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Several clinical and experimental studies support the hypothesis that foetal programming is an important determinant of
nephropathy, hypertension, coronary heart disease, and type 2 diabetes during adulthood. In this paper, the renal repercussions of
foetal programming are emphasised, and the physiopathological mechanisms are discussed. The programming of renal diseases is
detailed based on the findings of kidney development and functional parameters.

1. Introduction

Foetal growth is both complex and delicate. This critical
phase of development is determined not only by substrate
availability but also by the integrity of the physiologic
processes necessary to ensure the transfer of nutrients
and oxygen to the foetus. Impairment of the intrauterine
growth environment during critical periods may result in
perturbations of development, characterised by intrauterine
restricted growth (IUGR) and low birth weight (LBW). In
fact, Professor David Barker and colleagues in Southampton,
United Kingdom, originally proposed the hypothesis that
several chronic adult diseases can be programmed in early
life [1]. This programming concept is based on the idea
that some stimulus or injury during these critical phases
of development can result in permanent physiologic and
metabolic changes and produce persistent effects throughout
life [1, 2]. Further, Hales and Barker suggested the Thrifty
Phenotype Hypothesis to explain the biological basis of the
foetal origin hypotheses. In this context, impairment of foetal
environment can result in a physiologically adaptive response
that promotes early survival at the detriment of later
health [3]. These foetal adaptive responses to a suboptimal
intrauterine environment optimise the growth of key body

organs to the detriment of others and lead to an altered
postnatal metabolism. The main basis of this hypothesis
is that the deleterious effects are more pronounced when
there is a significant difference between early nutritional
deficiency and later nutritional intake [3, 4]. During the last
few decades, several clinical and experimental studies have
confirmed and extended these hypotheses, suggesting that
LBW is significantly correlated to the development of hyper-
tension, cardiovascular disease, and type 2 diabetes [1-6].

2. Foetal Programming of Renal Development
and Kidney Disease

In humans, nephrogenesis is completed at approximately
32nd-34th week of gestation, and therefore, a nephron
deficit present at birth would persist throughout life. A
kidney with a congenitally reduced nephron number has
less functional reserve and becomes more susceptible to
subsequent renal injury and functional decline. There is evi-
dence that individuals with history of LBW have a congenital
deficit of total nephron amount [7-11]. These observations
indicated that during the renal developmental period, the
kidney can be influenced quite dramatically by alterations
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in the intrauterine environment that lead to impairment
of nephrogenesis. In fact, an ultrasound study showed that
in LBW individuals appeared to have thinner kidneys of
normal length, suggesting decreased nephron number [8].
Other studies have shown a direct relation between birth
weight and the number of nephrons, with 250,000 more
glomeruli per kidney per kilogram increase in birth weight
[9, 12]. In addition to these findings, early catch-up kidney
growth was observed in small-for-gestational-age (SGA)
infants, suggesting either an accelerated renal maturation
process or early compensatory kidney hypertrophy in these
infants [13]. Moreover, Orskov et al. [14] found that LBW
contributes to phenotypic variability in the progression of
renal disease in patients with autosomal dominant polycystic
kidney disease. Another study showed that children with
congenital chronic kidney disease (CKD) had a higher rate
of prematurity and LBW than newborns with hereditary or
acquired CKD [15]. Similar results have been reported by
other authors who observed increased susceptibility to dia-
betic nephropathy and more rapid progression of nephrotic
syndrome, chronic pyelonephritis, and IgA nephropathy
among LBW subjects [11, 16-18]. There is also increasing
evidence available concerning the effect of IUGR on the
impairment of renal function in children and adults [19-24].
The assessment of renal function is important to detect the
extension and progression of nephropathy. Previous studies
in different populations, such as Australian Aboriginals
and Pima Indians, have reported that the prevalence of
albuminuria was higher in individuals who had LBW [16,
20, 21]. Furthermore, a recent study demonstrated that
microalbuminuria levels were significantly higher in IUGR
compared with normal infants at a mean age of 18 months
[22]. It has been reported that renal clearance of amikacin on
the first day of life is lower in LBW neonates, suggesting that
IUGR impairs GFR on the first day of life [23]. Moreover,
evidence highlighting the impact of LBW on renal function
was described in SGA children with high levels of cystatin
C [24]. In this context, the LBW appears to be associated
with early impairment of renal function and this association
is consistent with the high incidence of lower numbers of
nephrons in cases of foetal growth restriction.

The hypothesis that ITUGR programmed to inappropri-
ate renal development has been corroborated by experi-
mental studies. Several data derived from animal studies
indicate that changes in foetal environment may affect
renal development. This hypothesis receives support from
observations of both global nutrient and protein restriction
during pregnancy, resulting in reduced nephron number
and impaired renal function in adult offspring [25-28].
In fact, Merlet-Benichou et al. [25] described a reduction
in nephron number in offspring submitted to substantial
protein restriction in utero. Another study showed that a
50% protein restriction during pregnancy produces offspring
with a reduced number of glomeruli, glomerular enlarge-
ment, and hypertension in adulthood [27]. In addition,
Langley-Evans et al. [26] demonstrated in rats that prenatal
exposure to a maternal diet low in protein in mid-to-late
gestation induces impaired nephrogenesis and hypertension
in adult life. Nwagwu et al. [28] showed that a low-protein
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diet in utero induced increased blood urea, urinary output,
and urinary albumin excretion in the resulting offspring.
It has also been shown that the induction of IUGR by
uteroplacental insufficiency produces a significant reduction
in glomerular number in full-term foetal kidneys [4]. It
has been suggested that some aspects of nephrogenesis,
which begins around day 12 of gestation and is not
complete until 8 days after birth, are maladaptive processes
leading to the subsequent development of hypertension.
Additional evidence comes from some studies developed
by Lucas et al. [29-31]. These authors demonstrated that
when pregnant rats were subjected to 50% food restriction
during the first, second half, or throughout their entire
pregnancy, the renal function of their offspring was impaired
3 months after birth. Morphometric evaluation showed
that the number of glomeruli was significantly decreased
in both newborn and adult offspring, irrespective of the
period in which the restriction was imposed. Glomerular
diameter showed a significant increase in every studied
group, which characterised a compensatory hypertrophy in
the remaining nephrons. These findings led us to hypothesise
that intrauterine malnutrition could be a determinant for
the early appearance of glomerulosclerosis in adult life.
In a subsequent study, when renal function studies were
performed in 18-month-old rats submitted to intrauterine
malnutrition, a significant decrease in GFR and renal plasma
flow (RPF) levels was observed. Moreover, histological
evaluation of kidney sections showed a marked increase in
glomerulosclerosis and tubulointerstitial lesions in these rats.
Immunohistochemical studies revealed that an accelerated
process of glomerulosclerosis took place in these rats, with
high expression levels of fibronectin, desmin, and L-actin
in the glomeruli, Bowman’s capsules, and interstitial areas.
These findings led us to conclude that age-induced renal
changes could be accelerated in this IUGR model, with
renal structural changes occurring early in life. The data
reported by Mesquita et al. [32] corroborate this hypothesis.
These authors found enlargement of podocytes in ITUGR
offspring, indicating that these morphological changes could
be attributed to an adaptation to the reduced nephron
number and, consequently, to glomerular hyperfiltration and
overflow in these animals. Recently, Luyckx et al. [33] showed
that acceleration of renal senescence is higher in LBW rats
with subsequent rapid catch-up growth. These observations
indicated that during the foetal developmental, the kidney
can be influenced quite dramatically by deleterious alter-
ations in the intrauterine environment. This can then lead to
reduction in nephron endowment and, later, renal diseases.

3. Possible Pathways Leading to Foetal
Programming of the Kidney Diseases:
The Role of the Intrarenal Renin-Angiotensin
System, Renal Sodium Transport,
and Apoptosis

It is well established that the intrarenal renin-angiotensin
system (RAS) plays an important role in the normal
morphological development of the kidney [34]. In fact, all
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components of the RAS are expressed early in gestation
in the rat and human meso- and metanephrons [4, 10,
20, 34]. There is considerable evidence that intrarenal RAS
is affected by an unfavourable foetal environment. Some
studies demonstrated that renal renin and angiotensin II
(Ang II) mRNA levels were significantly reduced in new-
borns submitted to a low-protein diets inutero, suggesting
that maternal malnutrition promoted the suppression of
newborn intrarenal RAS, and that may affect nephrogenesis,
resulting in a lower nephron number [4, 35, 36]. Another
study found in early foetal life that AT receptor expression
was increased, whereas AT, declined in kidneys isolated from
IUGR rats [37]. In adult IUGR offspring, elevated mRNA
levels of intrarenal angiotensin converting enzyme (ACE),
renin, and angiotensinogen were found, but no changes in
intrarenal Ang II levels were documented [38]. Studies have
demonstrated that inadequate protein during pregnancy
promoted reduced nephron number and increased AT; and
AT, protein levels in the cortex, but no significant change in
the renal Ang I and Ang II levels in the early postnatal life
of offspring [39—41]. Recently, Mesquita et al. [42] reported
a total absence of AT, in the glomeruli, and this receptor
was preferentially associated with the intercalated cells of the
distal and collecting segments of adult offspring submitted to
a low-protein diet in utero. Moreover, the same authors also
found that the AT, and AT, receptors were downregulated
in association with alterations in the JAK-2/SOCS3 pathways
in these animals. Chou et al. [43] demonstrated that overac-
tivity of chymase may result in increased intrarenal Ang II
concentration in the IUGR kidney. Despite the discrepancies
regarding intrarenal RAS among the cited groups, which may
be related to differences in the feeding protocol used, severity
and duration of nutritional deficiencies and changes in the
RAS programmed during foetal life may be responsible for
the renal alterations observed in these animals.
Experimental studies support the hypothesis that foetal
programming is also correlated with regulation of sodium
transporters [44, 45]. In fact, Alwasel and Ashton [46]
described an absence of the Na*/K*-ATPase-al catalytic
subunit in the kidneys of IUGR offspring during early
postnatal life, while other authors showed an upregulation
of protein and mRNA expression of the al and 1 subunits
of the Na*/K*-ATPase during adulthood [32, 47]. These
alterations could result in a high capacity to retain salt and
water and expansion of the intravascular compartment. It is
known that Ang I is a powerful sodium-retaining hormone,
which acts directly on renal tubular transport. Indeed,
evidence revealed that Ang II, via AT2 receptors, is a potent
inhibitor of Na*/K*-ATPase [40], and it is possible that the
downregulation of this receptor observed in IUGR offspring
might lead to a lack of inhibition of Na*/K*-ATPase, explain-
ing their low sodium excretion rate. Moreover, Manning et al.
[48] demonstrated that renal bumetanide-sensitive cotrans-
porter (NKCC2), thiazide-sensitive cotransporter (NCC)
mRNA, and protein levels were increased in the thick
ascending limb and distal convoluted tubule of adult IUGR
offspring. However, these same authors also noted that
protein concentrations of the Na*/H* exchanger 3 (NHE3)
and all of the ENaC (epithelial sodium channel) subunit

proteins were unchanged in these offspring, suggesting
that proximal tubule sodium transport and the fraction of
sodium excretion mediated by this exchanger are not affected
by foetal programming [48]. Experimental models provide a
broad overview of renal sodium transport in [UGR offspring
and indicate upregulation of two sodium transporters in
specific segments of the nephron. Therefore, when the
kidney is programmed, the nephrons have inappropriate
renal sodium transporter regulation, and this contributes
to alterations in sodium handling. These alterations lead
to a lower rate of urinary sodium excretion and sodium
retention. Whether there is another nephron segment or
other sodium transporters affected by foetal programming
remains unclear; however, this topic provides a promising
field for future investigation.

Some studies have shown the importance of the perfect
balance between cell proliferation and apoptosis during
kidney development and its potential role on foetal pro-
gramming [49-51]. The kidney development is an intricate
process named “branching morphogenesis,” which involves
several signaling molecules and transcription and growth
factors; any dysregulation in this crucial process can lead to a
change in cell proliferation, apoptosis, and impaired nephro-
genesis. Clinical and experimental studies have pointed a
significant association between reduced kidney size at birth
and genetic polymorphisms of the paired-box gene 2 (PAX2)
and protein tyrosine kinase receptor (RET) [52, 53]. The
presence of common polymorphic variants of these genes
involved in renal branching morphogenesis, can confer high
susceptibility to develop renal disease in LBW individuals.

Experimental models of IUGR were associated with
increased apoptosis of the glomerular cells, interstitial cells,
and tubule epithelial cells [36]. This process could be due to
the downregulation of antiapoptotic factors, such as PAX-2
or Bcl-2, and/or the upregulation of proapoptotic factors,
including Bax and p53 [50, 51]. Studies carried out by
Welham et al. [50, 51] showed that [UGR rats had a reduction
in nephron number and elevated deletion of precursors at
the start of metanephric development. These same authors
also described high expression of both Bax and Bcl-2 in
IUGR rats, and this increase was greater in the proapoptotic
gene (Bax) than the antiapoptotic gene (Bcl-2), which
leads to increased death of metanephric precursor cells.
Moreover, bilateral partial ligation of the uterine arteries
during pregnancy resulted in p53 hypomethylation and
elevated expression of Bax and p53 as well as a reduction in
Bcl-2 mRNA [54]. The increased ratio between proapoptotic
and antiapoptotic factors promotes renal cellular apoptosis
in these offspring [36, 54]. Epigenetic pathways could
be a mechanism whereby foetal programming alters the
methylation status and transcriptional rate of some genes,
including Bcl-2 and Bax, leading to foetal renal apoptosis and
permanent loss of glomeruli [32, 55].

4. Conclusions

There is strong evidence that the kidney can be influenced
by deleterious alterations during foetal life. Clinical and



experimental data suggest that an inappropriate intrauterine
environment may permanently modify the structure of
the kidney. This modification is evidenced not only by
reduced nephron number, but also by a compensatory
maladaptive change that occurs intrarenally when nephro-
genesis is compromised. It must be recognised that the high
risk for kidney disease associated with foetal programming
could be a direct consequence of impaired nephrogenesis
or a cumulative process superimposed on type 2 diabetes
and/or cardiovascular diseases. Future studies should be
conducted to elucidate the molecular pathways involved in
this phenomenon.
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