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The potential relevance of prostanoid signaling in immunity and immunological disorders, or disease susceptibility and individual
variations in drug responses, is an important area for investigation. The deregulation of Cyclooxygenase- (COX-) derived
prostanoids has been reported in several immunoinflammatory disorders such as asthma, rheumatoid arthritis, cancer, and
autoimmune diseases. In addition to the environmental factors and the genetic background to diseases, epigenetic mechanisms
involved in the fine regulation of prostanoid biosynthesis and/or receptor signaling appeared to be an additional level of complexity
in the understanding of prostanoid biology and crucial in controlling the different components of the COX pathways. Epigenetic
alterations targeting inflammatory components of prostanoid biosynthesis and signaling pathways may be important in the process
of neoplasia, depending on the tissue microenvironment and target genes. Here, we focused on the epigenetic modifications of
inflammatory prostanoids in physiological immune response and immunological disorders. We described how major prostanoids
and their receptors can be functionally regulated epigenetically and consequently the impact of these processes in the pathogenesis
inflammatory diseases and the development of therapeutic approaches that may have important clinical applications.

1. Introduction

Theproinflammatory environment induced by prostanoids is
increasingly being recognized as a critical element for both
inflammatory diseases and cancer [1]. The molecular and
cellular basis of the immune regulation by prostanoids in
physiological and pathological situations remain a topic of
great interest. Biosynthesis of arachidonic-derived metabo-
lites and receptors formajor prostanoids are widely expressed
throughout the immune system [2] and function at mul-
tiple levels in immune and inflammatory regulations [3].
Many cellular functions that are critical in the pathologi-
cal processes such as carcinogenesis chronic inflammation
pathologies and asthma are regulated by various prostanoids
that are metabolites of Cyclooxygenase (COX) pathways,
especially prostaglandin E2 (PGE2) [4]. This inflammatory
bioactive lipid mediator is the best known and most well
studied COX metabolite [5]. It has been reported that
the endogenously released PGE2, the major metabolite of

the COX pathway, suppresses multiple immune functions
acting on most types of immune cells [6]. Among COX-
derived prostanoids, PGE2 is one of the best characterized in
terms of immunomodulation. It is a very attractive molecule
in that it by itself exhibits both pro- and anti-inflammatory
effects, particularly on dendritic cells (DCs). For example,
in physiological conditions, PGE2 critically regulates the
inflammatory phenotype and function of DCs [7], the most
potent antigen-presenting cells (APC) of the immune system
and known by their ability to stimulate naive, memory,
and effector T cells [8]. COX-2-derived prostanoids are also
involved in regulating various aspects of the T cell biology,
including proliferation, apoptosis, cytokine secretion, differ-
entiation, and chemotaxis [1, 9, 10].

In pathological conditions, overexpression of COX
enzymes and abnormal production of COX-derived PGE2
[11, 12] have been reported to be linked to all carcinogenesis
stages ranging from initiation to tumor progression [13].
Growing bodies of evidence have shown that COX-2-issued
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PGE2 markedly affects tumor angiogenesis [14–16]. When
overexpressed,COX-2-synthesizedPGE2 acts as a tumor pro-
moter, regulates tumor angiogenesis [14], and potently alters
the phenotype and function of circulating and tumor infiltrat-
ing cells, resulting in cancer-associated immunodeficiency
[17]. Moreover, many tumors are associated with high levels
of immunosuppressive PGE2 and an impaired differentiation
and antigen-presenting function of DCs with an immature
phenotype [18, 19]. In cancer, COX-2-derived PGE2 has also
been reported to play crucial roles in the immunosuppressive
function of Treg cells [20]. For these reasons and because
of its inducible property, COX-2 expression must be tightly
regulated and must be subjected to fine regulations.

COX-2 expression and PGE2 production can be induced
by several inflammatory stimuli including growth factors and
cytokines [21]. Proinflammatory cytokines, such as TNF-𝛼
[22, 23], IL-1𝛽 [24], and IFN-𝛾 [25], have the potential to
induce COX-2 gene expression, whereas anti-inflammatory
cytokines, in particular IL-4 [26], IL-13 [27, 28], and IL-
10 [29], can inhibit COX-2 gene induction and prostanoid
biosynthesis. In addition to the environmental factors and the
genetic background to inflammation, epigenetic acetylation
of histone and nonhistone proteins by histone acetyltrans-
ferases plays a pivotal role in the expression of the proinflam-
matory COX-2/PGE2/EP receptor axis and its downstream
signalling pathways.

2. Prostanoid Biosynthesis and
Signaling Pathways

Prostanoids are inflammatory lipid signaling molecules syn-
thesized by COX enzymes from phospholipase A2-released
arachidonic acid, a 20 carbon polyunsaturated fatty acid
present in most mammalian cell membranes and a major
component of animal fats. Arachidonic acid is released by
phospholipase A2 from the cell membrane and is converted
to PGG2 and then reduced to PGH2 by COX enzymes.
Two isoforms of COX enzyme are involved in the biosyn-
thesis of prostanoids, COX-1 (also known as Prostaglandin-
endoperoxide synthase, PTGS1) and COX-2 (also known as
PTGS2). COX-2 is a membrane-bound and heme-containing
enzyme which is a member of the mammalian heme-
dependent peroxidase family. Although the expression pro-
files of both isoforms varies from tissue to tissue, COX-1, a
housekeeping gene, is generally considered the constitutive
form, being responsible for the homeostatic production of
prostanoids and highly expressed in most tissues, including
platelets, lung, prostate, brain, gastrointestinal tract, kidney,
liver, and spleen [30]. However, COX-2, often referred to as
the inducible or rate-limiting isoform, is usually undetectable
in most normal tissues, being responsible for most of the
prostanoid production during inflammation and markedly
upregulated in various types of cancer, as well as in other
diseases [1, 17, 31]. COX-2 gene can also be constitutively
expressed in some tissues, such as the endothelium, kidney,
gastrointestinal mucosa, and brain [32–34], and the constitu-
tive expression of COX-2 gene may be a contributing factor
promoting tumoral pathologies, such as colorectal cancer
[35].

Despite their different physiological functions, COX-1
and COX-2 enzymes are known by their different suscepti-
bilities to inhibition by nonsteroidal anti-inflammatory drugs
(NSAIDs) used for symptomatic treatment of inflammatory
diseases, particularly due to their potent analgesic effect [36].
The common mechanism by which NSAIDs mediate their
action is the inhibition of COX activity. Because COX-2
is thought to be the predominant isoform involved in the
inflammatory response [37], most of the new research on
anti-inflammatory drugs has been aimed at targeting the
COX-2-inducible enzyme. Newly developed drugs that have
high selectivity against COX-2, such as celecoxib, have been
proved to be potent anti-inflammatory compounds without
causing gastric toxicity.

PGE2 exerts its diverse and often antagonistic effects
on target cells by various designated EP receptors (EP1–4)
differentially expressed on many cell types and have been
shown to differ in their signal transduction pathways [2, 38].
The use of agonists inducing changes in the levels of second
messenger including, cAMP and free Ca2+ and the identifi-
cation of G protein coupling by a variety of methods have
allowed studying the signal transduction pathways of PGE2
receptors. The four EP receptors showed differential patterns
of tissue distribution. EP1 mRNA is ubiquitously expressed
in murine tissues, while high levels of EP3 receptor mRNA
are found in adipose tissues, pancreas, kidney, and vena cava.
EP4 mRNA is mainly expressed in the gastrointestinal tract,
uterus, hematopoietic tissues, and skin, whereas EP2 receptor
mRNA was found to be least abundant among EP receptors,
with the highest expression occurring in the airways, ovary,
bone marrow, and olfactory epithelium [39]. In addition to
their differential patterns of tissue distribution, EP receptors
have been shown to differ in their signal transduction
pathways [40]. The EP1 receptor activates phospholipase C
and phosphatidylinositol turnover and stimulates the release
of intracellular calcium.The EP2 and EP4 receptors signal by
stimulating adenylate cyclase, which increases the intracel-
lular levels of cAMP. Signaling by the EP3 receptor is more
complex because ofmultiple EP3 receptor isoforms generated
by alternative splicing from a single EP3 gene. Because of
these various signaling pathways, PGE2 can exert different
and sometimes opposite effects on target cells [41]. Among
the four PGE2 receptors, EP2 and EP4 mediate most, if not
all, of the PGE2 effects on immune regulation [42–45].

Although, predominantly produced by APC, including
DCs and macrophages [46, 47], PGE2 is known by its
ubiquitous function because of the expression of various
PGE2 EP receptors subtypes on immune and nonimmune
cells [2, 7, 48]. In addition to environmental factors and
genetic background to inflammation and immune disorders,
prostanoid biosynthetic pathways and signaling can be regu-
lated by epigenetic mechanisms.

3. Epigenetic Modifications of COX Genes

Many advances in our understanding of chromatin structure,
histone modification, transcriptional activity, gene silencing,
and DNA methylation have resulted in an increasingly
integrated view of epigenetics and its impact in normal
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and pathological physiology. Inflammatory genes of the
prostanoid pathways can be functionally regulated epigenet-
ically. Dynamic epigenetic changes of prostanoid pathways
can affect the biosynthesis of COXmetabolites and/or the EP
receptor signaling. Several epigenetic mechanisms, including
DNA methylation, modification of histones, and noncoding
RNAs [49, 50] are involved in these processes. It has been
reported that histone acetylation is an important modifica-
tion affecting gene transcription and is controlled by the
action of histone acetyltransferase and deacetylase [51].

In mammals, changes in DNA methylation status and
alterations in chromatin structure by histone modification
represent the major epigenetic mechanisms involved in the
regulation of gene transcription [52–54]. In fact, mammal’s
DNA is subjected to covalent modification that alters the
chemical information content displayed in the major groove.
This molecular process is classically associated with func-
tions in genome defense and in genomic imprinting [55].
Described for the first time in calf thymus [56], methylation
of cytosine is the most abundant DNA modification and
occurs mainly during cellular differentiation [57]. DNA
methylation is catalyzed by a well characterized family of
enzymes, termed DNA methyltransferases [58]. In human
cells, 60–80% of all CpG sites are highly methylated with
some variation by cell type [59, 60].

Prostanoids are biologically active lipid mediators
involved in several biological processes such as pain, fever,
regulation of vascular tone, renal function, mucosal integrity,
inflammation, angiogenesis apoptosis, and tumor growth.
They are very attractive signaling molecules known by their
critical role in regulating immune cell function [4, 7, 61].
These numerous biological processes are regulated by
prostanoids through acting on secretion of various proteins,
proteolysis, transcriptional activation, and epigenetic control.
The biology of prostanoids has been extensively studied in
cancer, and COX-2 pathway has emerged as a potential
therapeutic target in some tumors [62, 63].

Genes encoding for inflammatory prostanoids and their
receptors are subjected to epigenetic modifications by acety-
lation of core histone. Substantial evidences reported that
COX-2 is an important epigenetically controlled gene inflam-
matory gene in many pathological processes [63, 64].
Immune disorders, such as asthma and cancer, are character-
ized by the expression of various inflammatory genes that can
be epigenetically regulated by acetylation of core histone. For
example, increased activity of histone acetyltransferase and
reduced activity of histone deacetylase have been observed
in asthmatic patients [65]. The increased activity of his-
tone acetyltransferase and the decreased activity of histone
deacetylase resulted in the induction of inflammatory gene
expression [65, 66]. Corticosteroids used as antiasthmatic
treatment can exert their anti-inflammatory effects by regu-
lating histone acetyltransferase or histone deacetylase activity
[67]. Histone deacetylases are histone modifying enzymes
identified as critical regulators of proinflammatory cascade,
especially by acting onNF-𝜅B signaling pathway [68]. Recent
study reported that epigenetic regulation is an important
mechanism by which iloprost, a PGI2 analog, modulates
asthma-related chemokines expression in monocytes [69].

Used as a potential candidate for treating asthma, PGI2
analog acts as an anti-inflammatory molecule inhibiting
TNF𝛼 expression via MAPK signaling pathway and the
downregulation of histone H3K4 trimethylation [70].

COX-2 is also an epigenetically controlled gene in various
cellular processes including the development, differentiation,
and function of many immune cells, such as T regulatory
(Treg) cells involved in the cancer-mediated immune sup-
pression, and play a key role in immune regulations [71, 72].
Tumor-infiltrating Treg cells are able to suppress tumor-
specific T cell immunity and contribute to the growth of
tumors in a COX-2-dependent manner in mouse and human
[64, 73, 74]. In cancer, COX-2-derived PGE2 plays essential
roles in the immunosuppressive function of Treg cells in an
autocrine and paracrine manner. These immunosuppressive
cells express COX-2 and produce PGE2 upon differentiation
[74].The endogenously produced PGE2 released in the tumor
microenvironment can inhibit T cell-mediated antitumor
responses [75–77] and enhance the suppressive capacity of
CD4+ CD25+ Treg cells [78].These immunosuppressive cells
are characterized by their specific molecular marker Foxp3
(Forkhead box protein P3), which is also an epigenetically
modulated transcription factor involved in the development,
differentiation, and function of Treg cells [79, 80]. Deficiency
or spontaneousmutations of Foxp3 gene leads to fatal autoim-
mune lymphoproliferation and autoimmune diseases caused
by inactive Treg cells. In lung cancer, Foxp3 expression and
Treg cell activity can be induced by COX-2-derived PGE2,
and these effects can be reversed by COX-2 inhibitors and
PGE2 receptor antagonists [81]. Taken together, these data
suggested that targeting COX-2/PGE2 axis may have crucial
roles in immune regulations in cancer microenvironment.

In addition to its indirect action, COX-2-derived PGE2
can exert direct effects on tumor cells. Several lines of
evidence reported that PGE2 exhibits antiapoptotic and
invasion-promoting effects thus supporting protumoral roles
in some cancers [82, 83]. Evidence from epidemiological
studies and clinical trials clearly indicates that aspirin, which
is one of the most widely used drugs in the world, can protect
against different types of cancer [84]. The COX-dependent
mechanisms for the antitumoral effects of low dose aspirin
have been clearly demonstrated especially in colorectal can-
cer [85] and the possible contribution of individual genetic
cancer susceptibility to aspirin response [86] should be taken
into consideration as an additional level of complexity in the
understanding of the antitumor effects aspirin. Despite the
individual genetic cancer susceptibility to aspirin, epigenetic
control of some target genes appeared to play a crucial role
in the antiproliferation of salicylates and NSAIDs. Accumu-
lating data reported that targeting the epigenome may play a
key role in cancer chemoprevention [87, 88].

Since the cancer genome usually contains both hyper-
and hypomethylated genes to increase invasion, proliferation,
and metastasis, it is not surprising that COX-2 gene can
be upregulated or downregulated by epigenetic mechanisms.
Several lines of evidence reported that COX-2 expression
and prostanoid biosynthesis may be affected by various
perturbations that are present in most cancer types. For
example, silencing of COX-2 gene by hypermethylation has
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been reported in human colon cancer [89, 90]. Many data
from epidemiological and clinical studies reported that COX-
2 expression and prostanoid biosynthesis are frequently
overexpressed in many cancer types [11, 91, 92]. The general
consensus is that the elevated expression of COX-2 protein is
commonly observed in many chronic inflammatory diseases
and cancer [93]. However, other studies clearly reported that
COX-2 protein may be downregulated in tumors of a subset
of colorectal and gastric cancer patients, and the downregu-
lation of the COX-2 gene appeared to be strongly correlated
with CpG islandDNAmethylation [90, 94].These conflicting
data suggested that other factors may contribute to the regu-
lation of COX-2 gene in chronic inflammatory diseases and
cancer. Kikuchi et al., [95] reported that the downregulation
of the COX-2 gene is mediated by histone deacetylation in
gastric cancer, whereas COX-1 gene has only been found
epigenetically silenced by promoter hypermethylation in
pancreatic tumors [96].Thehypermethylation ofCOX-2 gene
by histone deacetylation has been described in several tumor
types such as gastric [95], pancreatic [96], breast [97, 98],
hepatic [99–101], nasopharyngeal [102], prostate [103, 104],
esophageal [105, 106], and cervical tumors [107, 108]. Col-
lectively, these data clearly showed that epigenetic alterations
play a critical role in the deregulation and aberrant expression
of the genes of the COX pathway in different types of cancer.

PGE2 regulates numerous biological processes by mod-
ulating transcriptional activation, proteolysis, secretion of
various proteins, and epigenetic control. This lipid mediator
could not only be regulated epigenetically but also act by
itself as a potential epigenetic regulator of the transcriptional
mechanisms of other inflammatory processes. In fact, given
its increased production in chronic inflammatory diseases
and cancer, it is not surprising that PGE2 could act as a
potential regulator of other inflammatory genes. For example,
it has been reported that PGE2 activates IL-8 transcription
gene through specific demethylation of the CpG site and
abnormal acetylation of histoneH3 in the IL-8 promoter gene
in human astrocytoma [109].

4. Epigenetic Modifications Targeting
EP Receptor Signaling

PGE2 exerts its effects on target cells by binding on four
EP receptors with seven transmembrane domains to trigger
various intracellular signal transduction cascades, impacting
cell growth, survival, apoptosis, and immune responsiveness
[110]. The existence of four subtypes of PGE2 receptors is
remarkable given that each of the other prostanoids each has
only a single receptor. This complex family of EP receptors
coupled to distinct intracellular signals provides a molecular
basis for the diverse physiological and sometimes oppos-
ing actions of PGE2 [111]. Differential expression of these
EP receptors mediates the diverse and often antagonistic
effects of PGE2 on a variety of cell types [37]. Like many
inflammatory signaling molecules, genes encoding for all
of the PGE2 receptors are subjected to fine regulations by
various mechanisms. Growing bodies of evidence indicate
that epigenetic modifications play a critical role in the
deregulation of the genes of the EP receptors with critical

consequences on downstream signaling [112, 113]. DNA CpG
methylation and histone posttranslationalmodifications have
been reported to be major epigenetic mechanisms affecting
EP receptor expression and synthesis in most cancer types
[114]. It has been reported that histone acetylation was found
to be a critical regulator of EP receptor expression in cancer
[113]. For example, EP receptor expression appeared to be
frequently dysregulated in non-small lung cancer (NSLC), via
DNACpGmethylation and histone posttranslational modifi-
cations [115].The EP1 receptor signaling, which is involved in
PGE2-mediated activation of MAPK/ERK-induced cellular
proliferation [116], was found to be downregulated by histone
deacetylase inhibitors in NSCLC cell lines. The EP2 expres-
sion appeared to be predominantly downregulated by DNA
CpG methylation and may have an important role in the
pathogenesis of NSLC [113]. The epigenetic downregulation
of the EP2 gene by DNA CpGmethylation was also observed
to be associated with progression of neuroblastomas [117]. In
addition, EP2 gene has been found to be hypermethylated
in lung [113] and gastric [118, 119] cancers. In idiopathic
pulmonary fibrosis, DNA hypermethylation appeared to be
responsible for diminished EP2 expression levels and PGE2
resistance [120]. The use of DNA methylation inhibitors
5-aza-2-deoxycytidine and zebularine as well as DNA
methyltransferase-specific siRNA increased EP2 mRNA and
protein expression levels and restored PGE2 responsiveness
in fibrotic fibroblasts. Shoji et al. [112] have reported that the
PGE2 receptor subtype EP3 plays a critical role in suppression
of cell growth and that its downregulation enhances colon
carcinogenesis at a later stage. DNA methylation of the
EP3 receptor gene has been demonstrated in both colon
cancer and oesophageal cancer and the use of a DNA
demethylating agent restored EP3 receptor expression in
various cell lines [112, 121]. Hypermethylated EP3 [105] and
EP4 [118] genes have been reported in colorectal and gastric
tumors, respectively.Moreover, it has been demonstrated that
DNA methyltransferase inhibitors and histone deacetylase
inhibitors upregulate EP3 and EP4 receptor expression in
cancer lung [113]. Collectively, these data clearly demonstrate
that EP receptor signaling can be functionally regulated
epigenetically and may represent a potential targets for epi-
genetic therapies in the treatment of inflammatory disorders,
such as cancer, autoimmune diseases, and asthma.

5. Concluding Remarks

The inflammatory COX-derived prostanoids are increasingly
being recognized as critical regulators for both immunity and
immunological diseases. Substantial data clearly showed that
prostanoid biosynthesis and signaling pathways are altered
in these pathological processes. Pharmacological targeting
of prostanoid biosynthesis and/or signaling with NSAIDs,
COX-2 selective inhibitors, and EP receptor antagonists has
been investigated for many years with promising results at
both preventive and therapeutic levels. There are many fas-
cinating accumulating data on the biology of inflammatory
prostanoids in normal and pathological settings. Numerous
studies reported that epigenetic control is an important
mechanism by which COX/PGE2/EP receptor axis can be
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markedly modulated. Epigenetic modifications emerged as
additional levels of complexity to the understanding of the
regulation and functionalities of the COX pathway and
prostanoid signaling in physiological and pathological set-
tings. Investigating the epigenetic alterations that impact
both COX enzymes and prostanoid receptors may inform on
pathological events that characterize the immunomodulatory
functions of these inflammatory lipid mediators in various
immune disorders and may be relevant for the efficient
clinical use of NSAIDs, COX-2 selective inhibitors, and EP
receptor antagonists at both preventive and therapeutic levels.
Thus, besides NSAIDs and EP receptor antagonists, epige-
netic therapies, including DNA methyltransferase inhibitors
and histone deacetylase inhibitors, should be considered in
studying cellular proliferation and invasiveness in immune
disorders and in the development of therapeutic approaches
aimed at targeting inflammatory prostanoid biosynthesis
and/or signaling. Epigenetic regulations, especially alter-
ations in DNA methylation, are intimately linked to the
development of various human tumors. Because the cancer
genome usually contains both hyper- and hypomethylated
genes to increase invasion, proliferation, and metastasis,
epigenetic control of inflammatory genes such as COX-2
should be taken into consideration as a potential therapeutic
target in tumoral pathology. Thus, the epigenetic regulation
of prostanoids is extremely interesting and deserves further
investigations.
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