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Electronic polymers and soft-matter-like broken
symmetries in underdoped cuprates
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Empirical evidence in heavy fermion, pnictide and other systems suggests that unconven-

tional superconductivity appears associated to some form of real-space electronic order. For

the cuprates, despite several proposals, the emergence of order in the phase diagram

between the commensurate antiferromagnetic state and the superconducting state is not well

understood. Here we show that in this regime doped holes assemble in ‘electronic polymers’.

Within a Monte Carlo study, we find that in clean systems by lowering the temperature the

polymer melt condenses first in a smectic state and then in a Wigner crystal both with the

addition of inversion symmetry breaking. Disorder blurs the positional order leaving a robust

inversion symmetry breaking and a nematic order, accompanied by vector chiral spin order

and with the persistence of a thermodynamic transition. Such electronic phases, whose

properties are reminiscent of soft-matter physics, produce charge and spin responses in good

accord with experiments.
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T
he anomalous behaviour of several physical quantities in
cuprates above the superconducting transition temperature
suggests that high-temperature superconductivity emerges

close to a quantum critical point between a broken-symmetry
state and the disordered phase, in analogy with heavy fermion
materials, pnictides and organics1. However, identifying the
broken-symmetry phases has proven much more difficult than in
other materials, despite several ‘gold rushes’ in the underdoped
region of the phase diagram, triggered by the observation of stripe
order2,3, nematic order4–7, time-reversal symmetry breaking8 and
incommensurate charge-density-wave order9.

While some form of charge order (CO) is well established10, an
important question is how this order is formed starting from the
two extremes of the phase diagram. When coming from the high-
doping region, CO seemingly arises as a second-order instability
of the uniform strongly correlated metallic state, producing
incommensurate charge density waves driven by magnetic11,12,
phononic13,14 or mixed15 microscopic mechanisms. On the other
hand, the occurrence of CO from the Mott insulating low-doping
side is more directly tied to the tendency of Mott
antiferromagnets to expel and segregate charges16–19. This latter
region is the playground of our present work.

Recently, it was pointed out20,21 that, at very low doping, charge
segregation may acquire features related to the occurrence of
topological excitations in doped antiferromagnets. The starting
point is the observation that holes in an antiferromagnet induce a
vortex (V) or antivortex (A) texture in the surrounding spin
ordering. While isolated vortices are energetically expensive, a VA
pair is stable22–25, because its annihilation is hindered by the
strongly correlated character of the doped holes and the
disturbance of the antiferromagnetic background rapidly dies
out at large distances. As in early proposals26,27 inspired by the
work of Villain28,29, these VA ‘dimers’ explain the extremely rapid
destruction of long-range antiferromagnetic order with doping.

In the present scenario, the dimers or ‘nematogens’ self-
organize and give rise to ‘electronic soft-matter’ effects30.
Specifically, the dimers may undergo a ‘polymerization process’,
triggering charge segregation into segments, tightly bound to V
and A spin textures. These segments not only align forming a
nematic state, but can also break inversion symmetry28,29 owing
to their intrinsic topological dipolar character (associated with the
V and A at the end points of the ‘polymer’). This state, which was
named ferronematic20,21, is accompanied by a spin spiral state
sustaining a net spin current. At large scales, this feature is
reminiscent of other proposals31–34, which are however based on
impurity states instead of the polymer states that are central to
our results. A ferronematic phase was proposed also to occur in
ultra-cold dipolar Fermi gases of atoms35.

We pose here the following fundamental questions: which
other phases can be sustained by the electronic polymers, how are
they affected by quenched disorder, what is the fate of the
thermodynamic phase transitions expected in ideally clean
systems, and how their characteristic temperature scales emerge
from the (usually much higher) electronic scales of the system. In
order to study the problem at the large length scales probed by
experiments, we carry out a multiscaling approach starting from a
microscopic model and derive a mesoscale effective model treated
with Monte Carlo. We obtain a rich phase diagram for the
electronic polymers as a function of temperature and disorder,
which allows to rationalize the charge and spin responses
observed experimentally.

Results
Numerical simulations. We start from the very low-doped
regime of few holes in the spin antiferromagnetic background of a

CuO plane modelled by a one-band Hubbard model. We study
the dimers at mean-field level in the Gutzwiller approximation
(see Methods section; Supplementary Note 1 and Supplementary
Fig. 1). With realistic parameters for La2� xSrxCuO4, the most
favourable configuration for two holes is along the diagonal of a
plaquette with a planar dipolar distortion of the anti-
ferromagnetic background. The latter can be visualized as due to
a V and an A centred close to (but not exactly at) the vertices of
the plaquette and forming a ‘topological dipole’ (TD). There is
another two-hole mean-field solution that is non-planar and
consists of a skyrmion texture22, which, for the present
parameters, is B100 K higher in energy than the TD, and
therefore will be neglected at low temperatures in the following.

Studying metastable planar configurations in which two or
more of these TDs are arranged with different positions and
orientations (Supplementary Figs 2 and 3 and Supplementary
Note 1) we find, as expected, that at large distances holes interact
through a logarithmic interaction36 between their topological
charges, whereas at short distances their interaction is modified
by quantum effects related to the overlap of the hole wave
functions. The logarithmic interaction stems from the fact that for
planar textures, the long-range behaviour can be captured by an
XY model26,27. Notice that we are not claiming that the symmetry
of the model is reduced from Heisenberg to XY. Indeed each
texture has a zero mode related to the change of the plane that
contains the spins, as it should for an O(3) symmetric model.
However, contrary to what would happen for a single V in the
pure Heisenberg model, the textures have no unstable modes21

that would break the planar character of the texture, that is, they
are locally stable and therefore their energy is correctly captured
by a planar magnetic model.

In order to enable simulations in large systems, we do not
consider explicitly the spin degrees of freedom but integrate them
out to generate effective interactions among topological charges.
While this is an enormous computational advantage, it limits our
simulations to low doping (nhu0.1 holes per unit cell) where spin
currents are small on average and the superposition principle is
valid, allowing for a mapping of topological charges onto a two-
dimensional (2D) Coulomb gas36. The effective interaction
among topological defects, needed for the Coulomb gas model,
is obtained by fitting the energy of several metastable zero-
temperature Gutzwiller approximation solutions obtained in the
Hubbard model.

As a consequence of the interaction mediated by the
antiferromagnetic background, when a large even number of
holes is added to the system, these tend to bind into a single
polymeric chain of alternating topological charges, ending with a
V and an A. Adding the real three-dimensional (3D) long-range
Coulomb repulsion among holes, whose strength is measured by
a parameter Qrep (see Methods section), these long polymers
break into smaller polymers, as shown in Fig. 1 and
Supplementary Fig. 5.

We work at temperatures T smaller than the binding energy of
individual VA pairs (E100 K), so that the number of unbound
topological charges is negligible. Therefore, our basic constituents
in the Monte Carlo computations are the TDs. These are
modelled by a bound V and A, each moving on the sites of a
square lattice, with the topological charge adjusted so that the
dipole moment matches the Gutzwiller computations (see
Methods section). Since there are no topological constraints on
the charge ±k of the V and A, they turn out to be fractional,
kE0.8 (Supplementary Note 1).

A crucial problem in cuprates is to determine how disorder
affects the ordered phases of the ideal ‘clean’ system7,37. In order
to address this issue, the holes attached to the topological charges
are subject to a ionic disorder potential with strength Qion,
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generated by the counterions out of the CuO2 plane (see Methods
section, Supplementary Note 2 and Supplementary Fig. 4). The
magnitude of Qion is difficult to estimate because it depends on
screening processes not comprised in the model. Therefore, we
treat Qion/Qrep as a phenomenological dimensionless parameter
that characterizes the amount of disorder.

We consider a L� L square cluster with even number of holes
Nh, corresponding to Nh/2 TDs. Although we explored various
fillings, for the sake of definiteness in the present communication,
we report the results for the typical case L¼ 100 and Nh¼ 300,
corresponding to a hole doping nh¼ 0.03.

To characterize the broken symmetries, we define a nematic
order parameter f(T) (equation (5) in Methods section), which
becomes different from zero when the C4 rotational symmetry of
the lattice is broken. We also define the polarization of the system as
the normalized sum of all the TD moments projected on the (1,1)
and (1,� 1) preferred directions (cf. Methods section, equations (6)
and (7)). A nonzero polarization in the system implies a breaking of
inversion symmetry of the magnetic texture. Vector chiral spin
order is characterized by the chirality w1;�1 (see equation (8) in
Methods section). Finally, the charge and spin structure factors
allow us to further characterize the various phases.

The Monte Carlo computations find at high temperature a
classical liquid of dimers that tend to form longer polymers as
temperature is lowered (Supplementary Fig. 6), and to align along
the diagonal directions, which are energetically favourable.
Figure 1a reports a snapshot of this high-temperature phase
taken during the Monte Carlo evolution.

Clean system. For the clean system (Qion¼ 0) we find that when
T is low enough, the segments orient to form a state with C4

symmetry breaking. As is clearly visible in Fig. 1b (see also
Supplementary Fig. 5), associating the segments with ‘polymers’,
the low-T phase corresponds to the so-called smectic order of soft
matter38, in which the system has long-range positional order in
one direction, with periodicity ‘c ¼ 1=qc (qc being the magnitude
of a characteristic wave vector in reciprocal lattice units (r.l.u.)),
but remains ‘liquid’ in the other direction. This manifests as sharp
(resolution limited) peaks in the structure factor along the
diagonal of the Brillouin zone (Fig. 2a), that is, perpendicular to
the preferred polymer direction, signalling long-range positional
order. As is shown in Fig. 2e, the main spin peak is 20 times
higher than the charge peak, because the spectral weight of the
latter is spread over a wider range of wave vectors, owing to the
highly anharmonic charge distribution. (Notice that both
structure factors, as defined in Methods section, have the same
normalization.) Regarding CO, this state has the same symmetry
as a diagonal stripe state. However, the charge is uniform along
the stripe direction only after thermal fluctuations have been
taken into account. In addition, this state breaks inversion
symmetry, that is, TDs tend to point in the same direction, thus
we call it ferrosmectic.

The ferro ordering associated with this and other phases is not
trivial. Indeed, in contrast to dipoles on a cubic lattice in three
dimensions, it would not occur if, for example, the TDs were
arranged at fixed positions on a square lattice. This stems from
the 2D dipole–dipole interaction, which is ferroelectric in a nearly
head-to-tail configuration of the dipoles, but is antiferroelectric
for a side-by-side configuration. In our model, the ferro tendency
wins because the real Coulomb interaction between the
electrically charged holes favours short-range triangular arrange-
ments of the segments, that is, segments in one row tend to face
gaps in the neighbouring rows as is clear in Fig. 1b (highlighted
by white lines) and Fig. 1c, so that the side-by-side arrangements
are rare. The colours in Fig. 1 show the phase of the local
staggered magnetization. In Fig. 1b–d, the phase increases
monotonically along one diagonal, indicating that these phases
have long-range vector chiral order, that is, w1,� 1a0 or w1,1a0.

Upon further lowering the temperature, the ferrosmectic phase
keeps the ferro ordering (and the vector spin chirality), but forms
a Wigner crystal for Tu10 K as shown in Fig. 1c. This
‘ferrocrystal’ manifests as additional resolution limited off-
diagonal peaks in the charge structure factor (as the one indicated
with an arrow in Fig. 2c) and which again signal long-range
charge and spin order (within our system size).

Effect of disorder. The properties of the phases change markedly
upon the introduction of quenched disorder. The ferrosmectic
and ferrocrystal peaks broaden and weaken very rapidly
(Fig. 2b,d,f), thus long-range positional order is lost and the
ferrosmectic–ferrocrystal transition is smeared. Remarkably long-
range nematic and vector chiral order (accompanied by inversion
symmetry breaking) remain at finite disorder, and the phase
becomes the ferronematic state proposed in refs 20,21. Figure 2f
shows how CO is almost entirely destroyed by small disorder.
Long-range spin order also is destroyed but short-range spin
order, signalled by incommensurate peaks, whose width is well
resolved in our system size, persists. For Qion/Qrep40.25
even the broad incommensurate magnetic peaks disappear
(Supplementary Note 4 and Supplementary Figs 6–8). This would
contradict experiments, we thus estimate Qion/Qrepo0.25 in real
systems.

The red solid circles in Fig. 2a–d show the vectors
� E=

ffiffiffi
2
p

; � E=
ffiffiffi
2
p� �

r.l.u., where E is the magnetic incommensur-
ability, that is, for the orientation of Fig. 1b,c magnetic peaks
appear at qAF � E=

ffiffiffi
2
p

; � E=
ffiffiffi
2
p� �

r.l.u., with qAF¼ (0.5,0.5) r.l.u.
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Figure 1 | Charge and spin configurations in the different phases. White

and black circles represent the positive and negative topological charges,

respectively. The different colours denote the angle-a of the staggered

magnetization. The images are Monte Carlo snapshots in the absence of

quenched disorder (a–c) in the thermally disordered phase with T¼ 50 K

(a), in the ferrosmectic phase at T¼ 38 K (b), in the ferrocrystal phase at

T¼8 K (c) and in the ferronematic phase at T¼40 K (d), which appears in

the presence of quenched disorder (Qion/Qrep¼0.125). The white lines in b

highlight the ‘triangular’ arrangement of the segments.

NATURE COMMUNICATIONS | DOI: 10.1038/ncomms8691 ARTICLE

NATURE COMMUNICATIONS | 6:7691 | DOI: 10.1038/ncomms8691 | www.nature.com/naturecommunications 3

& 2015 Macmillan Publishers Limited. All rights reserved.

http://www.nature.com/naturecommunications


From all panels we see that the main magnetic peaks appear at
half the incommensurate wave vector of the main charge peaks.
At first sight, this relation, well known for spin collinear
stripes39,40, is surprising here, since the incommensurability
should be linked to the topological polarization20. However, close
inspection of Fig. 1b reveals that each segment acts as an
antiphase domain wall for the antiferromagnetic background,
yielding jumps of the phase of the magnetic order parameter close
to p upon crossing the line of polymers. On the other hand, the
phase is approximately constant in between two polymer rows.
Thus, the magnetization behaves similarly to the case of a
collinear stripe array. Spin canting produces small corrections to
the ‘factor of two’ relation, which are below our momentum
resolution to be visible in Fig. 2.

Raising the temperature at small disorder, the broadened spin
and charge peaks gradually decrease without any sign of a sharp
transition in the intensity (Fig. 3 and Supplementary Fig. 6,

respectively) as also observed experimentally at similar dopings
(see inset of Fig. 3b and ref. 41). In contrast, studying the
polarization and nematic order parameter distribution, we find
that the transition from the ferronematic to the melted polymers
is of first order and remains sharp for our system size
(Supplementary Note 5). Thus, a thermodynamic transition
persists even in the presence of disorder. The thermodynamic
transition temperature is signalled by a change of behaviour in
the magnetic structure factor from commensurate to incommen-
surate, providing a simple experimental tool to detect the
transition line (Fig. 3a). This is because the incommensurability
E is related to the degree of polarization in the system and thus
acts as an order parameter20.

Phase diagram. Figure 4 reports the phase diagram obtained
from the above analysis. The ferrocrystal (thick yellow line) and
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Figure 2 | Charge and spin structure factor. Density plots in the 2D reciprocal space for the charge structure factor for the clean system at (a) 38 K and (c)

8 K, and the charge structure factor for the system with Qion/Qrep¼0.125 at (b) 38 K and (d) 8 K. The red solid circles represent the position of the spin

peaks in the reciprocal space (shifted by qAF). The arrow in c shows a ferrocrystal peak. We also show the diagonal cut of the charge and staggered spin

structure factor in the 2D reciprocal space at 38 K for (e) the clean system and (f) the system with Qion/Qrep¼0.125. In order to see more clearly the effects

of the broken C4 symmetry, the averages are restricted to configurations with fZ0 corresponding to the expected response in a single-domain sample.
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ferrosmectic (thick pink line) phases are well defined only in the
absence of disorder. At finite disorder, they survive as short-
range-ordered states. This is indicated by the yellow shade for the
ferrocrystal and by the magenta shade for the ferrosmectic state.
The light blue region is the long-range-ordered ferronematic
state, whereas the red line indicates the first-order transition to a
liquid of short polymers. We never find a purely nematic phase,
characterized by a nonzero nematic order parameter but zero
polarization and zero global vector chiral spin order. The last
phase, which is allowed by our model, could possibly be stabilized
in a different parameter regime, as an intermediate phase between
the ferronematic and the disordered phase.

Our results are in good qualitative agreement with the phase
diagram obtained by completely different methods in ref. 37. On
the other hand, we find an additional inversion symmetry
breaking, and we provide realistic estimates of the parameters of
the model, of the experimentally measurable structure factors and
of the characteristic temperatures of the transitions.

The order of magnitude of the transition temperature to a
polarized state can be estimated using a mean-field approximation.
For dipoles in two dimensions at random positions but with a
nonzero average dipole moment hpi, the dipolar field can be
computed using elementary electrostatics to be Ed¼ 2p2rshpinh/Nc,
where rs is the magnetic stiffness of the system and Nc is
the number of charges per segment. Assuming a mean-field
approximation where the dipoles, of strength p0�

ffiffiffi
2
p

(Nc� 1)k, can
fluctuate in four possible orientations (m, -, k and ’) we obtain
the ordering temperature,

kBTc ¼ pp0ð Þ2rs
nh

Nc
: ð1Þ

With the present parameters and assuming NcE4 (Supplementary
Fig. 6), we find TcE196 K. This is of the correct order of magnitude
(that is, much smaller than the original electronic scales), taking
into account that we have neglected the positional entropy that will
reduce Tc.

Both ferrosmectic and ferrocrystal charge orderings are not
commensurate. Thus, they break a continuous [U(1)] symmetry
in two dimensions. Even in the presence of infinitesimal disorder
strict long-range order is forbidden42 and one finds quasi long- or
short-range order. In contrast, the nematic order parameter
breaks a discrete (Z2) symmetry and is much more robust against
disorder. In our computations, we have in addition vector chiral
spin order (or equivalently a topological polarization) that also
breaks a discrete (Z2) symmetry, but which does not couple
linearly to the local disorder, in contrast to the nematic order
parameter43,44. General arguments indicate that the discrete
symmetry breaking should be much more robust than the
breaking of a continuous symmetry37,45, as we indeed find. We
expect the nematic order to behave similarly to the random field
Ising model: lacking long-range order in a strictly 2D system, but
ordered within a correlation length, which can be exponentially
large for small disorder46, favouring a crossover to 3D long-range
order in the presence of a small inter-layer coupling44,47.

Since the ferronematic state has short-range spin order and
long-range vector chiral order (at q¼ 0 wave vector), it can be
identified with the chiral spin liquid believed to take place in
frustrated magnets48–50.

Discussion
Our results allow us to rationalize several experimental findings,
and imply some predictions that have not yet been tested.

Experiments show that hole doping destroys commensurate
antiferromagnetic order much more rapidly than what would be
expected by site dilution51,52. Figure 2f shows that this is
explained by a small density of TDs. The ability of VA pairs to
rapidly depress commensurate ordering was noticed before26,27,
although these authors did not consider the collective ordering of
the dipoles.

Incommensurate spin scattering has been detected in the early
days of high Tc (ref. 53) and interpreted in terms of stripes2,3.
However, stripes are associated with charge modulations that are
extremely hard to measure, in contrast to spin modulations. CO
generally emerges associated with a structural distortion close to
nh¼ 1/8, which can be controlled by codoping with Nd2,3

or doping/codoping with Ba54–56. All these observations of CO
are at doping close to nh¼ 1/8. The intensity of CO decreases
strongly with underdoping and extrapolates to zero around
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nhE0.09 (ref. 56). To the best of our knowledge, incommensurate
static CO has never been reported in the present, heavily
underdoped regime, in contrast to incommensurate spin order57,
which persists. This dichotomy is explained by our simulations
that, while reproducing the incommensurate spin ordering, show
very weak charge-ordering peaks, barely emerging from the
background noise, even for weak disorder (Fig. 2f).

Close to nh¼ 1/8 magnetic Bragg peaks appear quite sharp and
often resolution limited3,56,58 indicating long-range order. As
doping is reduced, static peaks are still observed but become
broad with a well-resolved width of the order of the
incommensurability, indicating a correlation length of the order
of the spin periodicity56,57. This is in excellent agreement with
our magnetic structure factor in Fig. 2f. We interpret this feature
as an indirect signature of long-range vector chiral spin order
without long-range magnetic order, that is, the ferronematic state
we propose. For nh¼ 0.03, experimental magnetic peaks have
been detected with incommensurability E � 0:032 (ref. 41),
which is in good agreement with our computations yielding E �
0:028 at low temperature.

Neutron-scattering experiments in Y-based materials have
shown4,5 that the magnetic incommensurability as a function of
temperature behaves as an order parameter. Such a behaviour is
naturally explained by our model, where the incommensurability,
in the presence of weak or no CO, is closely linked to the
topological polarization20, which is an order parameter (Fig. 3).
Furthermore, we propose that the temperature at which the static
magnetic structure factor changes from a double peak structure to
a single peak structure is a proxy of the thermodynamic critical
temperature below which long-range chiral spin order is
established.

The transition from incommensurate behaviour to commen-
surate behaviour has been observed also in the specific La family
we focus on in the present computations. Indeed, experimental
low-energy inelastic neutron-scattering peaks as a function of
temperature reported in Fig. 5a of ref. 59 (see also ref. 57) show
the same behaviour as we find for the static structure factor.
However, the transition from two incommensurate peaks to an
antiferromagnetic commensurate peak takes place B55–100 K.
On the other hand, quasistatic scattering shows a transition at
B20–30 K (see refs. 41,60,61 and inset of Fig. 3b). Our
computations provide an energy-integrated structure factor that
is expected to show the transition at an intermediate temperature
between the inelastic and quasistatic cases. Indeed, we find the
commensurate–incommensurate transition at B45 K fully con-
sistent with the neutron-scattering measurements. Such an
agreement on the temperature scales and qualitative behaviour
further supports our identification of the low-temperature state
observed in cuprates as a long-range-ordered ferronematic.

Notice that, in contrast with the small ordering scales, we find
that the starting point electronic Hamiltonian has bare electronic
scales of the order of 3,000 K or more. This strong reduction of
energy scales indicates that our multiscale modelling has
identified the correct dynamical variables of the problem.
Equation (1) shows that the energy scale is set by the magnetic
stiffness and the density. Notice also that the proposed
thermodynamic transition occurs at a temperature much lower
than the pseudogap temperature (E300 K) that instead nearly
extrapolates to the Néel temperature of the undoped sample62.

At even lower temperatures of the proposed ferronematic
transition, a so-called cluster spin glass state is observed
consisting of strongly coupled clusters of spins with weaker
coupling among clusters51,52,61,63–65. The ferronematic state of
Fig. 1d corresponds precisely to this physical picture.

Equation (1) predicts a linear relation between doping and the
ordering temperature. However, for nh40.02, one should take

into account that the finite magnetic correlation length, the
expected weakening of the stiffness by doping and the breakdown
of the linear regime for the topological charges will lead to a
slowing down of the doping dependence. Interestingly, for hole
content nho0.02, the temperature at which the cluster spin glass
state is observed is linear with the doping63–65 consistent with our
proposal. Numerically, we find that the temperature of the
ferronematic transition increases approximately linear with
doping as TcB1,500 K nh compared with the experimental
behaviour TcB815 K nh. Our larger slope may be owing to an
overestimation of rs, a smaller Nc and/or dynamical effects that
may give an apparent shift of the transition.

In the presence of spin–orbit coupling, long-range vector chiral
spin order gives rise to a real electric polarization, that is, the
system becomes an improper ferroelectric66. Unfortunately, this
effect is hard to observe because as soon as the system becomes
metallic, it cannot support a finite electric polarization.
Notwithstanding, a finite ferroelectric polarization has been
reported at low temperatures in oxygen67 and Li68-doped
La2CuO4, the samples having a strongly insulating character.
The fact that the effect appears independently of the dopant, and
that the remnant polarization can be oriented along different axes
with external fields, clearly points to a magnetic origin of the
ferroelectric polarization. Furthermore, more recent experiments
show a clear correlation between magnetoelectric effects and
stripe orientation in Sr-doped La2NiO4, suggesting that stripe
effects are involved (C. Panagopoulos, personal communication).
Experiments at finite frequencies suggest that inversion symmetry
breaking sets in at temperatures higher than the temperatures at
which the sample is insulating enough to support a static
polarization. All these experiments support our conclusion that
underdoped cuprates show long-range vector chiral spin order.

A possible test to our model would require second harmonic
generation to detect inversion symmetry breaking in non-
insulating samples. We predict that in the ferronematic phase,
the inversion symmetry breaking should track the behaviour of
the incommensurability as a function of temperature. This
relation, however, will break down in the collinear stripe phase
found Bnh¼ 1/8.

With the present method, we cannot access quantitatively the
crossover to collinear stripes. In this regime, the mapping to the
Coulomb gas breaks down due to nonlinear effects. However, one
can anticipate that the average length of the segments will keep
growing with doping, leading to a concomitant increase of the
ferrosmectic correlation length. According to our findings, the
disorder induced by the dopants will partially counteract this
increase, but the associated impurity potential will also be
progressively screened, opening the possibility that segments
coalesce into stripes with long-range order and narrow magnetic
peaks.

We thus propose that underdoped cuprates have a long-range
broken symmetry state at low doping. This puts the cuprate phase
diagram into the same class of phase diagrams of a wide class of
materials1 in which unconventional superconductivity emerges
from a phase characterized by real-space electronic long-range
order.

Methods
Model. Treating the single-band Hubbard model within a Gutzwiller approx-
imation, a single hole in the antiferromagnetic background is found to form a spin
polaron, while two holes tend to occupy the cores of a spin V and A that attract
each other, thereby lowering their energy. The long-range part of this texture is
treated using generalized elasticity38 and exploiting the correspondence between a
spin V and a 2D Coulomb charge36. In the absence of disorder and holes, the
magnetic correlation length is expected to be very large but finite due to thermal
fluctuations. This provides a natural cutoff at a distance l for the long-range
interactions between topological charges at large distances26,27. Therefore, the
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interaction energy is well described by

VlrðrÞ ¼rsk1k2

Z2p

0

dy
Z1

0

dq
qeiqr cosy

q2 þ l� 2

¼2prsk1k2K0
r
l

� �
;

ð2Þ

where k1,2¼±k are the topological charges (in our case, kE0.8) and K0 is the
zeroth order modified Bessel function, which reproduces the logarithmic
interaction at short/intermediate distances (rul) and decays exponentially at long
distances (rcl). We have checked that changing l, the results are substantially the
same, as long as it remains larger than the typical distance between the segments.
In the simulations, we take l of the order of the system size for numerical
convergence purposes.

While equation (2) reproduces well the energy of Gutzwiller calculations for the
single-band Hubbard model at large distances, as expected, it fails at short distances
where the short-range physics of the Hubbard model becomes relevant. Therefore,
the interaction potential also includes short-range terms extrapolated from the
Gutzwiller calculations (Supplementary Note 1).

Furthermore, each topological charge arising from the spin texture corresponds
to a positive electrically charged hole in the CuO2 planes of the doped cuprate.
Therefore, our model includes also the 3D Coulomb repulsion potential which, for
two holes at a distance r, is parametrized as

vhhðrÞ ¼
Qrep

r
: ð3Þ

Here Qrep, incorporating, for example, the static dielectric constant, represents
the strength of the repulsion and is another parameter of our model. We fix
Qrep/a¼ 49 meV, where a is the in-plane lattice constant, so that the average
number of holes in a polymer, for very low density, is NcE2. As the density
increases, this number tends to increase too20, yielding the results of
Supplementary Fig. 6 for the present density (nh¼ 0.03).

Finally, the charged holes doped into the CuO2 planes leave back negative
countercharges. For instance, in La2� xSrxCuO4, which we take as a prototype
cuprate, negative Sr ions randomly replace La atoms between two consecutive
planes. We therefore introduce disorder, generating a random distribution of
point-like negative charges, one for each positive hole in the plane, which act as
pinning centres for the carriers in the plane (Supplementary Note 2). The ions are
located out of plane, at a distance �d � 0:58a, from the centre of the in-plane
plaquette. Each impurity interacts with the holes in the plane through an attractive
3D Coulomb potential

vion ¼ �
Qion

d
; ð4Þ

where d is the distance between the hole and the impurity, and the strength of the
interaction Qion measures the intensity of disorder. This procedure thus produces a
disordered potential in the plane in which holes and their associated topological
charges move. We show one realization of the impurity potential in Supplementary
Fig. 4.

Characterization of the phases. To characterize C4 rotation symmetry breaking,
we introduce the nematic order parameter

f ¼ 1
Nh

X
ri

n rið Þn ri þ x̂þ ŷð Þh

� n ri þ ŷð Þn riþ x̂ð Þi;
ð5Þ

where n(ri) is the number of holes on the site labelled by ri, and x̂; ŷ are unit vectors
along the corresponding directions of our 2D square lattice. The angular brackets
imply thermal average, Nh denotes the total number of charges, and the sum runs
over all the lattice sites. To characterize inversion symmetry breaking, we introduce
the polarization P¼ (Px,Py), as the normalized sum of all the TDs. Since in our
model diagonal polarizations are favoured, we introduce the components

Pð1;1Þ ¼ Px þ Py
� �

=
ffiffiffi
2
p

; ð6Þ

Pð1;� 1Þ ¼ Px � Py
� �

=
ffiffiffi
2
p

: ð7Þ

Vector chiral spin order is characterized by the parameter

w1;� 1 �
1ffiffiffiffiffi
L2
p

X
ri

s rið Þ�s ri þ x̂ � ŷð Þ½ � � ẑh i; ð8Þ

where s(ri) is the local spin density.
Our Monte Carlo calculations also yield the thermal averages of the static

charge (c) and spin (s) structure factors, Sc(q)¼ (1� dq,0)|Kc(q)|2/L2 and

Ss(q)¼ |Ks(q)|2/L2, where

KcðqÞ ¼
1ffiffiffiffiffiffi
Nh
p

X
ri

exp iq � rið Þ n rið Þ ð9Þ

KsðqÞ ¼
1ffiffiffiffiffi
L2
p

X
ri

exp iq � rið Þ s rið Þ: ð10Þ

With these definitions and using unit-length spins, the structure factors have the
same normalization and satisfy

P
qSs,c(q)¼ 1� nh.

The ferronematic–ferrosmectic crossover in Fig. 4 was characterized analysing
the height of the main charge peak as a function of temperature.

Monte Carlo analysis. We carried out Monte Carlo calculations exploiting the
parallel tempering technique. To analyse the spin degrees of freedom for a given
configuration, we attach to each topological charge the structure of a (anti)vortex in
the spin background, and we perform a linear superposition, allowing then each
spin to relax according to the XY Hamiltonian36. Supplementary Figure 1b reports
an example for the case of two VA pairs aggregated in a four site segment. Further
examples with a detailed view of the segments of the corresponding relaxed spin
structures and of the resulting spin currents are reported in Supplementary Note 3
and Supplementary Fig. 5.

The temperature step of our simulations is 0.4 K (0.8 K) for the clean
(disordered) case. To better determine the various phases, at each temperature, we
construct a histogram over the Monte Carlo history defined on a 3D grid spanned
by the order parameter (f,P(1,1),P(1,� 1)) (ref. 69). The probability for a value
(f,P(1,1),P(1,� 1)) of the order parameter is given by the Boltzmann factor
Bexp[� F(f,P(1,1), P(1,� 1))/(kBT)], where F is the free energy. Finding the position
of the maximum of the histogram (which is a point in 3D space (f,P(1,1),P(1,� 1))) is
then equivalent to minimize the free energy and identifies the stablest phase. This
yields sharper transitions than following the thermal average which, with our
accessible system sizes, often is not large enough to resolve closely separated
transitions. More details are given in Supplementary Figs 9 and 10, and
Supplementary Note 5.
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