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The dynamics of neuronal firing activity is vital for understanding the pathological respiratory rhythm. Studies on 
electrophysiology show that the magnetic flow is an essential factor that modulates the firing activities of neurons. By adding the 
magnetic flow to Butera’s neuron model, we investigate how the electric current and magnetic flow influence neuronal activities 
under certain parametric restrictions. Using fast-slow decomposition and bifurcation analysis, we show that the variation of 
external electric current and magnetic flow leads to the change of the bistable structure of the system and hence results in the 
switch of neuronal firing pattern from one type to another.

1. Introduction

Breathing is an important physiological activity that is
necessary for all mammals, including human beings, to
sustain their lives. Experiments have shown that respira-
tory rhythms in the neonatal nervous system of mammals
may be related to pacemaker neurons in the pre-Bötzinger
complex (pre-BötC) [1, 2]. Solomon et al. found that the
chemical stimulation of the pre-BötC in vivo manifests
respiratory modulation consistent with a respiratory
rhythm generator [3]. The phrenic motor activity evoked
by chemical stimulation of the pre-BötC is affected and
integrated through the regulation of the respiratory net-
work driven by input from central and peripheral chemo-
receptors [4]. Besides, Koizumi and Smith used real-time
calcium activity imaging combined with whole-cell patch-
clamp recording to analyze contributions of subthreshold
conductances in the excitatory rhythm-generating network
[5]. Negro et al. demonstrated that dendritic Ca2+ acti-
vates an inward current to electronically depolarize the
soma, rather than propagating as a regenerative Ca2+ wave
[6]. Research evidences underscored that respiratory
rhythmogenesis may depend on dendritic burst-
generating conductance activated in the context of
network activity.

The mathematical framework of neuron electrophysio-
logical models has been derived from the Hodgkin-Huxley
(H-H) model established by Hodgkin and Huxley [7]. Based
on the H-H model, Butera et al. created two mathematical
models of inspiratory pacemaker neurons [8, 9] to simulate
the respiratory rhythm generation of single as well as coupled
pre-BötC neuron. Subsequent studies have shown that neu-
rons within the pre-BötC have a persistent sodium (NaP)
current and a calcium-activated nonspecific cationic (CAN)
current. CAN current can be activated via second-
messenger-mediated synaptic pathways [10, 11]. Driven by
the experimental results, Toporikova and Butera proposed a
pre-BötC (TB) model that encompasses both INaP-depen-
dent somatic bursting and ICAN-dependent dendritic burst-
ing [12]. The model explains a number of conflicting
experimental results, and it is able to generate a robust burst-
ing rhythm, over a large range of parameters, with a fre-
quency adjusted by neuromodulators. Later, Park and
Rubin simplified the TB model and proposed a single-
compartment model of a pre-BötC inspiratory neuron which
is able to generate all major activity patterns seen in the two-
compartment model [13]. Also, the neuronal models exhibit
abundant dynamic characters such as the bifurcation phe-
nomenon. Gu et al. demonstrated bifurcation and complex
dynamic behaviors in biological experiments [14, 15].
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An appropriate external stimulus can change the firing
patterns of neurons. Much research in recent years has
focused on the effects of electromagnetic radiation on neuro-
nal behaviors [16–20]. Electromagnetic radiation can affect
the dynamic characteristics of neurons, and electrical or elec-
tromagnetic stimulation can also be used to treat neurologi-
cal diseases [21–23]. Recently, Song et al. designed a
nonlinear circuit including an inductor, resistor, capacitor,
and other electric devices. They found that the energy storage
is dependent on the external forcing and the energy release is
associated with the electric mode [24]. Lv and Ma also found
that electromagnetic radiation can not only excite quiescent
neurons but also suppress the electrical activities in the
improved three-variable Hindmarsh-Rose model [25]. Duan
et al. added magnetic flow as a new variable to the Butera
model to explore the effects of electromagnetic induction
on neuronal activities [26]. Parastesh et al. proposed a new
memory function based on discontinuous flux coupling and
studied various dynamic characteristics of discontinuous flux
coupling neuron models [27]. Considering the mutual influ-
ence of electric and magnetic fields, Rostami and Jafari
described a new Hindmarsh-Rose (HR) neuron model with
more bifurcation parameters to study the formation of
defects in excitable tissues and the resulting emission waves
[28]. Although there have been some studies on the influence
of electromagnetic fields on neuronal activity patterns, little
attention has been paid to the influence of electromagnetic
currents on pre-BötC.

This paper considers the effect of electromagnetic induc-
tion on the Butera neuron model with external electric cur-
rent, magnetic flux, and CAN current. The membrane
potential can be adjusted by a memristor that connects the
membrane potential to the magnetic flux [29–32]. This paper
is organised as follows. In Section 2, we describe the Butera
model with a memristor. Based on this model, we explore
the firing patterns of the system in Section 3. The effects of
external forcing current and the magnetic flux on the burst-
ing rhythms of the system are studied by nondimensionaliza-
tion analysis, fast-slow decomposition methods, and two-
parameter bifurcation analysis. The dynamical mechanisms
of generation and transition of firing patterns are given.
The conclusion is given in the last section.

2. Model Description

Electric and magnetic flow is introduced in Butera’s single-
compartment model of pre-BötC. The model is described as
follows:

dV
dt

=
−INa − IK − IL − INaP − Itonic−e − ICAN + Iextz − k1Vρ φð Þ

C
,

ð1aÞ

dn
dt

=
n∞ Vð Þ − n
τn Vð Þ , ð1bÞ

dh
dt

=
h∞ Vð Þ − hð Þ
τh Vð Þ , ð1cÞ

dφ
dt

=V − k2φ, ð1dÞ

where V is the membrane potential and n and h are gating
variables for the voltage-gated potassium and sodium chan-
nels, respectively. The functions INa, IK, IL, INaP, ICAN, and
Itonic−e represent fast sodium current, delayed rectifier potas-
sium current, leakage current, persistent sodium current,
calcium-activated nonspecific cationic current, and external
tonic drive current, respectively. Iextz is a direct current of
external stimuli. C is the whole cell capacitance. Particularly,

INa = gNam
3
∞ Vð Þ 1 − nð Þ V − VNað Þ,

IK = gKn
4 V −VKð Þ,

INaP = gNaPmp∞ Vð Þh V −VNað Þ,
IL = gL V − VLð Þ,

ICAN = gCAN f Ca½ �ð Þ V −VNað Þ,
Itonic−e = gtonic−e V − V syn−e

� �
:

ð2Þ

The calcium dynamics is given as [13]

d Ca½ �
dt

= KCa JERIN
− JEROUT

� �
, ð3aÞ

dl
dt

= AKd 1 − lð Þ − A Ca½ �l, ð3bÞ

where l represents the fraction of IP3 channels in the mem-
brane of endoplasmic reticulum (ER) that have not been
inactivated, which depends on the intracellular calcium con-
centration ([Ca]). Equation (3a) specifies that [Ca] is deter-
mined by the flux into the cytosol from the ER (JERIN

) and
the flux out of the cytosol into the ER (JEROUT

). These fluxes
are regulated by the intracellular concentration of IP3, [IP3
], and IP3 channel gating variable, l.

The variable φ refers to the magnetic flux across the cell
membrane. ρðφÞ is the coupling strength between membrane
potential of neuron and magnetic flux, which is a magnetic
flux-controlled memristor, and it is equivalent to memory con-
ductance: ρðφÞ = α + 3βφ2, where α and β are fixed parameters
[29, 30]. k1 and k2 show the relationship between the mem-
brane potential and the magnetic flux. And we suppose that
Iapp = Iextz − k1VρðφÞ in Equation (1a). The term k1VρðφÞ
introduces the inhibitory modulation of membrane potential
as induction current results from variation of magnetic flux
and field [25, 33], and it can be described as follows [33]:

dq
dt

=
dq
dφ

dφ
dt

= k1Vρ φð Þ: ð4Þ

Dynamical analysis indicates that subsystem (3a) and (3b)
is in an active state only when IP3 lies between 0.95μM and
1.4μM [13]. Therefore, in this study, we set ½IP3� = 1:2μM,
which implies that ½Ca� is not invariant. The function expres-
sions and parameter values of other variables are presented in
Appendix.
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3. Main Results

We used the method of fast-slow decomposition to study the
firing patterns of system (1a)–(3b). In order to clearly identify
the timescales of different variables, we nondimensionalize the
full system (1a)–(3b) as that done in previous work [34].

3.1. Nondimensionalization and Simplification of Timescales.
The variables are rescaled so as to further reveal their time-
scales. To this end, we define new dimensionless variables
(v, c, �φ, τ) and voltage, calcium, magnetic flux, and time
scales Qv,Qc,Q�φ, and Qt , respectively, such that

V =Qv · v,

Ca½ � =Qc · c,

φ =Q�φ · �φ,

t =Qt · τ:

ð5Þ

Note that n, h, and l are already dimensionless in Equa-
tions (1b), (1c), and (3b).

Since the membrane potential V typically lies between
−60mV and 0mV, we define Tx =max ð1/τxðVÞÞ over the
range V ∈ ½−60, 0� and then define txðVÞ, a rescaled ver-
sion of τxðVÞ, by txðVÞ = TxτxðVÞ for x ∈ fn, hg. As ½Ca�
typically lies between 0μM and 1μM, we define Gð½Ca�Þ
= ½IP3�½Ca�/½ð½IP3� + KIÞð½Ca� + KaÞ�, gSERCAð½Ca�Þ = VSERCA
ð½Ca�/K2

SERCA + ½Ca�2Þ over the range ½Ca� ∈ ½0, 1�. Further-
more, we set Gc =max ðG3ð½Ca�ÞÞ and GS =max ðgSERCAð½
Ca�ÞÞ and then define Pmax = max fLIP3 , PIP3Gc,GSg. We
also define

gmax = max gNa, gK, gL, gNaP, gtonic−e, gCAN, Iextz, k1f g: ð6Þ

According to system (1a)–(3b), we get the following
dimensionless system:

C
Qt · gmax

dv
dτ

= −�gNam
3
∞ vð Þ 1 − nð Þ v − �VNa

� �
− �gKn

4 v − �VK
� �

− �gL v − �VL
� �

− �gNaPmp∞ vð Þh v − �VNa
� �

− �gtonic−e v − �V syn−e
� �

− �gCAN f cð Þ v − �VNa
� �

+�Iextz − �k1vρ φð Þ,
ð7aÞ

1
Qt · Tn

dn
dτ

=
n∞ vð Þ − n

tn vð Þ , ð7bÞ

1
Qt · Th

dh
dτ

=
h∞ vð Þ − h

th vð Þ , ð7cÞ

1
Qt

d�φ
dτ

= v − k2�φ, ð7dÞ

σ

Qt · Pmax · KCa

dc
dτ

= �LIP3 + �PIP3G
3 cð Þl3� �

· �Ca
� �

Tot − c − σ · c
� �

− �gSERCA cð Þ · c · σ,
ð7eÞ

1
Qt ·Qc · A

dl
dτ

= �Kd 1 − lð Þ − cl, ð7fÞ

with dimensionless parameters �gx = gx/gmax
ðx ∈ fNa, K, L, NaP, CAN, tonic − egÞ, �Vx = Vx/Qv
ðx ∈ fNa, K, L, syn − egÞ, �Iextz = Iextz/ðQv · gmaxÞ, �k1 = k1/
gmax, �φ = φ/Q �φ, �LIP3 = LIP3 /Pmax, �PIP3ðcÞ = PIP3 /Pmax,

�gSERCAðcÞ = gSERCAð½Ca�Þ/Pmax, and �Kd = Kd/Qc.
Combining the ranges of V , φ, and ½Ca�, suitable choices

for the voltage, magnetic flux, and calcium scales are Qv =
Q �φ = 100mV and Qc = 1 μM. We also see that values of

m∞ðVÞ, mp∞ðVÞ, n∞ðVÞ, h∞ðVÞ, f ð½Ca�Þ, GðCaÞ, �gSERCAð½
Ca�Þ, n, h, and l all lie in the range ½0, 1�. Combining the
parameter values in Table 1 and the values of variables in
the paper, we have gmax = max fIextzg = 50μA. Specifically,
Figures 1(a) and 1(b) show the plots of 1/τnðVÞ and 1/τhðV
Þ over the range V ∈ ½−60, 0�, which indicates that Tn ≈ 1:3
ms−1 and Th ≈ 0:0025ms−1. Similarly, we obtain Gc ≈ 0:06
and GS ≈ 1000 pL · ms−1 from Figures 1(c) and 1(d), respec-
tively. So, we have Pmax ≈ 1860 pL · ms−1. Using these values,
we see that all terms in the right-hand sides of Equations
(7a)–(7f) are bounded (in absolute value) by one.

The coefficients of the derivatives on the left sides of
Equations (7a)–(7f) now reveal the relative rates of evolution
of the variables. We find that C/gmax = 0:42ms ~Oð1Þms, 1
/Tn = 0:77ms ~Oð1Þms, 1/Th = 400ms ~Oð100Þms, σ/ð
Pmax · KCaÞ ≈ 3:98ms ~ Oð10Þms, and 1/Qc · A = 200ms ~Oð
100Þms. We use the notation O to denote an order of magni-
tude estimate: x ~ ð10nÞ, where n is the nearest integer to
log ðxÞ. We choose the fast timescale as our reference time,
i.e., pick Qt = 1ms, and set

Rv ≔
C

Qt · gmax
,

Rn ≔
1

Qt · Tn
,

Rh ≔
1

Qt · Th
,

Rφ ≔
1
Qt

,

Rc ≔
σ

Qt · Pmax · KCa
,

Rl ≔
1

Qt ·Qc · A
:

ð8Þ

As a result, dimensionless system (7) becomes system (9),
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Figure 1: Change of functions of (a) 1/τnðVÞ with membrane potential V , (b) 1/τhðVÞ with membrane potential V , (c) G3ð½Ca�Þ with ½Ca�,
and (d) gSERCAð½Ca�Þ with ½Ca�.

Table 1: Parameter values used in the paper.

Parameter Value Parameter Value Parameter Value

C 21μF θn −29mV KCAN 0.74μM

σ 0.185 θh −48mV nCAN 0.97

gL 2.8 nS θm −34mV IP3½ � 1.2 μM

gK 4 nS θmp −40mV LIP3 0.37 pL·s−1

gNa 10 nS σn −4mV PIP3 31,000 pL·s−1

gNaP 2.8 nS σh 6mV Ca½ �Tot 1.25μM

gtonic−e 0.3 nS σm −5mV KCa 0.000025 pL−1

gcan 0.7 nS σmp −6mV VSERCA 400 aMol·s−1

VNa 50mV �τn 10ms KERCA 0.2 μM

VK −85mV �τh 10,000ms A 0.005 μM·s−1

VL −65mV KI 1.0 μM Kd 0.4 μM

V syn−e 0mV Ka 0.4 μM
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namely,

Rv
dv
dτ

= −�gNam
3
∞ vð Þ 1 − nð Þ v − �VNa

� �
− �gKn

4 v − �VK
� �

− �gL v − �VL
� �

− �gNaPmp∞ vð Þh v − �VNa
� �

− �gtonic−e v − �V syn−e
� �

− �gCAN f cð Þ v − �VNa
� �

+�Iextz − �k1vρ φð Þ≔ f 1 v, n, h, c, Iextz, φð Þ,

Rn
dn
dτ

=
n∞ vð Þ − n

tn vð Þ ≔
f2 v, nð Þ
tn vð Þ ,

Rh
dh
dτ

=
h∞ vð Þ − h

th vð Þ ≔
f3 v, hð Þ
th vð Þ ,

Rφ

d�φ
dτ

= v − k2�φ≔ f4 v, φð Þ,

Rc
dc
dτ

= �LIP3 + �PIP3G
3 cð Þl3� �

× �Ca
� �

Tot − c − σ · c
� �

− �gSERCA cð Þ · c · σ≔ g1 c, lð Þ,

Rl
dl
dτ

= �Kd 1 − lð Þ − cl≔ g2 c, lð Þ,
ð9Þ

with relative rates of all variables: Rv =Oð1Þ, Rn =Oð1Þ, Rh
=Oð100Þ, Rφ =Oð1Þ, Rc =Oð10Þ, and Rl =Oð100Þ.

From this, we conclude that v, n, and �φ evolve on a
fast timescale, c evolves on a slow time scale, and h and
l evolve on a super slow time scale. Thus, the above model
can be regarded as a dynamic model containing three
timescales: fast, slow, and super slow variables. Equations
(1a), (1b), and (1d) form the fast subsystems, Equation
(3a) is the slow subsystem, and Equations (1c) and (3b)
form the super slow subsystem. In the current model,
intracellular calcium dynamics is confined to subsystem
(3a) and (3b) and evolves independently from subsystem
(1a)–(1d). The dynamics of [Ca] is affected by intracellular
Ca2+ concentration [Ca] and IP3 channel gating variable l
(Equations (3a) and (3b)). For simplicity, we chose
gCANTot

= gCAN f ð½Ca�Þ as the bifurcation parameter, where
f ð½Ca�Þ is a monotonically increasing concave function of
[Ca].

According to the nondimensionalization of the model,
the variable h is super slow. So, h can be considered a con-
stant when we do the fast-slow decomposition. That is, we
take h as the average value of the variable in the following
analysis.

3.2. The Firing Patterns and Bifurcation Analysis without
External Stimulation. Firstly, we consider the firing activity
of the full system with zero electric current and magnetic
flow. Time courses of the membrane potential V (black solid)
and the intracellular calcium concentration [Ca] (red
dashed) are shown in Figure 2(a).

One-parameter and two-parameter bifurcation dia-
grams of the fast subsystem are shown in Figures 2(b)
and 2(c), respectively. According to the nondimensionali-
zation, the variable h is a super slow variable. So, h is con-

sidered to be a constant which we take its average value as
h = 0:2834. gCANTot

is a slow variable and regarded as a
bifurcation parameter of the fast system. In this figure,
the equilibrium points form an S-shaped curve. The lower
(black solid line) and middle (black dash-dot line)
branches of the curve are composed of the stable nodes
and unstable saddles, respectively. The upper branch of
the curve is composed of the stable and unstable focus
separated by the subcritical Hopf bifurcation point (subH).
With the decrease of gCANTot

, the stable focus becomes
unstable, and an unstable limit cycle (red dashed line)
occurs at the subcritical Hopf bifurcation (subH). The
unstable limit cycle generated by the subcritical Hopf
bifurcation transits into the stable limit cycle (red solid
line) through the fold bifurcation of limit cycle (LPC).
The points F1 and F2 refer to the fold bifurcation. The
stable limit cycle disappears due to the homoclinic bifurca-
tion (HC). The trajectory of the full system (green curve)
is also appended on the bifurcation diagram. According
to Izhikevich’s classification scheme of bursting [35], the
firing pattern of system (1a)–(3b) can be identified as
“subHopf/homoclinic” bursting via “fold/homoclinic” hys-
teresis loop.

Figure 2(c) shows the two-parameter bifurcation analysis
of the fast subsystem in (gCANTot

,h)-plane, where fc, hc, lc,
and homo represent the fold bifurcation curve (red), Hopf
bifurcation curve (blue), fold limit cycle bifurcation curve
(black), and homoclinic bifurcation curve (purple), respec-
tively. The trajectory of the full system curve (green) is
also appended in the (gCANTot

,h)-plane. With the increase
of gCANTot

, the trajectory passes through different bifurca-
tion curves. Then, with the decrease of gCANTot

, the trajec-
tory crosses same bifurcation curves again and drops to
the origin state after meeting the homoclinic curve.

3.3. The Effect of Electric Current on Activity of Pre-BötC.
Figure 3 shows some electrical activities of the system with
different external forcing current Iextz. For other parameter
values, please refer to the appendix.

The enlarged area of the two periods of Figure 3(a) is
shown in Figure 4(a). We divide the change of membrane
potential with time in a cycle into phases ①-④. Phase ①

(from ★ to ▲) is the low potential resting stage, and its
duration is about 1200ms. Phase ② (from ▲ to ■) is
tonic spikings with gradually decreasing amplitude. The
time interval between adjacent spiking is very short, close
to zero. Phase ③ (from ■ to ◆) is spikings with small
amplitude, and the interval between spiking is very short.
Phase ④ (from ◆ to ★) is spikings with gradually increas-
ing amplitude, and the interval between adjacent spiking is
also very short.

In order to further reveal the influence of external
forced current on the electrical activity of neurons, the
ISI (interspike interval) bifurcation diagram is drawn in
Figure 4(b). We take the time interval between the maxi-
mum values of adjacent spiking as an ISI bifurcation dia-
gram and use the logarithmic function to process the data.
While the duration of phase ① increases slowly with the
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Figure 2: The dynamic analysis of system (1a)–(3b) without external stimulations (Iapp = 0). (a) The time course of membrane potential V
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increases of current Iextz at first, it begins to decrease rap-
idly when the current value reaches 21.5μA/cm2. At the
same time, the start time of phase ② advances, which
leads to more spiking in the original low potential resting
state, as shown in Figure 2 from (c) to (d). When the cur-
rent increases to 33.5μA/cm2, the original low potential
resting state disappears and all become spiking. In the
process of current Iextz increase, phase ③ maintains small
amplitude spikings and the duration of time gradually
decreases. When the value of Iextz reaches 47.7μA/cm2,
the original spiking of phase ③ becomes a resting state
with a higher membrane potential, and then, the duration
gradually increases, resulting in a gradual increase in the
current value near 50μA/cm2 of an ISI sequence.

3.3.1. Fast-Slow Decomposition. We can obtain one-
parameter bifurcation diagrams of the fast subsystem

(1a), (1b), and (1d) as shown in Figure 5, in which the
projection of trajectory (the green curve) of the full system
is also superposed. The equilibrium points form an S-
shaped curve which is similar to that without the electric
current and magnetic flow. The lower (solid black line)
and middle (dash-dot line) branches of the curve are com-
posed of stable nodes and unstable saddles, respectively.
The upper branch of the curve is composed of stable
and unstable focuses separated by the subcritical Hopf
bifurcation point (subH). With the decrease of gCANTot

,
the stable focuses become unstable, and the unstable limit
cycles (red dashed line) occur at the subcritical Hopf
bifurcation (subH) on the upper branch. The unstable
limit cycles turn to be stable limit cycles (red solid circle)
via fold bifurcation of limit cycle (LPC). The points F1
and F2 refer to fold bifurcation, and the point HC repre-
sents homoclinic bifurcation.
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Figure 5: Continued.
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For Iextz = −2 μA/cm2 and Iextz = 5 μA/cm2, the bifurca-
tion of fast subsystem (1a), (1b), and (1d) with respect to
the slow variable gCANTot

is shown in Figures 5(a) and 5(b),
respectively. Here, we set h = 0:2788 and h = 0:2375, respec-
tively (h takes the average value). Firstly, the trajectory tran-
sits from the lower rest state to the spiking state via fold
bifurcation (F1). Due to the attraction of the stable focus,
the amplitude of oscillation rapidly decreases until the trajec-
tory passes through the subcritical Hopf bifurcation (subH).

Then, as a result of the repelling effect of unstable focus, the
amplitude of the trajectory increases gradually. Finally, the
trajectory transits from spiking state to lower rest state, which
completes one periodic oscillation. Thus, the firing activity of
system (1a)–(3b) is the “subHopf/subHopf” bursting via
“fold/homoclinic” hysteresis loop. In this case, the bistable
structure is composed of the stable node on the lower branch
and the stable focus on the upper branch of the equilibrium
curve.
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Figure 5: Fast-slow bifurcation analysis of neuronal firing patterns under different electric currents: (a) Iextz = −2μA/cm2; (b) Iextz = 5μA/
cm2; (c) Iextz = 25 μA/cm2; (d) Iextz = 30μA/cm2; (e) Iextz = 40 μA/cm2; (f) Iextz = 50μA/cm2. The black solid line represents the stable
nodes (lower branch) and stable focus (upper branch); the black dash-dot line represents the saddles (middle branch) and the unstable
focus (upper branch); the red dashed and solid lines represent the maximum and minimum values of the unstable and stable limit cycles,
respectively. The points Fiði = 1, 2Þ and subH represent the fold bifurcation and Hopf bifurcation of equilibrium; the points LPC, HC, and
SNIC represent the fold bifurcation of the limit cycle, the homoclinic bifurcation, and saddle-node bifurcation on an invariant circle,
respectively. The green curve represents the trajectory of the full system.
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When Iextz increases to 25μA/cm2 and 30 μA/cm2, the
bifurcation of fast subsystem (1a), (1b), and (1d) with
respect to the slow variable gCANTot

is shown in
Figures 5(c) and 5(d), respectively. In these two cases,
the parameter h is set to be h = 0:1288 and h = 0:0986,
respectively. The trajectory jumps up to the upper branch
of the S-shaped curve via fold bifurcation F1. With the
strong attraction of stable focus, the oscillation decays
rapidly around the stable focus. After passing through
the subcritical Hopf bifurcation point (subH), the trajec-
tory unfolds itself progressively due to the repelling of
the unstable focus and the attracting of the stable limit
cycle generated by the fold limit cycle bifurcation
(LPC). Finally, the trajectory drops to the lower branch
of the equilibrium curve via saddle-node bifurcation on
an invariant circle. The bistable structure is composed
of the stable nodes on the lower branch and stable limit
cycles on the upper branch. The bursting can be classified
as “subHopf/fold cycle” bursting via “fold/circle” hystere-
sis loop.

When the value of Iextz continuously increases to
40μA/cm2 and 50μA/cm2, the bifurcation of fast subsys-
tem (1a), (1b), and (1d) with respect to the slow variable
gCANTot

is shown in Figures 5(e) and 5(f), respectively. h

is set to be h = 0:0490 and h = 0:0307, respectively. The
bistable structure in this case is confirmed by the stable
limit cycles and the stable focus on the upper branch of
the equilibrium curve. The quiescent state is lost via sub-
critical Hopf bifurcation (subH), and the periodic limit
cycle attractor corresponding to repetitive spiking disap-
pears via fold limit cycle bifurcation (LPC). Hence, the
bursting is “subHopf/fold cycle” bursting.

In Figures 5(c)–5(f), periodic orbits disappear via a
saddle-node bifurcation on an invariant circle (SNIC) as
gCANTot

decreases. Take Iextz = 30μA/cm2 (Figure 5(d)) as
an example, the periodic orbit of the (½Ca�,l)-space is shown
in Figures 6(a) and 6(b). Let ½Ca�SNIC be the value of [Ca] at
SNIC; the period of the limit cycle tends to infinite when
gCANTot

ð½Ca�SNICÞ ≈ 0:02937 at which the saddle-node bifur-
cation on an invariant circle (SNIC) occurs. Then, we get
½Ca�SNIC ≈ 0:02942 according to gCANTot

ð½Ca�SNICÞ = gCAN f ð
½Ca�SNICÞ.The corresponding periodic orbit in (½Ca�, l
)-space is shown in Figure 6(b). The point P1 (blue square)
denotes the time when the trajectory in subsystem (3a) and
(3b) jumps up from the left knee to the right branch of the
[Ca]-nullcline. Once leaving the left knee, the trajectory
jumps to the right branch quickly. Thus, we have a rapid
increase of [Ca] and gCANTot

correspondingly, and this
increase pushes the trajectory into the branch of periodic
orbits. Then, the value of [Ca] slowly decreases while the
trajectory in (½Ca�, l)-space slowly moves along the right
branch of the [Ca]-nullcline and finally jumps back to the
left branch of [Ca]-nullcline. As long as [Ca] is greater than
½Ca�SNIC (P2), the system keeps firing. Once [Ca] falls below
½Ca�SNIC, the trajectory solution stops firing and jumps
down to the lower branch of the S-shaped curve
(Figure 5(d)). Next, the trajectory in (½Ca�, l)-space moves
up along the left branch of the [Ca]-nullcline towards its
original position, and this completes one cycle of the peri-
odic orbit in the subsystem (3a) and (3b).

3.3.2. Bifurcation Analysis. To better understand the mecha-
nism of the different firing patterns evoked by the electrical
current, we present two-parameter bifurcation analysis of
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Figure 6: (a) The period of limit cycle of the fast subsystem with respect to parameter gCANTot
at Iextz = 30 μA/cm2; (b) the periodic orbit in

subsystem (3a) and (3b). The red curve is the [Ca]-nullcline, and the green curve is l-nullcline. The black closed orbit is the solution of
subsystem (3a) and (3b) projected in (½Ca�,l)-space.
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Figure 7: Two-parameter bifurcation diagram of the fast subsystem under the electric current in (gCANTot
,h)-plane showing the curves of fold

bifurcation (fc), subcritical Hopf bifurcation (hc), and fold bifurcation of limit cycle (lc), together with projection of the trajectory of the full
system (green-colored curve). (a) Iextz = −2μA/cm2; (b) Iextz = 5 μA/cm2; (c) Iextz = 25 μA/cm2; (d) Iextz = 30μA/cm2; (e) Iextz = 40μA/cm2; (f)
Iextz = 50μA/cm2.
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the fast subsystem as shown in Figure 7, in which gCANTot
and

h are bifurcation parameters.
For Iextz = −2 μA/cm2 and Iextz = 5 μA/cm2, as shown in

Figures 7(a) and 7(b), the trajectory of the full system
passes through the fold bifurcation curve (fc), the Hopf
bifurcation curve (hc), and the fold limit cycle bifurcation
curve (lc) at the same time. The fold bifurcation curve and
the Hopf bifurcation curve intersect near the full system
trajectory.

When Iextz increases to 25μA/cm2 and 30 μA/cm2, the
trajectory of the full system moves down with the decreasing
of h. It still passes through the three bifurcation curves of fc,
hc, and lc. But the gap distance between the fold bifurcation

(fc) and the Hopf bifurcation curve (hc) increases, as shown
in Figures 7(c) and 7(d).

When the value of Iextz continuously increases to
40μA/cm2 and 50μA/cm2, the trajectory of the full system
continues to move down to the decreasing direction of h. It
passes through two bifurcation curves of hc and lc. The tra-
jectory no longer passes through the fold bifurcation curve,
which leads to the changes of the bistable structure, as shown
in Figures 7(e) and 7(f).

The relative position of bifurcation curves and the trajec-
tory of the system projected in (gCANTot

, h)-plane changes
with the increase of Iextz. That means the value of Iextz affects
the critical bifurcations that determine the pattern of
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bursting. With the increase of Iextz, the bistable structure
related to bursting is changed, and the bursting with low
potential resting (the stable node on the lower branch) tran-
sits to bursting with high potential resting (the stable focus
on the upper branch).

3.4. Influence of Magnetic Flow on Activity of Pre-BötC. We
discuss the effects of magnetic flow on firing patterns of the
system by switching the parameter k1. Firing activities of
the system corresponding to different values of k1 are shown
in Figure 8. Other parameter values are given in the appen-
dix. The firing patterns of system (1a)–(3b) transit from
one bursting pattern to another one with the external
magnetic flow k1 increases.

The ISI bifurcation diagram of the magnetic flow feed-
back coefficient k1 is shown in Figure 9. Circled numbers

are the same as that in Figure 4(a). As k1 increases, the dura-
tion of phase ① first slowly increases and then decreases.
When k1 increases to 0.88, the original low potential resting
state turns to be spiking. With the increase of k1, phase ③

exhibits small amplitude oscillating, and its duration gradu-
ally decreases. When the value of k1 reaches 1.33, the small
amplitude oscillating in phase③ becomes a resting state with
a higher membrane potential, and at the same time, its dura-
tion gradually increases, which results in a gradual increase of
ISI sequence.

Similarly, Equations (1a), (1b), and (1d) form the fast sub-
system, and [Ca] is still the slow variable. We use gCANTot

=
gCAN f ð½Ca�Þ, instead of [Ca], as the bifurcation parameter,
and set h to be constant. The bifurcation diagrams of the fast
subsystem on the (gCANTot

,V)-plane are shown in Figure 10.
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Figure 10: Fast-slow bifurcation analysis of neuronal firing patterns with different magnetic flow for (a) k1 = 0:1; (b) k1 = 0:8; (c) k1 = 1:0; (d)
k1 = 1:5.
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With the parameter k1 increasing, the bistable structure also
changes. The bursting with low potential resting (the stable
node on the lower branch shown in Figures 10(a) and
10(b)) transits to bursting with high potential resting (the
stable focus on the upper branch shown in (Figures 10(c)
and 10(d)). In (Figures 10(b)–10(d)), periodic orbits also
disappear via a saddle-node on an invariant circle (SNIC)
bifurcation as gCANTot

decreases. The analysis is similar to
that in Figure 6.

Two-parameter bifurcation of the fast subsystem in
(gCANTot

,h)-plane is shown in Figure 11. Similarly, with the
increase of k1, the distance between the curves of fold bifur-
cation (hc) and Hopf bifurcation (lc) increases, which results
in the changes of the bistable structure. The parameter k1 and
the electric current have the same effect on the bursting
transition.

With the increase of k1, the middle branch of the S-
shaped curve moves to the right and the lower branch to
the left, as shown in Figure 12. Compared with the case when
there is no magnetic flow stimulus, the increase of k1 does not
change the bifurcation structure but changes the position of
the bifurcation point.

Finally, we give the ISI bifurcation diagram of α and β to
illustrate the influence of the magnetic flow on firing patterns,
as shown in Figures 13(a) and 13(b), respectively. The bifurca-
tion structure of ISI is similar to that of Figures 4(b) and 9,
which indicates that as the value of α or β increases, the shape
of the bursting will change. When the value of α or β is large
enough, the bursting will transit from low potential resting
to high potential resting at different threshold values. Increas-
ing the value of α or β can accelerate the transition from low-
potential resting state to high-potential resting state.
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Figure 11: Two-parameter bifurcation diagram with the effect of magnetic flow on (gCANTot
,h)-plane for (a) k1 = 0:1; (b) k1 = 0:8; (c) k1 = 1:0;
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14 Neural Plasticity



4. Conclusion

Bifurcation is one of the most important tools for under-
standing the generation and transition of rhythms. Changes
in system parameters or external stimulations lead to the
appearance of different bifurcations. Based on Butera’s model
with a memristor, the effects of electric current and magnetic
flow on firing patterns of the system are studied by means of
fast-slow decomposition and bifurcation analysis. We found
that both the direct current and magnetic flux affect the
rhythm of the pre-BötC neuron significantly.

The structure of two-parameter bifurcation gives us
much information about the pattern of firing. The direct cur-
rent Iextz can affect the relative position of the bifurcation
curves, which will lead to changes of the bistable structure
of the fast subsystem. The stability composed of the stable
nodes on the lower branch and stable focus on the upper
branch changes to the stability composed of stable focus
and stable limit cycle on the upper branch with the increase
of Iextz, which indicates that the control of direct current
Iextz can lead to desired firing patterns of the system. The var-
iation of magnetic flow can result in a similar effect. The
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results in this study may help to reveal and explain the
dynamic mechanism of electromagnetic pathogenesis and
may provide theoretical guidance to diagnosing the diseases
with pathological respiratory rhythm.

Appendix

For x ∈ fn, h,m,mpg, the function of x∞ðVÞ takes the form
x∞ðVÞ = 1/ð1 + exp ððV − θxÞ/σxÞÞ.

For x ∈ fn, hg, the function of τxðVÞ takes the form τxð
VÞ = �τx/cosh ½ðV − θxÞ/ð2σxÞ�.

The activation of the CAN current by the calcium con-
centration is given as

f Ca½ �ð Þ = 1
1 + KCAN/ Ca½ �ð ÞnCAN : ðA:1Þ

[IP3], as well as l, is described as follows:

JERIN
= LIP3 + PIP3

IP3½ � Ca½ �l
IP3½ � + KIð Þ Ca½ � + Kað Þ

� �3 !

× Ca½ �ER − Ca½ �� �
,

JEROUT
=VSERCA

Ca½ �2
K2

SERCA + Ca½ �2
 !

,

ðA:2Þ

in which ½Ca�ER is given as

Ca½ �ER =
Ca½ �Tot − Ca½ �

σ
: ðA:3Þ
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