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IL-17 Induced Stromal Cell–Derived Factor-1
and Profibrotic Factor in Keloid-Derived Skin
Fibroblasts via the STAT3 Pathway
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Abstract— The pathogenesis of keloids has not been elucidated, and the disease is thought to
be caused by abnormal secretion of proinflammatory mediators and irregular responses to
other inflammatory signals mediated by keloid fibroblasts (KFs). In this study, we investi-
gated whether a local increase in interleukin IL-17 in keloid tissues stimulates the production
of stromal cell–derived factor-1 (SDF-1) in KFs causing further recruitment of IL-17-
producing T helper 17 (Th17) cells, which subsequently creates a positive feedback loop.
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Histological assessment was performed and the change in the expression of IL-17, IL-1β, IL-
6, and TNF-α which of fibrosis and inflammation associated markers was examined. In
addition, fibroblasts were treated with IL-17 in the presence or absence of STAT3 inhibitor
STA-21; SDF-1 levels and fibrosis genes were measured. Our results showed that fibrotic
reaction and expression of proinflammatory cytokines including IL-17 were most prominent
in the growing margin (perilesional area) of keloid tissue and Th17 cells significantly
infiltrated the perilesional area. In addition, IL-17 upregulated the expression of SDF-1,
collagen, and α-SMA in KFs. Finally, STA-21 decreased SDF-1α expression and the
expression of fibrosis genes in KFs even after IL-17 stimulation. Our study demonstrated
that a local increase in IL-17 in keloid tissues stimulates the production of SDF-1 in KFs
causing further recruitment of IL-17-producing T helper 17 (Th17) cells, which subsequently
creates a positive feedback loop. These findings suggest that STAT3 inhibition can be used to
treat keloid scars by reversing the vicious cycle between Th17 cells and KFs.
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INTRODUCTION

Pathologic fibroproliferative disorders such as
keloids and hypertrophic scars are characterized by
excessive collagen deposition and the formation of
raised dermal lesions. The pathogenesis of keloids
has not been elucidated, although both environmental
and genetic risk factors have been implicated. Previ-
ous studies have shown the presence of chronic in-
flammation in keloids, suggesting the disease is
caused by the abnormal secretion of proinflammatory
mediators and irregular responses to other inflamma-
tory signals mediated by KFs [1, 2]. However, the
pathogenesis of keloids and tissue fibrosis has not
been elucidated and exact molecular are still unclear.

Many studies have shown the profibrotic effects
of interleukin (IL)-17 [3, 4]. Recombinant IL-17A
increased the production of collagen from mouse skin
fibroblasts in a dose-dependent manner [5]. In addi-
tion, IL-17A increased profibrotic cytokines such as
TGF-β and connective tissue growth factor in skin
fibroblasts [6]. In another study, recombinant IL-17A
enhanced proliferation of pulmonary fibroblasts and
increased the production of collagen, TGF-β, and IL-
6, which was mitigated by anti-IL-17A treatment [3].
Recently, Zhang et al. found that elevated IL-6 and
TGF-β in keloid tissue promoted the differentiation
of naïve T (Th0) cells into IL-17+ T helper (Th) 17
cells and further stimulated IL-6 secretion via IL-17,
thus creating an enriched proinflammatory cytokine
milieu [7]. However, the exact role of Th17 cells in
the formation of keloid tissue remains unknown. In a
previous study, we demonstrated that IL-17 in T cells

stimulates fibroblast-like synoviocytes (FLSs) to pro-
duce SDF-1 in a dose-dependent manner, indicating a
reciprocal action between T cells and FLSs in the
pathogenesis of rheumatoid arthritis (RA) [8]. In
other words, in patients with RA, T cells migrate
into the synovium guided by SDF-1 from FLSs,
and IL-17 in recruited T cells increases the produc-
tion of SDF-1 in FLSs, resulting in augmentation of
the inflammatory process.

In this study, we have investigated whether a
similar mechanism exists in the formation of keloid
tissue. A local increase in IL-17 in keloid tissue may
stimulate production of SDF-1 in KFs and further
enhance the recruitment of Th17 cells from the
bloodstream, resulting in the formation of a positive
feedback loop. We assessed whether infiltration of
Th17 cells is increased in keloid tissue, and whether
paracrine signaling from KFs (SDF-1) exerts chemo-
tactic effects on Th17 cells. In addition, we have
investigated the effects of IL-17 on SDF-1 produced
by KFs and the profibrotic effects of IL-17 on KFs,
as well as determined the inhibitory effects of STA-
21 on SDF-1α produced by KFs.

MATERIALS AND METHODS

Isolation and Culture of Human KFs

Fibroblasts were isolated by enzymatic digestion of
keloid tissue specimens obtained from 6 patients with
keloids undergoing scar revision surgery. The tissue sam-
ples were minced into 2- to 3-mm pieces and treated for
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30min with 2.5 mg/mL type I collagenase (Sigma-Aldrich,
St. Louis, MO, USA) in phosphate-buffered saline (PBS)
at 37 °C in 5% CO2. Dissociated cells were centrifuged at
1300 rpm, resuspended in Dulbecco’s modified Eagle’s
medium (DMEM) supplemented with 10% fetal bovine
serum (FBS), 2 mM L-glutamine, 100 units/mL penicillin,
and 100 ng/mL streptomycin, and plated in 25-cm2 flasks.
After overnight culture, floating cells were removed, and
the adherent cells were cultivated in DMEM supplemented
with 10% FBS. The cultures were kept at 37 °C in 5%CO2,
and the mediumwas replaced every 3 days. The fibroblasts
w e r e p a s s a g e d 3 – 8 t im e s u s i n g t r y p s i n –
ethylenediaminetetraacetic acid (EDTA) (Gibco, Grand
Island, NY, USA). The cells were seeded in 24-well plates
in DMEM supplemented with 10% FBS and then cultured
for 48 h at 37 °C. Fibroblasts were stained with
allophycocyanin-conjugated anti-CD90 (eBioscience, San
Diego, CA, USA) antibody as a fibroblast marker and
analyzed by flow cytometry. Informed consent was obtain-
ed from all participating subjects. The study received ap-
proval from the Institutional Review Board for Human
Research of Bucheon St. Mary’s Hospital (HIRB-
20180322-001).

Histological Assessment

Human keloid tissue samples of 6 patients were fixed
in 10% neutral buffered formalin and embedded in paraf-
fin. The tissues were sectioned at a thickness of 6 μm,
deparaffined using xylene, dehydrated in a graded alcohol
series, and then stained with hematoxylin and eosin or
Masson’s trichrome. Immunohistochemical staining was
performed using the Vectastain ABC kit (Vector Laborato-
ries, Burlingame, CA, USA). The tissues were incubated
with anti-IL-17, anti-IL-1β, anti-IL-6, and anti-TNF-α
(Abcam, Cambridge, MA, USA) overnight at 4 °C. The
primary antibodies were detected using a biotinylated sec-
ondary antibody for 40 min, followed by incubation with a
streptavidin–peroxidase complex for 1 h. The final color
product was developed using 3, 3′-diaminobenzidine chro-
mogen (DAKO, Carpinteria, CA, USA). Positive cells
were counted and the numbers expressed as means ±
standard deviation.

Confocal Microscopy

For immunostaining, 5-μm-thick keloid tissue sec-
tions were fixed and permeabilized with acetone, washed
with PBS, and then blocked with 10% normal goat serum
for 30min. To analyze the populations of T helper cells and
STAT, the tissues were stained with fluorescein

isothiocyanate (FITC)-conjugated anti-CD4 (BD Biosci-
ences, Sparks, MD, USA), phycoerythrin (PE)-conjugated
anti-IL-17 (BioLegend, San Diego, CA, USA), or/and PE-
conjugated anti-phosphorylated STAT3 tyrosine 705 and
PE-conjugated anti-phosphorylated STAT3 tyrosine 727
(BD Biosciences) antibodies. For fibroblast analysis, the
tissues were stained with PE-conjugated anti-CD90
(eBioscience) and FITC-conjugated anti-SDF-1 (R&D
Systems, Minneapolis, MN, USA) antibodies overnight
at 4 °C. The primary antibody was detected using a
FITC-conjugated anti-rabbit IgG secondary antibody for
2 h at room temperature, and the nuclei were stained with
4′,6-diamidino-2-phenylindole. The stained tissues were
analyzed using a Zeiss microscope (LSM 510 Meta; Carl
Zeiss, Oberkochen, Germany) at × 400 magnification.

Isolation of CD4+ T Cells and Transwell Migration Assay

To purify human CD4+ T cells, peripheral blood
mononuclear cells were incubated with CD4-coated mag-
netic beads and isolated using magnetic-activated cell
sorting separation columns (Miltenyi Biotec, Bergisch
Gladbach, Germany). For Th0 cell-polarizing, the isolated
CD4+ T cells were stimulated with plate-bound anti-CD3
(0.5 μg/mL), anti-CD28 (1 μg/mL) to Th0 polarizing. For
Th17 cell-polarizing, the isolated Tcells were culturedwith
plate-bound anti-CD3 (0.5 μg/mL), anti-CD28 (1 μg/mL),
anti-IFN-g (2 μg/mL), anti-IL-4 (2 μg/mL), anti-IL-2
(2 μg/mL), TGF-β (2 ng/mL), IL-23 (20 ng/mL), and IL-
6 (20 ng/mL) for 72 h. Migration assays were performed in
a 24-well Transwell unit with a 3-μm-pore size (Corning
Costar, Cambridge, MA, USA). 2 × 104 KFs were seeded
in the lower chamber for 1 day before culture with Th17
cells. After 1 day, 2 × 105 Th17 cells were seeded in the
upper chamber of the Transwell assembly. The lower
chamber contained 600 μL medium supplemented with
SDF-1α (10 ng/mL; PeproTech, Rocky Hill, NJ, USA).
The cells were cultured for 4 h, and the number of Th17
cells that migrated toward the keloid cells was counted.

Gene Expression Analysis Using Quantitative Real-
Time Polymerase Chain Reaction

Total RNA was extracted using TRIzol (Molecular
Research Center, Cincinnati, OH, USA), and 2 μg total
RNA were reverse transcribed using the Superscript Re-
verse Transcription system (Takara, Shiga, Japan). Quan-
titative real-time polymerase chain reaction (qRT-PCR)
was performed using Light-Cycler FastStart DNA master
SYBR green I (Takara) fluorescent dye on the ABI PCR
system. Primers targeting TGF-β (forward: 5′- TGC GGC
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AGC TGT ACA TTG A -3′, reverse: 5′- TGG TTG TAC
AGG GCC AGG A -3′), α-SMA (forward: 5′- TGG GTG
ACG AAG CAC AGA GC -3′, reverse: 5′- CTT CAG
GGG CAA CAC GAA GC -3′), collagen-1 (forward: 5′-
GTC ACC CAC CGA CCA AGA AAC C -3′, reverse: 5′-
AAG TCCAGGCTGTCCAGGGATG -3′), and β-actin
(forward: 5′- GGA CTT CGA GCA AGA GAT GG -3′,
reverse: 5′- TGT GTT GGG GTA CAG GTC TTT G -3′)
were designed using Primer Express (Applied Biosystems,
Foster City, CA, USA). The mRNA expression level of
each gene was normalized to that of β-actin.

Enzyme-Linked Immunosorbent Assay

2 × 104 KFs were cultured in 0.1% ITSA-DMEM in
24-well plates in the presence or absence of IL-17 (5, 20,

50 ng/mL), and STA-21 (10 μM) for 48 h. Human-derived
SDF-1 was measured in the culture supernatants by sand-
wich (enzyme-linked immunosorbent assay) ELISA (R&D
Systems). Alkaline phosphatase (Sigma-Aldrich) was used
for color development. Absorbance was measured at
405 nm on an ELISA microplate reader (Molecular De-
vices, Sunnyvale, CA, USA).

Statistical Analyses

Statistical analyses were preformed using GraphPad
Prism 5 software. Significant differences between treat-
ment groups were assessed using the Mann–Whitney U
test. The results are expressed as means ± standard devia-
tion or means ± standard error of the mean. P < 0.05 (two-
tailed) was considered to indicate statistical significance.

Fig. 1. Different degrees of inflammation and fibrosis according to the location. Human keloid tissues were obtained of each of six patients. a, b The human
keloid tissues were stained with hematoxylin and eosin (H&E) or Masson’s trichrome (MT) staining. The inflammatory reaction in keloid tissue is most
prominent in the perilesional area. c Immunohistochemical staining for IL-17, IL-1β, IL-6, and TNF-α according to the location. Degress of infiltration of IL-
17-positive cells and IL-6-positives cells according to the location. Original magnification × 100, × 200. Data represent the mean ± SD of six independent
experiments (*P < 0.05; **P < 0.01).
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RESULTS

Increased Expression of Fibrosis Markers Results in
Keloid Scar Formation

To investigate fibrosis degree during keloid develop-
ment, the keloid tissue was stained with hematoxylin and
eosin and Masson’s trichrome. Histological analyses showed
that infiltration of lymphocytes was increased in the
perilesional area (growing margin of keloids; Fig. 1a) com-
pared with normal tissue area. In addition, fibrosis was ob-
served more frequently increased in the perilesional keloid
tissues than intralesional keloid tissues, indicating that keloid
scars are benign fibroproliferative dermal tumors (Fig. 1b) [9].

The Pathogenesis of Keloids Is Closely Related to
Infiltration of Proinflammatory Cytokines

Next, we assessed whether the keloid scar lesion
accompanied by fibrosis increases the expression of proin-
flammatory cytokines. Immunohistochemical staining
showed IL-17, IL-1β, IL-6, and TNF-α level were in-
creased in the perilesional area of keloids compared with
normal tissue or the keloid intralesional area (Fig. 1c).

Activation of IL-17 and SDF-1 in the Perilesional Area
of Keloids

Confocal microscopy showed colocalization of
CD90+SDF-1+ and CD4+IL-17+ cells in the same region
of the perilesional area. In addition, IL-17-producing
CD4+pSTAT3 705+ and CD4+pSTAT3 727+ cells were
increased in abundance in the perilesional area of keloids.
These data indicate that increased SDF-1 expression in
keloid tissue can stimulate the infiltration of Th17 cells
(Fig. 2).

The Role of KFs to Th17 Cell Migration

To further investigate the interaction between
Th17 cells and KFs, we evaluated the migration of
naive T (Th0) cells Th17 cells co-cultured with KFs
in the presence or absence of SDF-1. Compared with
Th0 cells, the migration of Th17 cells was significantly
increased in the presence or absence of SDF. In addi-
tion, the migration of Th17 cells was significantly
increased in the presence of SDF-1 compared with in
the absence of it (Fig. 3). These data indicate that IL-
17-producing T cells have a high migration capacity
toward KFs and SDF-1 augments it.

Fig. 2. Confocal microscopy for the perilesional area of keloids. Human keloid tissues were obtained of each of six patients and were repeated 3 times.
Increased SDF-1 expression from KFs and increased infiltration of Th17 are shown. Original magnification × 200 and × 400.
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IL-17 Stimulates the Expression of SDF-1 and Fibrosis
Markers in KFs

KFs were stimulated with IL-17, and the SDF-1
level was measured in the culture supernatants. In addi-
tion, the expression of profibrotic genes such as TGF-β,
α-SMA, and collagen-1 from KFs was measured under
the influence of IL-17. As a result, we found that IL-17
significantly increased production of SDF-1 from KFs
and the expression of profibrotic genes was also in-
creased under the influence of IL-17 (Fig. 4a, b). When
considering the results of migration assay, these results
suggest that a local increase in IL-17 in keloid tissue
may stimulate production of SDF-1 in KFs and further
enhance the recruitment of Th17 cells, resulting in the
formation of a positive feedback loop. Also, this IL-17-
rich inflammatory milieu in the keloid tissue could
contribute to the excessive fibrosis in it.

Regulation of SDF-1 and Fibrosis Markers via STAT3
Inhibition

The STAT3 transcription factor upregulates IL-
17 expression via Th17 cell proliferation [10]. Based
on the result, we have investigated whether the in-
flammatory response in KFs could be mediated by
the modulation of STAT3 activity using STA-21, a
STAT3 inhibitor. KFs were treated with IL-17 and
the expression of SDF-1 and profibrotic genes were
evaluated in the presence or absence of STA-21. As
a result, we found that the increased expression of
SDF-1 and profibrotic genes under the influence of
IL-17 was significantly decreased in the presence of
STA-21 (Fig. 4c, d). This finding demonstrated that
the STAT3 inhibition can be used to treat keloid
scars by reversing the vicious cycle between Th17
cells and KFs.

Fig. 3. Transwell migration assay. Compared with Th0 cells, the migration of Th17 cells was significantly increased in the presence or absence of SDF. a
Optical microscopic images of the migrating cells. Original magnification × 40. b The number of migrated T cells. Data represent the mean ± SD of three
independent experiments (*P < 0.05; **P < 0.01).
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DISCUSSION

The main histopathological characteristics of keloids
include abnormal proliferation of fibroblasts and
overaccumulation of extracellular matrix components such
as collagen [2]. The center of the keloid lesion is highly
collagenized and mostly devoid of blood vessels and cells.
However, in the perilesional area (growing margin of ke-
loids), numerous lymphocytes and fibroblasts are dispersed
among a rich network of blood vessels, suggesting chronic
inflammation.

In our study, the expression of proinflammatory cy-
tokines (IL-17, IL-1β, IL-6, and TNF-α) was significantly
higher in the perilesional tissue compared with normal
tissue or intralesional area. This finding is in accordance
with a previous study showing that the inflammatory mi-
lieu in keloid tissue promotes resident stem cells to acquire
tumor-like cell phenotypes such as increased proliferation
and self-renewal [7, 11]. Therefore, to treat keloids and
prevent recurrence, modification of the inflammatory niche
and reversing the inflammatory process are important.

In this study, we found the increased infiltration of
Th17 cells into keloid tissue and hypothesized that exces-
sive recruitment of Th17 cells contribute to the excessive
fibrosis in keloid tissue.

In a previous study, we have demonstrated that SDF-1
is overproduced in RA FLSs, and that IL-17 can upregulate
SDF-1 expression in RA FLSs via the phosphatidylinositol
3-kinase (PI3K) pathway [8]. In addition, Shin et al.
showed high infiltration of SDF-1α+ myofibroblasts into
perilesional keloid tissue and high recruitment of CXCR4+

immune cells and CXCR4+ fibrocytes in keloids [12].
Based on these results, we speculate that a similar vicious
cycle contributes to the chronic inflammation in keloid
tissue. In other words, local inflammation from trauma or
surgery may increase SDF-1 expression and stimulate re-
cruitment of Th17 cells, potentially resulting in local in-
creases in IL-17 levels and SDF-1 expression in KFs
(positive feedback loop).

In the present study, paracrine signaling from KFs
stimulated the migration of Th17 cells, which was signif-
icantly increased by SDF-1 treatment. In addition, we

Fig. 4. Increased expression of SDF-1 and profibrotic markers in KFs under the influence of IL-17 in KFs. a SDF-1 levels in culture supernatants were
measured by ELISA. b Expression of TGF-β, α-SMA, and collagen were measured by quantitative real-time polymerase chain reaction (qRT-PCR); the
results were normalized to β-actin mRNA levels. c 2 × 104 KFs were cultured with IL-17 10 ng/mL and STA21 10 μM for 48 h. SDF-1 was measured in
culture supernatant using ELISA. dRelative mRNA levels of TGF-β,α-SMA, and collagen. Data represent the mean ± SD of three independent experiments
(*P < 0.05; **P < 0.01; ***P < 0.001).
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showed that SDF-1 production in KFs was significantly
increased by IL-17 treatment. These findings indicate that
SDF-1 in KFs could enhance the recruitment of Th17 cells,
and the resulting infiltration of Th17 cells augment SDF-1
expression in KFs, further recruiting more Th17 cells. In
addition, we found IL-17 stimulated the expression of
profibrotic markers from KFs, indicating that excessive
Th17 cell infiltration results in pathological scar formation.
This result is in agreement with an earlier study demon-
strating that boosting T cell function cells in athymic mice
significantly increased the growth of human keloid trans-
plants [9].

Considering these results, suppressing the positive
feedback loop between KFs and T cells might be effective
in treating pathological scar formation. In other words, the
inhibition of SDF-1 expression from KFs can prevent the
excessive infiltration of Th-17 cells and the profibrotic
effects of IL-17. Our study showed that the STA-21-
inhibited STAT3 pathway resulted in decreased production
of SDF-1 and fibrosis markers.

In addition to the inhibition the recruitment of effective
T cells, decreasing SDF-1 expression may have additional
preventive effects on keloid scar formation by impeding
fibrocyte homing. Fibrocytes are circulating fibroblast-like
mesenchymal progenitor cells that have been associated
with fibrotic disorders including pulmonary fibrosis, ne-
phrotic fibrosis, and skin fibrosis [12]. Fibrocytes express
surface markers such as CCR2, CCR7, and CCR4, and
under inflammatory conditions, they can migrate to the
inflammatory site via induction by SDF-1α [13]. In keloid
and postburn hypertrophic scars, increased infiltration of
fibrocytes compared with normal tissue has been reported
[12, 14, 15]. Consequently, suppression of SDF-1α expres-
sion is expected to decrease fibrotic inflammation as well as
the infiltration of fibrocytes.

CONCLUSIONS

In summary, our study demonstrated that IL-17 en-
hanced SDF-1 expression in fibroblasts, which in turn
increased the migration of Th17 cells from the circulatory
system. In addition, IL-17 promoted the expression of
profibrotic cytokines including α-SMA and collagen type
I in KFs. This positive feedback loop may result in exces-
sive infiltration of T cells and contribute to the chronic
inflammation in keloid scars. STA-21 could be used to treat
keloid scars by decreasing SDF-1α expression in KFs and
breaking the positive feedback loop between KFs and
Th17 cells.
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