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ABSTRACT

BACKGROUND/OBJECTIVES: Grifola frondosa, commonly referred to as the maitake 
mushroom, has been studied extensively to explore its potential health benefits. However, its 
anti-inflammatory effects in skin disorders have not been sufficiently elucidated. This study 
aimed to elucidate the anti-inflammatory role of the ethanol extract of G. frondosa in atopic 
dermatitis (AD) using in vivo and in vitro models.
MATERIALS/METHODS: We investigated its impact on skin and spleen inflammatory responses 
in Dermatophagoides farinae extract (DFE)/1-chloro-2,4 dinitrochlorobenzene (DNCB)-induced 
AD-like skin lesions in a mouse model. Additionally, we determined the immunosuppressive 
response and mechanism of G. frondosa by inducing atopic-like immune reactions in 
keratinocytes through tumor necrosis factor (TNF)-α/interferon (IFN)-γ stimulation.
RESULTS: Our study revealed that G. frondosa ameliorates clinical symptoms in an AD-
like mouse model. These effects contributed to the suppression of Th1, Th2, Th17, and 
Th22 immune responses in the skin and spleen, leading to protection against cutaneous 
inflammation. Furthermore, G. frondosa inhibited the production of antibodies immunoglobulin 
(Ig)E and IgG2a in the serum of AD mice. Importantly, the inhibitory effect of G. frondosa on 
inflammatory cytokines in TNF-α/IFN-γ-stimulated AD-like keratinocytes was associated with 
the suppression of MAPK (Mitogen Activated Protein Kinase) pathway activation.
CONCLUSIONS: Collectively, these findings highlight the potential of G. frondosa as a novel 
therapeutic agent for AD treatment and prevention.

Keywords: Grifola frondosa; atopic dermatitis; inflammation; cytokines; keratinocytes; 
mitogen-activated protein kinase

INTRODUCTION

Atopic dermatitis (AD) stands as the most prevalent long-term skin inflammation disorder 
globally. Its defining features include the accumulation of immune cells, heightened skin 
sensitivity, thickening of the skin layers, excessive skin cell growth, and typical eczema-
like rashes. Additionally, intense itching is a significant symptom of this condition [1]. 
Keratinocytes react to both external and internal threats by producing pro-inflammatory 
molecules that are part of both the innate and adaptive immune responses. These molecules 
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are crucial in attracting certain cells, which is a fundamental process in the development and 
progression of AD. This mechanism is essential for the initiation of AD [1]. Furthermore, the 
production of immunoglobulin(Ig)E antibodies in AD induced by environmental allergens or 
autoantigens is correlated with skin inflammation and disease severity [2].

The dominant Th2 immune response that governs AD includes the production of cytokines 
such as interleukin (IL)-4, IL-13, and IL-31, which induce skin inflammation and further 
amplify IgE [2]. Moreover, augmentation of the adaptive immune responses of Th1, Th17, and 
Th22 cells contributes to a more severe trajectory of atopic onset. Therefore, strategies aimed 
at modulating responsive T cells are appealing options for the treatment of AD [2].

At present, treatments that block IL-4 and IL-13, including the IL-4Rα blocker dupilumab 
and the anti-IL-13 drug tralokinumab, have shown positive results in individuals with AD [3]. 
However, the efficacy of these therapeutic approaches in fully mitigating all symptoms of the 
condition and whether they will sustain long-term benefits remain unclear [1]. Furthermore, 
owing to the limited response and potential side effects, achieving a complete cure for AD 
through these treatments remains a formidable challenge.

Natural products have served as abundant sources of anti-inflammatory agents and have 
been employed for millennia in the treatment and prevention of various diseases [4]. 
These natural products exert their anti-inflammatory effects by reducing ILs produced by 
neutrophils, lymphocytes, monocytes, and inflammatory cells in AD [5]. This effect blocks 
the inflammatory response primarily through inhibition of the MAPK and NF-kB signaling 
pathways [5].

Wild mushrooms have been used for a long time in worldwide as folk medicine and 
functional foods [6, 7]. Grifola frondosa, a large edible mushroom of the Meripilaceae family, 
has garnered recent attention owing to its long-term consumption, which positively 
influences immunity and metabolism [8], and exhibits anti-tumor activity [9], anti-obesity 
effects [10], anti-aging and neuroprotective effects [11], and inhibits of skin fibroblast 
inflammation and cytotoxicity [12]. It was therefore of interest to investigate whether G. 
frondosa can suppress the production of inflammatory cytokines in AD, thereby potentially 
controlling the condition.

In this study, we evaluated the anti-inflammatory properties of an ethanolic extract from G. 
frondosa on AD-like skin lesions, using both in vivo and in vitro models. G. frondosa inhibited 
proinflammatory cytokines both in vivo and in vitro in an AD-like skin lesion model, exerting 
regulatory effects via mitogen-activate protein kinase (MAPK) signaling. Thus, the data 
presented here demonstrate the potential of G. frondosa as a natural candidate substance for 
future AD prevention and effective therapeutic strategies.

MATERIALS AND METHODS

Preparation of plant extracts
Specimens of G. frondosa were sourced from the National Institute of Horticultural and 
Herbal Sciences in Korea. After lyophilization, the specimens underwent three separate 2-h 
extractions using a 70% ethanol solution. The extracted solution was then filtered through a 
0.25 µm filter and freeze-dried for a period of 5 days.
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Analysis of protein content and amino acids
The protein content of the extract was measured using the Bradford technique, with BSA 
(ranging from 0.1 to 1.0 mg/mL) forming the baseline calibration curve. To assess amino 
acids, the extract was broken down with 6N hydrochloric acid under vacuum conditions at 
110°C over 24 h. The content of amino acids in the extract was evaluated using an L-8900 
amino acid analyzer from Hitachi, Tokyo, Japan. This involved a post column reaction with 
ninhydrin. The settings for the amino acid analysis were an ion exchange column measuring 
4.6 × 60 mm; an injection volume of 20 μL; and a UV detector set at VIS1:570 nm and 
VIS2:440 nm. A standard amino acid solution from Wako Osaka, Japan, served to identify 
and calculate the amino acid levels.

FT-IR spectroscopy
The FT-IR spectral details were collected with an Agilent Cary 630 spectrophotometer from 
Agilent Technologies, USA. This instrument is equipped with a single-bounce diamond ATR 
module designed for KBr and is complemented by MicroLab and Resolutions Pro Software. 
Spectra were recorded in the range of 350 to 6,300 cm-1 with a 2 cm-1 resolution, using the 
transmission method.

Animals
Female BALB/c mice that were 8-wk-old were purchased from Samtako in Osan, Republic 
of Korea, and maintained in an environment free from specific pathogens. All experimental 
procedures received the green light from Konkuk University’s Institutional Animal Care and 
Use Committee under the approval number KU14012.

Induction of AD-like lesions in mice
Mice were subjected to AD by recurrently exposing their ears to Dermatophagoides farina extract 
(DFE; house dust mite extract) and 2,4-dinitrochlorobenzene (DNCB) in accordance with 
the method outlined by Choi et al. (2017). For AD induction, the mice were categorized into 
four distinct groups: control, AD, AD with G. frondosa, and AD supplemented with ceramide 
(Cera). Cera served as a benchmark treatment for positive results. The onset of AD was 
triggered by stripping both ear surfaces five times using surgical tape (Nichiban, Tokyo, 
Japan). Post this, 20 µL of 1% DNCB was applied to each ear and, after 4 days, it was followed 
by a 20 µL dose of DFE (10 mg/mL). Over the next 4 weeks, the DNCB and DFE treatments 
were alternated weekly. During this AD induction phase, an ethanolic extract of G. frondosa (20 
μL, 1 mg/mL) was topically applied to each ear. From day 7 to day 28, G. frondosa and Sera were 
applied every other day, for a total of 12 times.

One day after DNCB or DFE treatment, ear thickness was assessed using a dial thickness 
gauge (Kori Seiki MFG Co., Tokyo, Japan). On the 14th and 28th days, blood was drawn from 
the mice through orbital puncture, processed to obtain serum samples, and then preserved 
at −70°C. After blood extraction, ear tissues and splenocytes were harvested for further 
histological evaluation, as well as mRNA and protein analyses.

Histology
The removed ears were maintained in 4% paraformaldehyde for a duration of 16 h, after which 
they were encased in paraffin. Thin slices, measuring 5 µm each, were cut and stained with 
hematoxylin and eosin. The thickness of both the epidermis and dermis was measured under 
a microscope. For evaluating the invasion of mast cells, the tissue slices were stained with 
toluidine blue. Following this, mast cells were tallied in five randomly selected viewing areas.
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Cell culture of stimulation of keratinocytes
HaCaT cells were cultured in Dulbecco’s modified Eagle’s medium enriched with 10% fetal 
bovine serum and an antibiotic mix of 10 µg/100 mL of penicillin/streptomycin. They were 
maintained in an environment with 5% CO2 at a temperature of 37°C. Before exposure to 
TNF-α (10 ng/mL) and IFN-γ (10 ng/mL) for a duration of 30 min or 6 h, the HaCaT cells were 
first pre-treated with G. frondosa and cyclosporin A for an hour. Subsequently, the mRNA 
expression of various cytokines and chemokines were examined.

Cell viability
Cell viability was assessed using the 3-(4,5-dimethylthiazolyl-2)2,5-diphenyl tetrazolium 
bromide assay (MTT) assay. HaCaT cells (5 × 104 per well) were treated with various 
concentrations of G. frondosa After 24 h, MTT (5 mg/mL) was added to each well and further 
incubated for 4 h. The formed formazan crystals were dissolved by adding 100 μL of 
isopropanol to each well. The absorbance values of each sample were calculated in relation to 
the average absorbance of the untreated control group and presented as a percentage.

RNA isolation and polymerase chain reaction (PCR)
RNA was extracted from ear tissue, and splenocytes of every treatment group utilizing 
TRIzol, adhering to the guidelines provided by the manufacturer. Splenocytes were derived 
by mincing and pulverizing the spleen tissue before RNA extraction. Superscript II reverse 
transcriptase (Invitrogen, Waltham, MA, USA) was employed to produce the first-strand 
cDNA. Quantitative real-time PCR was carried out with a Thermal Cycler Dice TP850 (Takara 
Bio Inc., Shiga, Japan) in line with the provided instructions. PCR conditions have been 
previously described [13]. Briefly, a 25-μL reaction mixture was prepared for every sample by 
blending 2 μL of cDNA (100 ng), 1 μl of both sense and antisense primers (0.4 µM each), 12.5 
μL of SYBR Premix Ex Taq (Takarabio Inc., Shiga, Japan), and 9.5 μL of distilled water. The 
PCR settings were an initial step of 10 s at 95°C, followed by 40 cycles of 5 s at 95°C and 30 s 
at 60°C, and concluding with 15 s at 95°C, 30 s at 60°C, and another 15 s at 95°C. The mRNA 
quantities of the investigated genes were balanced against GAPDH, calculated as: relative 
mRNA expression = 2−(ΔCt of target gene−ΔCt of GAPDH), with Ct denoting the threshold 
cycle value. The ex-pression rate of the evaluated gene in each specimen was standardized 
against GAPDH and is shown as relative mRNA quantities.

Western blotting
Western blotting was conducted on whole cell lysates as previously described [13]. Briefly, 
cells (2 × 106 cells/6-well plate) were treated for 20 min to study the activation of p38, ERK, and 
JNK. Following treatment, cells were rinsed twice using cold PBS, and lysates were obtained in 
200μl of lysis buffer. After centrifuging these lysates at 4°C for 20 min, the clear supernatants 
were gathered. Proteins were then run on an 8–12% SDS-PAGE and subsequently moved onto 
a nitrocellulose membrane. To confirm consistent sample loading, the membrane was marked 
using reversible Ponceau S staining. The ECL-PLUS system (Amersham, Arlingon Heights, 
IL, USA) was employed for immunodetection. The antibodies chosen for the western blot 
included: phospho-p38 MAPK, p38 MAPK, phospho-p44/42 MAPK (Erk1/2), p44/42 MAPK, 
phospho-SAPK/JNK, and SAPK/JNK, all sourced from Cell Signaling Technology.

Enzyme-linked immunosorbent assay
Serum levels of immunoglobulin IgE and IgG2a were measured on day 28 after the first 
induction using an IgE and IgG2a enzyme-linked immunoassay kit (BD Biosciences, Franklin 
Lakes, NJ, USA), following the manufacturer’s instructions.
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Statistical analysis
Data analysis was carried out using GraphPad Prism 9. A one-way ANOVA was performed, 
followed by Dunnett’s multiple comparison test. All data are displayed as the average ± SD of 
relative fold variations.

RESULTS

Characterization of G. frondosa
We examined the chemical composition of G. frondosa after ethanol extraction. G. frondosa 
has considerable nutritional value because it is rich in proteins, carbohydrates, and selected 
phytochemicals (Supplementary Table 1). The ethanolic extract of G. frondosa contained 
195.46 ± 0.83 µg/g of carbohydrates. The monosaccharide constituents of the G. frondosa 
extract were primarily glucose (226.00 ± 3.22 µg/mL) and mannose (5.68 ± 0.37 µg/mL) 
(Supplementary Table 1). The ethanolic extract of G. frondosa also contained 208.50 ± 1.25 
µg/g of protein, predominantly composed of glutamic acid (5.0980 g/100 g), as shown in 
Supplementary Table 1. Polyphenols constituted the primary constituents of the G. frondosa 
ethanolic extract (10.72 ± 0.028 mg/g), followed by flavonoids (728.08 ± 13.21 µg/g), while the 
β-carotene and lycopene contents were 22.80 ± 0.75 µg/g and 2.27 ± 0.11 µg/g, respectively.

The ethanolic extract of G. frondosa displays its FTIR spectrum in Fig. 1. At 3375 cm-1, the band 
signifies hydroxyl stretching attributed to hydrogen bonds and N-H vibrations. The band at 
2931 cm-1 denotes C–H stretching. The 1622 cm-1 band reflects the asymmetric vibrations 
related to carboxyl groups. The stretch at 1,397 cm-1 is associated with the OH groups in 
phenolic components. Finally, the peaks at 1,079, 1,044, and 992 cm-1 are related to the 
C-O-C bonds from sugars present in the extract [14].
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G.frondosa suppressed symptoms of AD-like skin lesions in vivo
In this study, we investigated the potential in vivo inhibitory function of G. frondosa using an 
AD-like skin lesion model. AD was induced in the ears of BALB/c mice using DFE and DNCB 
for 28 days. Starting from day 7, as indicated in the schematic representation of disease 
progression, G. frondosa and Cera were used as treatment groups (Fig. 2A). DNCB/DFE-
induced AD mouse model, Cera, which demonstrated effects in reducing clinical symptoms, 
regulating inflammation, and inhibiting skin moisture loss, was used as a control [15]. To 
assess changes in symptoms, ear thickness was measured for 28 days, and photographs of 
the mouse ears were taken on day 28. The ear thickness of the DFE/DNCB-induced AD and 
Cera groups was significantly increased (Fig. 2B), and images of the mouse ears exhibited 
pronounced inflammation with erythema and scaling (Fig. 2C). In contrast, the G. frondosa 
group exhibited significantly lower ear thick-ness compared to both the AD and control mice 
groups and displayed image results similar to those of the control mice. Upon examining 
the ear tissue histopathologically, it was observed that the thickness of both the epidermis 
and dermis was notably greater in mice with AD, accompanied by an elevation in mast cell 
infiltration. However, in mice treated with G. frondosa, the thickness of the epidermis and 
dermis decreased and mast cell infiltration was suppressed (Fig. 2D and E).

G. frondosa suppressed AD-like skin lesions by inhibiting the production of 
inflammatory cytokines associated with Th1, Th2, Th17, and Th22 responses
AD is marked by varying inflammatory stages that transition from initial, acute phases 
dominated by Th2 and Th22 cells to a prolonged chronic phase where Th1, Th2, and Th17 
cells are prominent [16]. In particular, the Th1-driven IFN-γ promotes the formation of 
IgG2a antibodies, while the Th2-related cytokine IL-4 encourages the production of IgE. 
Consequently, each antibody type serves as a marker for different T cell reactions [17]. 
Numerous studies have interpreted the DFE/DNCB-induced AD skin lesion model as a 
chronic model, owing to the elevated production of IgE and IgG2a [13,18]. Therefore, we 
analyzed whether G. frondosa could inhibit the increased production of IgE and IgG2a in 
mouse serum induced by cytokines produced by T cells. As expected, elevated levels of IgE 
and IgG2a were observed in mouse serum 28 days after AD induction but was significantly 
suppressed in the serum of mice treated with G. frondosa (Fig. 3A). Subsequently, we isolated 
cells from mouse skin tissue and spleen to investigate whether the reduction in the clinical 
symptoms of AD induced by G. frondosa was associated with the inhibition of cytokine 
production in T cells. In AD mice, increased levels of IFN-γ (Th1), IL-4, IL-13, IL-31 (Th2), 
IL-17 (Th17), and IL-22 (Th22) have been observed in both the skin and spleen. In contrast, 
AD mice treated with G. frondosa exhibited a significantly lower mRNA expression of Th1, 
Th2, Th17, and Th22-related cytokines in these tissues and spleen cells (Fig. 3B and C). These 
results indicated that G. frondosa regulates the production of diverse cytokines derived from T 
cells within the skin and lymphoid tissues, even during the chronic phase of atopy, suggesting 
its potential to attenuate AD inflammation.

G. frondosa reduced the production of pro-inflammatory cytokines and 
chemokines in HaCaT cells
Human keratinocyte HaCaT cells stimulated with TNF-α and IFN-γ were utilized as an in vitro AD 
mimic model, featuring the expression of various inflammatory cytokines and Th2 chemokines 
such as CCL17 [13]. We first performed an MTT assay to assess the viability of HaCaT cells treated 
with different concentrations of G. frondosa to determine the effective concentration within the 
cells. G. frondosa treatment at various concentrations (0.25, 0.5, and 1 mg/mL) for 24 h did not 
affect the survival rate of HaCaT cells (Fig. 4A). To investigate the anti-inflammatory effects of G. 
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reduces immunoglobulin levels in the blood and suppresses cytokines related to Th1, Th2, Th17, and Th22. (A) Total serum IgE and IgG2a levels were measured 
by enzyme-linked immunosorbent assay. (B) Cytokine expression in the ears and spleen of mice exhibiting AD-like skin lesions. On the 28th day, the ears and 
spleen were removed and total RNA was extracted. The quantitative real-time polymerase chain reaction was conducted following the procedures outlined in 
the Methods section. Data are presented as the mean ± SEM. 
Ig, immunoglobulin; AD, atopic dermatitis; Cera, ceramide; ns, not significant. 
*P < 0.05; **P < 0.01; ***P < 0.001; ****P < 0.0001 indicates significant reduction compared to AD.



frondosa in in vitro AD-like model, we cultured HaCaT cells in a medium containing G. frondosa or 
cyclosporine A (CsA) after stimulation with TNF-α/IFN-γ. In AD patients, CsA, which effectively 
regulates pro-inflammatory cytokines, was used as a drug control [19]. After 6 h of stimulation, 
mRNA expression was measured using RT-PCR and qPCR. The results revealed that at 
concentrations of 0.5 and 1 mg/mL of G. frondosa, the expression of pro-inflammatory cytokines 
TNF-α, IL-6, and IL-1β, along with the CCL17 chemokine, was significantly suppressed in PCR 
analyses compared to the group stimulated only with TNF-α/IFN-γ (Fig. 4B and C). In addition, a 
more pronounced effect was observed compared to that of CsA (Fig. 4B and C).

G. frondosa controlled inflammatory cytokines and chemokines by inhibiting 
the activation of MAPK signaling
Stimulation with TNF-α and IFN-γ-stimulated HaCaT cells activate the p38, ERK, and JNK 
signaling pathways in the MAPK signaling cascade when producing pro-inflammatory 
cytokines and chemokines [20]. Given this, we investigated whether G. frondosa inhibits 
MAPK activation and suppresses pro-inflammatory cytokines and CCL17 in HaCaT cells 
stimulated with TNF-α and IFN-γ for 30 min in media containing G. frondosa. Using western 
blotting, we observed significant inhibition of p38 and ERK activation in cells treated with G. 
frondosa (Fig. 5). However, G. frondosa did not inhibit the JNK expression. These results suggest 
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Fig. 4. G. frondosa suppresses chemokines and cytokines in keratinocytes. (A) The cytotoxic effects of G. frondosa on HaCaT cells were examined. The MTT assay 
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TNF, tumor necrosis factor; IFN, interferon; CsA, Cyclosporine A; IL, interleukin. 
****P < 0.0001 indicates significant reduction compared to atopic dermatitis.



that G. frondosa inhibits pro-inflammatory cytokines and chemokines by interfering with or 
suppressing p38 and ERK MAPK signaling during inflammation activation in keratinocytes.

DISCUSSION

In this study, we investigated the inhibition of inflammation in AD and the underlying 
mechanisms of G. frondosa, which has a wide range of therapeutic activities such as 
immunomodulatory, antioxidative, and anti-inflammatory properties [12,21,22]. Many 
studies reported that G. frondosa harbors essential bioactive constituents, including β-glucans, 
with a relatively high content [23-25]. In addition, the application of β-glucans has been 
shown to result in significant improvements in the clinical symptoms of AD, particularly in 
the notable alleviation of pruritus in the treated half of the patients [26]. Our analysis of the 
ethanol extract of G. frondosa revealed a carbohydrate content of 195.46 ± 0.83 μg/g, and this 
extract exhibited higher levels of flavonoids, lycopene, and β-carotene compared to ethanol 
extracts from dried mushrooms. These components exert various therapeutic effects. Hence, 
we hypothesized that the constituents and contents of this G. frondosa ethanol extract would 
have a positive impact on the inhibition of inflammation in AD.

AD is a chronic inflammatory skin disorder characterized by dryness, itching, and rash [2]. 
The pathogenesis of AD is intricately linked to complex immune system dysfunction, in 
which T cells play a central role [2]. T cells are vital constituents of the immune system and 
are categorized into diverse sub-types, with particular emphasis on Th2 cells in the context 
of AD [27]. Overactivation of Th2 cells triggers an inflammatory cascade, impairing skin 
barrier function and enhancing sensitivity to allergens [2]. Although Th2 dominance is a 
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hallmark of the acute stages of AD, the transition from Th2 to Th1 is recognized as driving 
the chronic stage [27]. Progression from acute to chronic AD involves heightened Th2, Th1, 
Th17, and Th22 adaptive immune responses, accompanied by increased cytokine production 
[2]. Currently, therapies such as Th2 cytokine inhibitors, steroids, and immunosuppressants 
have demonstrated efficacy in AD and have become standard treatments [2]. However, owing 
to potential long-term side effects and limited effectiveness, the ongoing development 
of AD treatments is essential. Natural products, often associated with fewer side effects 
than conventional medications, hold promise as effective treatments when properly dosed 
[28]. In particular, G. frondosa exhibits anticancer, antimicrobial, antioxidant, and anti-
inflammatory actions [25]. In this study, we demonstrate the immunosuppressive activity 
of G. frondosa during the onset of AD, highlighting its potential as a natural remedy for 
dermatological conditions. The ap-plication of G. frondosa during AD induction in mice 
impeded inflammatory cell infiltration, including edema, erythema, and mast cell activation, 
thereby providing protection against AD. Moreover, G. frondosa suppresses the expression of 
cytokines produced by Th1 (IFN-γ), Th2 (IL-4, IL-13, and IL-31), Th17 (IL-17A), and Th22 (IL-
22) cells in skin and lymphoid tissues. Notably, IFN-γ and IL-4 stimulate B-cell differentiation 
into plasma cells, enhancing IgE and IgG2a production [29], which can amplify chronic AD 
inflammatory responses [2]. However, G. frondosa potentially contributes to the effective 
control of chronic AD by inhibiting all these processes.

Keratinocytes play an initiating role in triggering inflammatory cascades in AD, given that 
they are a major source of chemokines and inflammatory cytokines that recruit inflammatory 
cells, such as dendritic cells, adipocytes, eosinophils, and T cells, to the AD skin [30-32]. 
Among them, a chemokine known as CCL17 is not expressed in normal skin but is found 
in both acute and chronic AD lesions [31]. Elevated levels of CCL17 drive Th2 polarization, 
which is crucial in AD pathogenesis, and exacerbates AD by inducing pruritus [33]. While 
several mechanisms underpin CCL17 contribution to AD pathogenesis, numerous studies 
have reported that in HaCaT cells, TNF-α and IFN-γ, upon binding to their specific receptors, 
induce the activation of p38, ERK, or JNK through phosphorylation [20,34]. This triggers 
CCL17 synthesis, accompanied by inflammatory cytokines such as TNF-α, IL-1β, and IL-6, 
and is employed as an in vitro model mimicking AD [34]. In line with this, our results showed 
a significant increase in CCL17 and inflammatory cytokines in TNF-α and IFN-γ stimulated 
HaCaT cells, with G. frondosa demonstrably inhibiting these elevated cytokines. G. frondosa 
also distinctly suppressed the activation of MAPK pathways, notably the p38 and ERK 
pathways. This is consistent with recent reports showing that some constituents of G. frondosa 
inhibit p38, ERK, and JNK, demonstrating their anti-inflammatory and immunomodulatory 
effects [22]. In contrast, our in vitro results indicated that cyclosporine A, which is used for 
the treatment of immune disorders, such as AD, did not inhibit the activity of cytokines, 
including CCL17 and MAPK. These results suggest the potential of G. frondosa to be more 
effective in sup-pressing AD, emphasizing the value of natural product-based therapies.

In summary, G. frondosa is capable of suppressing AD, not merely as a single compound, but 
also as its own extract. Natural products typically contain various beneficial ingredients 
and are more cost-effective than most pharmaceuticals. Thus, when judiciously utilized at 
appropriate doses, these natural products present potential alternative therapeutic strategies 
for the management of AD. Our evidence suggests that G. frondosa, by inhibiting cytokine 
production across various T cell types, offers an appealing option for therapeutic strategies in 
both acute and chronic AD, as well as in other skin disorders.
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SUPPLEMENTARY MATERIAL

Supplementary Table 1
Content of carbohydrates, proteins and selected phytochemicals of aqueous extract from G. 
frondosa

Click here to view
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