, as in the case of efference
copy), internal states (such as internal states of the simulations
of body and environment and the internal evaluative signals
they elicit), and output signals (such as motor commands). By
exploiting these relationships and performing operations that
are sensitive to them, a neurocognitive system can process
information using medium-independent vehicles. In addition,
by exploiting the different patterns of dependencies that occur
between internal signals and signals from the body, on one hand,
and between internal signals and signals from the environment,
on the other hand, neurocognitive systems can learn to
distinguish between their body and their environment. The
upshot is that neurocognitive systems can build representations
with original semantic content because neural representations
and the computations that manipulate them are functions not
only of each single network’s inputs and internal states but also
of the real-time dependencies between different portions of the
whole neurocognitive system’s inputs as well as between inputs,
internal states, and outputs, which in turn carries information
about the body and environment of the system.

Thus, active learning requires embodiment—that is, a tight
dynamic coupling between neurocognitive system and body13.

12For an independently developed yet converging argument that the coordination

between vehicles and their content helps solve the problem of the causal efficacy of

content see Shea (unpublished).
13Different authors characterize embodiment, embeddedness, and enaction in

different ways (for a recent review, see Shapiro and Spaulding, 2021). Some

authors define embodiment, embeddedness, or enaction in ways that preclude

computation and representation (e.g., Thompson, 2007, p. 13); this begs the

question at hand. I adopt characterizations that are present in the literature, do not

beg the question of computation and representation, and suit present purposes. A

fuller treatment of the relation between the present argument and themany themes

from the literature on situated cognition will have to wait for another occasion.

This is true not only because the body contains the sensors and
effectors that neurocognitive systems need in order to receive
information and act on it. It’s also because the real-time feedback
loop between neurocognitive systems and their body, whereby
the body moves in direct response to neural activity and almost
immediately sends information back to the neurocognitive
system about how it’s moved, is needed for the neurocognitive
system to learn how to represent its body, how to represent
its body distinctly from its environment, and how to effectively
simulate and control its body. Since the body is, in turn,
the main receiver of information about the environment, the
neurocognitive system could not fulfill its learning potential—
much less learn how to direct its body within its environment
by using internal simulations as a guide—without its constant
dynamic interaction with its body.

Active learning requires embeddedness as well—that is, a
tight dynamic coupling between nervous system, body, and
environment. This is true not only because the environment
contains the sources of information most senses are sensitive
to (except for proprioception, which is perception of the body
itself) or because the body itself could not function in the absence
of its environment. It’s also because the real-time feedback
loop between neurocognitive systems and their environment—
whereby the environment mostly remains the same regardless
of the organism’s movements even while the perspective of
the organism changes, and yet the environment also changes
in specific ways that depend on the actions performed by the
organism—is needed for the neurocognitive system to learn how
to represent its environment, how to represent its environment
distinctly from its body, and how to effectively simulate and
act within its environment. For example, abnormal visual
stimulation during a developmentally critical period impairs
vision in ways that can be irreversible (e.g., Hubel and Wiesel,
1970). The neurocognitive system cannot develop properly
and cannot fulfill its learning potential without dynamically
interacting with its environment, in a way that is mediated by
its body.

Active learning requires enaction too. For present purposes,
enaction is a kind of dynamic interdependence of a system
and its environment that unfolds continuously in real time.
Specifically, when enaction occurs, cognitive states and processes
affect the organism’s body and environment while the body
and environment affect cognitive states and processes (cf. what
Ward et al., 2017 call “sensorimotor enactivism”). Enaction in
this sense is already largely implicit in what I said above—
let’s highlight its most relevant aspects. At any given time, the
neurocognitive system is building and updating a simulation
of its body and environment and using such a simulation to
guide behavior. Meanwhile, each motor command affects (i)
how the body moves, (ii) how the sensory input changes (if
nothing else, because the position of the body relative to its
environment changes), and (iii) some ways that the environment
changes (because the organism’s actions change it). Moreover,
the simulation is attempting to predict how all of this is
about to unfold, and the system compares its predictions to its
sensory data. Sensory data, in turn, are the main way that the
environment affects neurocognitive systems in real time. All of
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the dependencies between sensory inputs and motor actions are
constantly exploited by neurocognitive systems to update their
internal simulations as well as to learn how to improve their
simulations and the way they guide behavior.

Finally, active learning requires affect. In the most basic sense,
affect is a system of internal signals that evaluate the state of
the organism and its environment to motivate the selection of
actions that satisfy the organism’s needs. Animals, or at least
animals of sufficient complexity and behavioral flexibility, need
affect in this sense to select actions that satisfy their needs as
well as evaluate external situations and, eventually, learn to select
action sequences that are adaptive within different situations. As
we have seen, affect in this sense is an aspect of reinforcement
learning, which is an aspect of active learning.

As a result of the dependence of active learning on the
situatedness of neurocognitive systems, neural representations
and computations themselves are embodied, embedded,
enactive, and affective. That is, neural representations and
computations are the result of the tight interdependence between
neurocognitive systems and their body and environment—
neurocognitive systems track their targets and guide behavior
thanks to their situatedness.

This account is a kind of content externalism, to the effect
that neural representations require a direct dynamical coupling
to the body and environment in order to exist at all as well
as to acquire their semantic content. Content is determined in
part by the environment together with the interaction between
the nervous system and its environment. As a consequence,
neural representations are individuated at least in part by the
external variables they have the function to track. This accords
with standard definitions of content externalism (Rowlands et al.,
2020).

This content externalism is a close relative of but should not
be confused with the traditional content externalism defended
by Putnam 1975. According to traditional content externalism
(adapted to neurocognitive systems), a difference between two
environments that is undetectable by the organism, such as
a difference in chemical composition between two substances
that the organism has no sensory ability to discriminate, is
enough to alter the semantic content of a representation. For
example, suppose that an organism A has learned to activate
representations of type R in the presence of substance S so as to
guide behavior with respect to S. In light of teleosemantics, tokens
of R represent S. Suppose that organism A has an exactly similar
duplicate A∗ who lives in an environment where substance S∗

is present in exactly the same contexts in which S is present
within A’s environment, yet neither the original organism A nor
its duplicate A∗ has any way to distinguish S∗ from S. As a
result, within the duplicate A∗, tokens of R get activated in the
presence of S∗. Traditional content externalism maintains that,
in the duplicate A∗, tokens of R represent S∗ rather than S.

Traditional content externalism is neither needed nor
plausible within the kind of naturalistic perspective I advocate.
The sort of case envisioned by traditional content externalism is
an exotic case that is unlikely to occur in real life. If it were to
occur, the reasonable thing to say is that there are two types of
substances, S and S∗, represented by tokens of R. A real-world

example is the gemstone jade, which may be composed of either
of two chemically different minerals, jadeite and nephrite14. Prior
to modern chemistry, no one knew that there were two types
of jade. Nevertheless, then as now, and contrary to traditional
content externalism, the term “jade” does not mean just jadeite or
just nephrite depending on whether we are looking at jadeite or
nephrite, or whether we are in an environment where only jadeite
is present or only nephrite is present, or, as traditional content
externalists would put it, whether we live on a planet where just
jadeite or just nephrite is present. “Jade” just means jade, i.e.,
something that can be either jadeite or nephrite. By the same
token, neural representations represent what neurocognitive
systems use them to track, regardless of howmany different types
of underlying structures activate the same representation15.

In conclusion, neural representations emerge diachronically
through the dynamical interaction between neurocognitive
systems, their body, and their environment, and they depend
on such a dynamic interaction for their existence and updating.
This situatedness of neural representations allows us to solve the
problems of content.

HOW SITUATEDNESS SOLVES THE

PROBLEMS OF CONTENT

The first problem is the source of original semantic content:
how do neural representations acquire original (i.e., non-
derivative) semantic content? The situatedness of neurocognitive
systems is the very source of their representations’ original
content. As we’ve seen, original content itself emerges via a
combination of biological evolution and active learning from
the constant interaction between nervous system, body, and
environment. The original content of a neural representation
is a property acquired by the representation via a combination
of evolution shaping development and active learning that the
system undergoes as it constructs internal simulations of its body
and environment to guide the organism’s behavior. Perceptual
representations and their original content may be more
dependent on receiving sensory information than on guiding
action, while the reverse may be true of motor representations;
nevertheless, for all types of neural representations to be normally
acquired and coordinated, all the forms of situatedness we
discussed must contribute16.

The second problem is the coordination between vehicles
and their content: how do vehicles and contents get matched
with one another so that the computational operations the
nervous system performs over the vehicles match their semantic
content? Situatedness solves the coordination problem because
the contents themselves are an aspect of the vehicles’ functional
role, and such a functional role (including the computational

14Jade was discussed extensively in the debate on reductionism about mental states

(Kim, 1992; Fodor, 1997). I am putting the example to a different use.
15This conclusion is consistent with many critiques of traditional content

externalism; see Sections 3.2 and 3.3 of Rowlands et al. 2020 for a review.
16Thanks to a referee for pointing out that there may be cases of atypical

development, neurodiversity, or neuropathology in which some forms of

situatedness do not contribute to the development of neural representations.
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operations to be performed on the vehicles) are learned by the
system via its interaction with body and environment and the
feedback it receives through that interaction at the same time that
the content itself is acquired. As we’ve seen, in neurocognitive
systems there is no separation between the semantic content
of a neural representation and the computational operations
performed over them. The computational operations are an
aspect of what gives a neural representation its content; neural
representations with the content they have are what allows
subsequent computational operations to be performed; the
contents and the computational operations are acquired together
as the system undergoes active learning.

Let’s consider this a bit further. When a neurocognitive system
begins to develop, it possesses some ability to process its inputs,
build internal states, deliver outputs, and learn from the feedback
it receives from itself, its body, and its environment. These initial
operations may be partially random but they are also constrained
by the architecture and biophysical properties of the system, the
morphology and organization of the body, and the structure
of the environment. The system may already have a system of
internal representations built by developmental processes, or it
may be closer to a blank slate. If the system does have innate
internal representations it must be because evolutionary and
developmental processes sufficiently analogous to active learning
have constructed them so that their semantic content matches
the operations performed by the system over them or else such
representations could not function as such. Over time, it is
precisely the process of dynamic interaction between nervous
system, body, and environment that allows the system to acquire
new or more sophisticated representations at the same time that
it learns how to use them. Thus, the neural representational
vehicles and their content can only arise together because they
are two sides of the same coin. The matching between vehicles
and contents is guaranteed by the fact that both contents and the
operations performed over the vehicles are joint products of the
same active learning process.

The third problem is the causal efficacy of content:
how can the semantic content of neural representations be
causally efficacious? Situatedness solves the causal efficacy
problem because, as we’ve seen, the content of situated neural
representations is an aspect of the causal powers of its
vehicles. As a result, unlike typical artificial computing systems,
neurocomputational systems are sensitive to the semantic
content of their vehicles.

To illustrate, consider a token r of neural representation type
R. Suppose that the system has actively learned to activate tokens
of R to track and simulate the presence of dogs in its environment
and guide behavior with respect to dogs (e.g., Bracci et al.,
2019). According to the version of informational teleosemantics
I advocate, r has original semantic content that can be expressed,
approximately, by dog there now and will likely evolve in such
and such a way. Such a content is not something distinct from
and independent of r’s causal powers. Rather, r’s content is both
a manifestation of some of the neurocognitive system’s causal
powers and a causal power of its own, which can trigger further
manifestations. In this case, r’s content is an aspect of its power
(again, within the context of the neurocognitive system) to guide

the system’s behavior with respect to a dog being there now.
This is made possible by the automatic coordination of r (and
the computations that process r) with r’s content that is created
when the disposition to activate tokens of R is constructed
within the system via active learning. Thus, r’s content causes the
system’s behavior with regards to a dog being there now. This
is how the semantic content of neural representations causally
explains behavior.

The fourth problem is the indeterminacy of content: how can
neural representations be said to have semantic content when
theorists can’t agree on what content they have? Situatedness
solves the problem of the indeterminacy of content because
the content of the kind of basic neural representations we’ve
been discussing need not have fully determinate semantic
content like declarative sentences within a human language.
Neural representations have the kind of content that the system
needs in order to guide behavior; the kind of content that is
ecologically significant and that evolution can act on. The type
of behavior depends on the type of organism, and the content
of individual neural representations is for neuroscientists to
investigate empirically, not for philosophers to intuit about. By
investigating the response properties of neurons and neuronal
populations, neuroscientists can determine what such neurons
or populations are most responsive to under relatively good
sensory conditions, and that is their semantic content. If there
are different, nonequivalent ways of labeling such contents
linguistically (e.g., “fly,” “small dark moving entity,” “food”; or
“S” versus “S∗”), this doesn’t matter so long as all such labels are
extensionally equivalent within the relevant ecological niche17.
Only when it comes to linguistic cognition do the very special
neurolinguistic systems that are involved acquire the kind of
categorical contents that admit of full-blown truth conditions.
How to get there is a complex story that still needs to be told
in detail (some hints are provided in Piccinini and Hetherington,
unpublished; Piccinini, 2020b, 2022).

The fifth problem is the distality of content: why should the
distal stimulus be the content of a neural representation rather
than any of its more proximal stimuli? Situatedness solves the
distality problem because different items along the causal chain
from distal stimulus to neural representations exhibit different
patterns of dependency. As we’ve seen, neural representations
are not static—they dynamically predict the evolution of their
target and guide behavior with regards to the target. Meanwhile,
the system obtains and processes feedback in response to its
actions. At the very least, the organism’s movements, including
its eye movements, constantly change the precise point of view
from which the nervous system obtains sensory data from any
given target. The dependency patterns between different items
along the causal chain from distal stimulus to internal states
are different, the different items evolve in different ways, and
changing point of view alters them in different ways. Therefore, as

17Whether the labels in our frog example are actually extensionally equivalent

within the ecological niche of frogs is questionable. For instance, frogs eat way

more than just flies, so “fly” is not extensionally equivalent to “food”. At any rate,

we should let neuroscientists find the best way to characterize the content of neural

representations.
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soon as the system attempts to predict how something will evolve
over time and improve its predictive performance as well as its
action efficacy, it must extract the invariants that are relevant
to external stimuli—those it might have to interact with—and
discard any invariants that pertain to more proximal stimuli as
spurious. It is part and parcel of a neural systems’ active learning
to acquire representations capable of predicting the evolution
of the distal stimuli—those the system might actually interact
with18.

The sixth and last problem is the possibility of
misrepresentation: how can a neural representation
misrepresent a stimulus that triggers it? Traditional information
teleosemantics is often thought to provide a satisfactory
account of misrepresentation. The solution is supposed to be
that misrepresentation is failure to perform representational
function. This is a huge step in the right direction but it’s not
enough by itself. The problem with this standard solution is
that it requires determining representational function precisely
enough to make room for misrepresentation. Specifically, there
must be something that determines what each internal state
has the function to represent so that, when the state responds
to something else, misrepresentation ensues. Extant proposals
are that either evolution (Neander, 2017) or an appropriate
learning period (Dretske, 1988) determine what each state has
the function to represent. I already ruled out evolution as the
source of the right notion of function, so that’s a nonstarter. As
to learning, no one has found a principled way to distinguish the
learning period from the rest of the life of a representational state,
such that after the learning period is over the representational
function is fixed. In some cases, there is a critical learning
period that may be the basis for establishing the representational
functions of internal states. But, in general, neurocognitive
systems never stop learning!

Situatedness comes to the rescue because, again, different
stimuli engage in different patterns of dependencies. The most
obvious difference is feedback in response to the organism’s
actions. Again, neural representations are dynamical simulations
of their environment, which are largely learned. At any given
time, neurocognitive systems have multiple representations that
could be activated in response to incoming sensory data.
Suppose that, during a dark night, in response to a stimulus,
a system activates a COW-representation—that is, the kind of
representation it has learned to activate when it needs to simulate
cows. The COW-representation yields specific predictions about
how the sensory data will change if the stimulus is approached
(i.e., it will look more and more distinctly like a cow), or if the
stimulus makes a vocalization (i.e., it will “moo”), or what their
footprints will look like, and so forth. As soon as enough sensory
feedback is collected that matches a different representation
better than the current one, the system itself should self-
correct, and it will self-correct if it’s functioning properly.
That is, the system will deactivate the COW-representation and
activate one that fits the sensory data better—e.g., a HORSE-
representation. Thus, misrepresentation occurs when a system

18Some recent teleosemantic literature moves at least part of the way in the same

direction (e.g., Neander, 2017, Ch. 9; Garson, 2019; Schulte, 2021).

activates a representation, targeting a stimulus, which makes
worse predictions about incoming data about what a stimulus
will do and how it will appear under various possible conditions
than an alternate representation that is also available to the
system. In short, misrepresentation arises from the interaction
of learning, simulation, and the ability to detect errors and make
corrections. The ability of neurocognitive systems to correct their
own misrepresentations is also another way of seeing that their
content is causally efficacious (Bielecka and Miłkowski, 2020)19.

CONCLUSION

I have argued that, far from being opposites as so many have
thought, situatedness and representation are more deeply
intertwined than anyone suspected. What makes neural
representations possible is the very situatedness of the processes
that acquire neural computations and representations.

Neurocognitive systems are indeed embodied, embedded,
affective, dynamically interact with their environment, and
use feedback from their interaction to acquire their own
representations and computations via active learning. This
accounts for the following: (1) neurocognitive systems construct
neural representations with original semantic content, (2) their
neural vehicles and the way they are processed are automatically
coordinated with their content, (3) such content is a special
kind of causal power and hence causally efficacious, (4) is
determinate enough for the system’s purposes, (5) represents the
distal stimulus, and (6) can misrepresent. This proposal hints
at what artifacts should be like in order to acquire the basic
cognitive abilities possessed by neurocognitive systems.
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