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Simple Summary: Since its first description 35 years ago, the transcription factor NF-κB (nuclear
factor κ-light-chain-enhancer of activated B cells) has been shown to be a key mediator of immune
cell responses to inflammatory mediators, oxidative stress and genotoxic injury. Dysregulated NF-κB
signalling drives inflammation in inflammatory disorders such as multiple sclerosis, rheumatoid
arthritis or inflammatory bowel disease. Thus, re-establishing the appropriate regulation of NF-κB
activity seems like a promising approach to treat inflammatory diseases. Current anti-inflammatory
drugs have many, often serious, side effects. Thus, there is an unmet clinical need for safe and
effective anti-inflammatory medicines that both decrease inflammatory mediator production and
enhance endogenous anti-inflammatory and prorepair pathways. So far, traditional de novo drug
discovery has fallen short of satisfying this need. Drug repurposing is a cost- and time-effective
alternative to de novo drug development for the identification of novel applications and has already
resulted in the identification of effective anti-inflammatories in the ongoing COVID-19 pandemic. In
this paper we critically review NF-κB as a potential target for the development of anti-inflammatory
drugs with an emphasis on drug repurposing as a strategy to identify new approaches to treat
inflammatory diseases.

Abstract: NF-κB is a central mediator of inflammation, response to DNA damage and oxidative stress.
As a result of its central role in so many important cellular processes, NF-κB dysregulation has been
implicated in the pathology of important human diseases. NF-κB activation causes inappropriate
inflammatory responses in diseases including rheumatoid arthritis (RA) and multiple sclerosis (MS).
Thus, modulation of NF-κB signaling is being widely investigated as an approach to treat chronic
inflammatory diseases, autoimmunity and cancer. The emergence of COVID-19 in late 2019, the
subsequent pandemic and the huge clinical burden of patients with life-threatening SARS-CoV-2
pneumonia led to a massive scramble to repurpose existing medicines to treat lung inflammation in a
wide range of healthcare systems. These efforts continue and have proven to be controversial. Drug
repurposing strategies are a promising alternative to de novo drug development, as they minimize
drug development timelines and reduce the risk of failure due to unexpected side effects. Different
experimental approaches have been applied to identify existing medicines which inhibit NF-κB that
could be repurposed as anti-inflammatory drugs.

Keywords: inflammation; NF-κB; drug repurposing; drug development; autoimmunity; COVID-19;
multiple sclerosis; rheumatoid arthritis

1. NF-κB Signaling in Inflammation
1.1. A Brief History of NF-κB Signaling in Inflammatory Diseases

The transcription factor NF-κB (nuclear factor κ-light-chain-enhancer of activated
B cells) is named for its 1986 discovery in B cells, in which it was found to bind to the
enhancer element of the κ-IgG chain gene [1]. In a broader context, NF-κB is expressed in
almost all cell types [2] and is involved in essential cellular processes such as apoptosis
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and cell cycle progression [3]. In immune cells, NF-κB is key in the response of innate cells
to viral or bacterial antigens and other stimuli such as cytokines during inflammation [4].
Despite its name, NF-κB signaling is an important regulator of the transcription of genes
such as cytokines, chemokines or interferon-stimulated genes (ISGs) in innate immune
cells [5]. As a result of its central role in many cellular processes, NF-κB dysregulation has
been implicated in the pathology of numerous diseases. In several cancer types, NF-κB is
constitutively activated, resulting in unregulated proliferation, thus making it an important
therapeutic target in many cancers such as breast cancer, lung cancer, gastric and colorectal
cancer as well as hematologic malignancies [2,6–11]. As a central mediator of inflammation,
NF-κB activity causes inappropriate inflammatory responses in rheumatoid arthritis (RA),
inflammatory bowel disease (IBD), multiple sclerosis (MS) and atherosclerosis [12,13]. Thus,
modulation of NF-κB signaling is being widely investigated as an approach to treat such
diseases.

1.2. NF-κB Signaling in Inflammatory Diseases

In mammals, the NF-κB family consists of the five structurally related transcription
factors p50 (NF-κB1), p52 (NF-κB2), p65 (RelA), c-Rel and RelB [14,15]. There are three
distinct pathways through which NF-κB signaling can occur: the canonical (or classical)
pathway, the noncanonical (also nonclassical or alternative) pathway and the atypical
signaling pathway [16]. These are classified by their different activating mechanisms (see
Table 1).

Table 1. Stimuli and receptors triggering NF-κB activation [17–19].

Stimulus Receptor NF-κB Pathway

LPS TLR4 Canonical

TNF-α TNFR1 Canonical

IL-1 IL-1R Canonical

BAFF BAFFR Noncanonical

CD40L CD40 Noncanonical

RANKL RANK Noncanonical

LTβ LTβR Noncanonical

TNF TNFR2 Canonical/Noncanonical

TWEAK Fn14 Canonical/Noncanonical

EGF EGFR Atypical

UV CK2 Atypical

The canonical NF-κB pathway can be activated by diverse stimuli such as TNF-α, IL-1
or LPS (Figure 1) [16]. Upon recognition of these ligands by their receptor, the IKK2 complex,
consisting of IKKβ and NEMO (NF-κB essential modulator), is phosphorylated [13,20].
Subsequently, IκBα is phosphorylated [21–23], causing the ligation of ubiquitin chains to
IκB, thereby tagging the inhibitor for proteasomal degradation [24]. Upon degradation of
IκB, the nuclear localization sequences become unmasked, and the p65:p50 heterodimer
can translocate from the cytoplasm into the nucleus where the transcription factor binds
to the promoter of the primary response inflammatory genes including TNF or IL1β and
initiates their transcription [5,16,25,26].
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Figure 1. Activation of the canonical and noncanonical NF-κB signaling pathway. 

The canonical pathway is initiated by ligand binding to cytokine receptors such as 
the TNF-receptor or the IL-1 receptor and results in the activation of the IKK complex, 
consisting of IKKα, IKKβ and NEMO. This causes the phosphorylation (P) and the ubiq-
uitination (U) of IκBα, targeting it for degradation by the 26S proteasome. The NF-κB di-
mer translocates to the nucleus where it activates the transcription of NF-κB target genes. 
This dimer can consist of p50/RelA, RelA/RelA, RelA/c-Rel, Rel/p52, c-Rel/c-Rel, p52/c-
Rel, p50/c-Rel, p50/p50, RelB/p50 and RelB/p52, with the p50/RelA complex being the 
most common [32]. Binding of ligands to a subset of TNF receptor family members such 
as the CD40, BAFF or the LTβ receptor activates the noncanonical NF-κB pathway. Fol-
lowing ubiquitination of TRAF2/3 by cIAP1/2 at the receptor and subsequent degradation, 
NIK is stabilized. Activated NIK accumulates and phosphorylates IKKα, which in turn 
phosphorylates p100, causing it to be proteolytically processed to p52. RelB and p52 form 
a heterodimer which translocates to the nucleus to induce the transcription of target genes. 
Figure 1 was generated with BioRender and Powerpoint and summarizes experimental 
findings reviewed in [5,13,16,33–35]. 

Finally, atypical NF-κB signaling pathways are those that cannot be classified into 
either canonical or noncanonical signaling. Although each pathway is unique to the stim-

Figure 1. Activation of the canonical and noncanonical NF-κB signaling pathway.

In contrast to the canonical pathway, the noncanonical pathway is IκB-independent [8]
and is activated by a subset of members of the TNF cytokine family [13,27,28] (Figure 1).
Under normal conditions, NF-κB-inducing kinase (NIK) is constantly ubiquitinated and
degraded. Upon ligand binding, NIK is stabilized and consequently phosphorylates
and activates IKKα. IKKα phosphorylates NF-κB subunit p100, which is subsequently
ubiquitinated and cleaved to form p52 [27,29–31]. p52 proceeds to form a heterodimer
with RelB, which translocates to the nucleus and binds DNA to induce transcription of
target genes.

The canonical pathway is initiated by ligand binding to cytokine receptors such as the
TNF-receptor or the IL-1 receptor and results in the activation of the IKK complex, consisting
of IKKα, IKKβ and NEMO. This causes the phosphorylation (P) and the ubiquitination (U)
of IκBα, targeting it for degradation by the 26S proteasome. The NF-κB dimer translocates
to the nucleus where it activates the transcription of NF-κB target genes. This dimer can
consist of p50/RelA, RelA/RelA, RelA/c-Rel, Rel/p52, c-Rel/c-Rel, p52/c-Rel, p50/c-Rel,
p50/p50, RelB/p50 and RelB/p52, with the p50/RelA complex being the most common [32].
Binding of ligands to a subset of TNF receptor family members such as the CD40, BAFF
or the LTβ receptor activates the noncanonical NF-κB pathway. Following ubiquitination
of TRAF2/3 by cIAP1/2 at the receptor and subsequent degradation, NIK is stabilized.
Activated NIK accumulates and phosphorylates IKKα, which in turn phosphorylates
p100, causing it to be proteolytically processed to p52. RelB and p52 form a heterodimer
which translocates to the nucleus to induce the transcription of target genes. Figure 1
was generated with BioRender and Powerpoint and summarizes experimental findings
reviewed in [5,13,16,33–35].

Finally, atypical NF-κB signaling pathways are those that cannot be classified into
either canonical or noncanonical signaling. Although each pathway is unique to the
stimulus, atypical signaling is largely induced by genotoxic stress, such as UV damage
or exposure to ROS. This signaling pathway can also be activated by casein kinase 2 or
tyrosine kinases such as EGFR [18,36–39].
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1.3. NF-κB Activity as a Druggable Target in Inflammatory Diseases

NF-κB signaling can be modulated at different stages between receptor activation and
the initiation of gene transcription [40]. Strategies for NF-κB inhibition include targeting
the receptors, receptor adaptor proteins (e.g., BTK, IRAK, PI3K/AKT or c-IAP), the IKK
complex or the ubiquitin-protease system to prevent the degradation of IκBα. Further,
interfering with nuclear translocation, DNA binding or the initiation of transcription of
NF-κB target genes are all attractive strategies to inhibit NF-κB signaling (Figure 2) [40,41].
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Figure 2. Strategies to inhibit NF-κB signaling.

NF-κB signaling can be inhibited by preventing the activation of receptors triggering
NF-κB activation by using monoclonal antibodies or receptor antagonists. Targeting IKKα

or IKKβ inhibits IκBα phosphorylation and ubiquitination. IκBα can be targeted directly,
which can increase its expression. By inhibiting the proteasome, inhibitors can prevent
the degradation of IκBα and the subsequent translocation of the p65/p50 dimer into the
nucleus. Finally, inhibitors can interfere with nuclear translocation directly, as well as with
DNA-binding or NF-κB target gene transcription. Figure 2 was generated with BioRender
and Powerpoint.

Given the importance of NF-κB activity for the pathology of many human diseases,
drug development efforts have identified a number of NF-κB inhibitors [42,43] that can be
broadly categorized into recombinant proteins, peptides, natural products and synthetic
compounds [41]. Despite hundreds of NF-κB inhibitors having been reported to date, few
have found clinical application [40]. Therefore, this review aims to investigate drug repur-
posing as an alternative strategy to identify novel NF-κB inhibitors with anti-inflammatory
properties.

2. Drug Repurposing to Identify NF-κB Inhibitors
2.1. Why Do We Need New Anti-Inflammatory Drugs?

Many common anti-inflammatory drugs have potentially serious side effects [44,45].
Disease-modifying antirheumatic drugs (DMARDs) require close monitoring due to the
increased risk of infection and hepatotoxicity. Glucocorticoid treatment often results in
glucocorticoid resistance and therefore is limited for long-term treatment [46,47]. TNF-
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blockers, a widely used intervention for autoimmune diseases such as MS or RA, can
exacerbate MS symptoms as well as the frequency and the severity of MS attacks [48,49].
Furthermore, RA patients treated with TNF inhibitors can develop demyelinating lesions in
the CNS or MS [50]. Finally, while a few compounds have been reported to have both anti-
inflammatory and prorepair effects, very few have been investigated in clinical trials and
none have received FDA-approval (Table 2). Instead, currently available anti-inflammatory
drugs have been selected to reduce inflammatory mediator production and not necessarily
selected for their ability to enhance tissue repair processes.

Table 2. Compounds with reported anti-inflammatory and prorepair properties. Few compounds
have been reported that both inhibit inflammation and promote repair processes. While some have
been investigated in clinical trials, none have received FDA-approval: SCI = spinal cord injury; IR =
ischemia/reperfusion; TBI = traumatic brain injury.

Compound Original
Indication

New
Indication Comments References

Clemastine
fumarate

Allergic
reactions MS

Promotes oligodendrocyte
precursor cell differentiation
and therefore myelin repair,
reduces neuroinflammation

in ALS model (inhibits
NF-κB)

[51–61]

Curcumin Dietary
supplement COVID-19

Protects and promotes repair
of alveolar ATII cells in

inflammatory lung injury
model, increases Tregs, IL-10
and M2 macrophages in acute

lung injury model, protects
from cardiovascular injuries,

reduces inflammation by
inhibiting NF-κB

[62–64]

Ibuprofen Pain relief SCI

Promotes axon growth and
motor function improvement
in spinal cord injury models

by RhoA inhibition

[65–67]

Indomethacin Pain relief SCI
Promotes axon growth in

spinal cord lesion model by
RhoA inhibition

[65,67]

Resolvin D1 - Liver
injury

Protects from IR-induced
sterile liver inflammation by

promoting M2 phenotype and
efferocytosis in Kupffer cells,

protects astrocytes and
ameliorates cognitive

impairment after TBI, inhibits
inflammation and NF-κB

signaling

[68–72]

Drug repurposing (also referred to as drug repositioning, drug reprofiling or drug
re-tasking) seeks to identify new uses for existing drugs or compounds outside the scope
of their original indication [73]. Increasing costs of de novo drug discovery combined with
long development timelines are major challenges in drug development. Bringing a new
drug to the market has been estimated to take 15 years and cost an average of USD 2 billion
to USD 3 billion. In contrast, drug repurposing is estimated to cost 10% that of de novo
drug development. With an average timeline of 6.5 years, the repurposing process is much
more time efficient [74,75] (Figure 3).
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Drug repurposing is a time- and cost-effective alternative to de novo drug discovery.
Available data collected during the various phases of development for the initial indica-
tion allows bypassing several steps of the conventional drug discovery process, thereby
significantly reducing the risk of failure as well as time and costs involved in the procedure.
Moreover, 90% of drug candidates fail in clinical trials due to safety and efficacy concerns.
Because of extensive safety testing in preclinical animal models and in clinical trials [77,78],
drug repurposing minimizes this risk of failure. Furthermore, drug repurposing offers
the opportunity to rescue compounds that have undergone clinical testing and have good
pharmacokinetic and safety profiles but have previously failed to achieve clinical approval
due to a lack of efficacy in their original indications.

2.2. Approaches to Drug Repurposing

Many approaches to drug repurposing exist, including biological, experimental or
computational approaches as well as combined approaches (Figure 4).
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Initially, drug repurposing occurred when medicines were observed to have consistent
unexpected off-target side effects in patients. This was the case with sildenafil, a drug
developed to treat angina [57], which has since been successfully marketed by Pfizer to
combat erectile dysfunction. After growing evidence highlighted the benefits of sildenafil
treatment of pulmonary hypertension, the drug received approval to be further repurposed
for the treatment of PAH [79]. Rare, serendipitous observations continue to be exploited,
but this strategy has become a less reliable approach to drug repurposing, leading system-
atic approaches to dominate in recent years. In the next section of this review, different
approaches to drug repurposing will be discussed, and specific examples of how they have
been utilized to target NF-κB will be outlined.

3. Computer-Based Drug Repurposing Strategies

Computational drug repurposing strategies are screening approaches that are capable
of testing thousands of candidate compounds at a rapid rate (Figure 4). Typically, these
screens investigate libraries of drugs that have chemical structures or molecular targets
similar to those of drugs already known to be active in the desired context. Molecular dock-
ing can predict previously unreported interactions of existing drugs with therapeutically
relevant targets. Alternatively, screens can be performed to identify diseases with shared
molecular targets and thus shared treatment options. Many successful drug repurposing
efforts combine drug- and disease-based approaches [77,80]. Various databases, libraries
and methods have been developed for computer-based drug repurposing (Table 3). Com-
putational screening methods and resources for drug discovery and web-based resources
for drug repurposing have been extensively reviewed recently [81,82].

A recent study identified thioridazinehydrochloride (TDZ) as a novel IKKβ inhibitor
from a panel of FDA approved drugs [83]. TDZ is a first-generation antipsychotic used
to treat symptoms of schizophrenia, other psychotic disorders, depressive disorders, be-
havioral disorders in children and geriatric psychoneurotic disorders. Mechanistically,
TDZ is known to block dopamine-2 receptors in the mesolimbic pathway [84]. The drug
repurposing strategy took a drug-based computational approach. Since de novo drug
development has not resulted in the approval of any IKKβ inhibitors [33,85–87], the study
aimed to repurpose existing drugs as IKKβ inhibitors by developing a computer-assisted
structure-based drug repurposing strategy. A virtual screen using a subset of the ZINC
database of FDA-approved drugs and a crystal structure of inhibitor-bound IKKβ revealed
thioridazinehydrochloride (TDZ) as a potential IKKβ inhibitor. To validate the repurposing
approach, TDZ was tested both in vitro and in vivo. TDZ was shown to inhibit IKKβ

phosphorylation and IκBα degradation, thereby inhibiting NF-κB activity and resulting
in the attenuation of inflammation in a mouse model of endotoxemia [83]. These findings
validate the computer-aided drug repurposing approach to identify novel NF-κB inhibitors
with anti-inflammatory properties, which can be further investigated for clinical benefit in
NF-κB-dependent inflammatory diseases [83].
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Table 3. List of databases, libraries and methods used in computer-based drug repurposing.

Resource Description References

Databases and Libraries

Drug Repurposing Hub
Annotated library of FDA-approved drugs,

drugs undergoing clinical trials, and
preclinical tool compounds

[88]

DrugCentral

Online drug information resource containing
4714 drugs and 129,975 pharmaceuticals,
providing up-to-date drug information,

including a drug repositioning prioritization
scheme for FDA-approved drugs

[89]

CheMBL

Database of bioactive molecules with
druglike properties, containing chemical,

bioactivity and genomic data to aid
translation of genomic information into

effective new drugs

[90,91]

ReDo_Trials Database Database of active clincal trials investigating
repurposed drugs for cancer therapy [92]

RepoDB Database of approved and failed drugs and
their indications [93]

ReFrame Database
Commercially available screening library of
12,000 molecules for use in high throughput

cell-based repurposing assays
[94]

Zinc Library of >700,000 small molecules for use
in computational screening [95]

COVID-19 Drug
Repurposing Database

(Excelra)

Commercially available database of
approved drugs which can rapidly be

entered into phase II or III trials against
COVID-19

[96]

DrugRepurposing Online
(Nimedicus)

Commercially available database of 9040
candidate repurposing compounds

annotated with indications and mechanisms
[97]

PROMISCUOUS

Publicly available database of 25,000 drugs
annotated with drug-protein, protein-protein
interactions, drug structural similarity and

known side-effects

[98]

Methods

DeepDTNet
Deep learning system for identification of

novel targets for drug repurposing in disease
specific contexts

[99]

AOPDEF
Deep learning system identifying molecular
targets among known drugs on two external

validation sets
[100]

MBiRW Computational method to identify novel
indications for given drugs [101]

KinderMiner Text mining method to identify repurposing
candidates [102]

DrugQuest Text mining method to identify simmilarities
between DrugBank entries [103]

Semantic Link Association
Prediction (SLAP)

Statistical algorithm to predict novel
drug-target pairs [104]



Biology 2022, 11, 372 9 of 32

3.1. Pharmacophore Modeling-Based Drug Repurposing

Pharmacophore modeling protocols have been established to repurpose drugs for
different indications. Developing a pharmacophore model for target proteins linked to
certain pathologies, taking into account molecular features required for the interaction of a
ligand to the chosen protein target, can be used to generate pharmacophores with features
predicted to cause strong interactions with the target or predict the binding and activity
of molecules in a virtual screen [105]. The model is based on structural data available
for the target or based on previously identified ligands [106]. This approach has been
successfully employed to screen drug libraries, scoring the compounds against the pharma-
cophore model to identify drug repurposing candidates against inflammation [107,108],
COVID-19 [109–111] or insulin resistance [112]. Early in the SARS-CoV-2 pandemic, the
anti-inflammatory effect of thalidomide was suggested for the treatment of COVID-19 pa-
tients [113,114] To study the mechanism through which thalidomide ameliorates COVID-19
and to identify derivatives that could be promising candidates for treatment, a pharma-
cophore modeling-based repurposing approach was applied. This approach revealed the
key protein targets involved in the regulation of the immune response by thalidomide.
Processes that were affected by thalidomide were IkB phosphorylation, and MAPK signal-
ing, among others. A transcriptome-based strategy was combined with gene expression
analysis of cells treated with thalidomide or its derivative lenalidomide. This confirmed the
previous results, as NF-κB and MAPK signaling were shown to be down-regulated [111].

3.2. Artificial Intelligence-Aided Drug Repurposing

Recently, drug repurposing strategies that use artificial intelligence (AI) to identify
novel indications for existing drugs have been developed. For example, known drug-target
interactions can be used to predict new interactions via an AI method called deepDTnet,
which contains a heterogenous network of drugs, genes and diseases, including chemical,
phenotypic and genomic data (Table 3) [99]. The method was tested using a library of
FDA-approved small molecules and was shown to identify novel targets of a known drug
using deep learning algorithms. This approach was successfully used to identify drugs that
interact with ROR-γt, which is linked to autoimmune diseases such as MS [99]. The authors
identified the FDA-approved topoisomerase inhibitor topotecan as a promising repurposing
candidate, which was validated in the EAE mouse model in vivo [99]. The network-
based arbitrary-order proximity embedded deep forest approach (AOPEDF) is based on
deepDTnet and can accelerate target-based drug repurposing. Similar to deepDTnet, it
integrates drug, disease and target data to identify new targets but seems more effective in
predicting novel drug-target interactions [100].

4. Experimental Approaches to Drug Repurposing

Experiment-based drug repurposing approaches can be divided into target-based
strategies and phenotypic screens (Figure 4). Target-based drug repurposing requires
knowledge of the molecular target of candidate drugs, whereas phenotypic screens do not
rely on extensive scientific knowledge of the mode of action of a drug or the molecular
pathology of a disease [82,115–117].

4.1. Target-Based Approaches to Drug Repurposing

Given the role that tyrosine kinases such as CSFR-1, KIT, Lck and DDR play in
RA pathology, multiple studies have investigated the effect of tyrosine kinase inhibitors
(TKIs) in models of arthritis [118–121]. Dasatinib, a second-generation TKI used to treat
chronic myeloid leukemia or Philadelphia chromosome-positive acute lymphoblastic
leukemia [122,123], has been identified as a promising new therapeutic option for the
treatment of RA. In one study, Guo et al. [71] investigated the effect of dasatinib on RA
pathology due to its similar target profile to other TKIs imatinib and nilotinib, which were
previously found to be effective in collagen induced arthritis (CIA) animal models [124,125].
Dasatinib reduced disease severity by attenuating the production of proinflammatory
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cytokines IL-1β, TNF-α and IL-6 in mice with CIA, while increasing anti-inflammatory
IL-10 [71]. Moreover, dasatinib inhibited the migration and proliferation of human fibrob-
lastlike synoviocytes (FLS), which in their activated state promote bone erosion based on
their ability to secrete receptor activator of nuclear factor κB ligand (RANKL), thereby
inducing osteoclast differentiation and bone destruction [71]. These findings validate
dasatinib as an anti-inflammatory drug in a preclinical model that has the potential to be
repurposed as an RA treatment.

4.2. Phenotypic Screening Approaches to Drug Repurposing in Cell Lines and Model Organisms

Preclinical drug identification and development traditionally relies on cell-based
assays to identify and optimize promising lead compounds. With nine out of ten drugs
entering clinical trials failing to achieve FDA approval [126,127], there is a need for reliable
assays to test the safety and effectiveness of drugs in early drug development stages.

In order to identify FDA-approved drugs that promote remyelination in MS, Mei et al.
developed a high-throughput functional screening assay using micropillar arrays, which
allow for the detection and quantification of myelin wrapping [57]. The screen identified
clemastine fumarate, an H1-antihistamine that is used to treat allergic reactions. Clemastine
promotes oligodendrocyte precursor cell differentiation in animal models and human
cells [52,57,58]. As only differentiated oligodendrocytes can produce myelin [128], this
differentiation process induced by clemastine was linked to an increase in remyelination
in a variety of animal models [52,55–58,61], which was confirmed to be specifically due to
increased oligodendrocyte differentiation [58]. Furthermore, it inhibited the production
of proinflammatory cytokines, microglial M1-like activation and astrocyte loss in mice
with depressionlike symptoms and a mouse model of ALS [51,59]. Studies have linked the
anti-inflammatory activity of clemastine to its ability to inhibit NF-κB [54,60]. A phase II
clinical trial recently demonstrated the ability of clemastine to promote myelin repair in
patients with relapsing MS [53].

Although many cell-based assays allow for high throughput screening, results ob-
tained from in vitro testing on human cells or tissues have limited reliability in terms
of the effect of the drug on a whole organism. Therefore, automated, high-throughput,
quantitative in vivo screens have been developed, with Danio zebrafish becoming an in-
creasingly popular model organism [129] due to their increased throughput screening
capacity in comparison to mice and the resemblance of their immune system to that of hu-
mans [120,121]. Several zebrafish inflammation models have been developed, which have
been successfully used to identify and study drugs with anti-inflammatory properties [129].
Hall et al. demonstrated the potential of using in vivo zebrafish neutrophil migration assay
in screening for novel anti-inflammatories [90]. The assay, which assesses the recruitment
of neutrophils to tail fin injury as a model of acute inflammation, was applied to identify
previously unknown anti-inflammatory properties of approved drugs in a high-throughput
screen. The anti-inflammatory activity of the 10 most potent repurposing candidates was
subsequently tested in a mouse model of atopic dermatitis, in which they potently inhibited
dermatitis-related inflammation [130].

Zebrafish embryos are also a useful model organism in drug development screens. Their
innate immune system develops early in embryogenesis, and as early as 26 h after fertilization,
phagocytosis and ROS production can be detected in embryonic macrophages [131,132]. Not
until later stages of development does the adaptive immune system mature, therefore making
it possible to study both arms of the immune response [133,134].

Furthermore, in zebrafish (Danio rerio), the blood brain barrier (BBB) is not developed
until 3–10 days postfertilization, with tight junctions forming after day 5. Therefore, drugs
added into water can cross the BBB, allowing modulatory effects on zebrafish behavior to
be studied [135]. In the first study investigating the behavioral profile of zebrafish, Rihel
et al. were able to classify drugs in a high-throughput functional screen by analyzing the
rest/wake cycle of fish [136]. For example, anti-inflammatory drugs including glucocorti-
coids and NSAIDs coclustered by promoting a unique sleep/wake behavioral fingerprint.
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There is exciting potential to use behavioral fingerprints to identify anti-inflammatory
activity of existing drugs.

5. NF-κB as a Potential Target for Drug Development in CNS Inflammation

Multiple sclerosis is an autoimmune disorder that causes chronic inflammation in the
central nervous system (CNS). It is the most widespread disabling neurological disease
in young adults and results in physical or cognitive disorders [137]. MS pathology is the
result of immune cells infiltrating the CNS, releasing cytokines and other inflammatory
mediators leading to the destruction of myelin sheath, the reduction of oligodendrocyte
numbers and finally axon degeneration [138]. Canonical and noncanonical NF-κB signaling
play an important role in MS pathology in both innate and adaptive immune cells (Figure 5
and Table 4). Genomewide association studies (GWAS) have correlated central components
of the NF-κB pathway with an increased risk of developing MS [139–141].

5.1. NF-κB Activation in T Cells in MS/EAE

NF-κB drives the expression of proinflammatory mediators, which induces the differ-
entiation of naïve CD4+ T cells towards proinflammatory Th1 and Th17 cells. On the other
hand, NF-κB is also required for the Treg differentiation [140,142,143]. In addition, NF-κB
activity increases the expression of adhesion molecules, enabling infiltrating inflammatory
T cells to cross the blood brain barrier (BBB) [144–147]. Deficiency in NF-κB signaling
components such as NIK, p50, IKK2, RelA or c-Rel decreases T cell differentiation or activa-
tion and protects from EAE (experimental autoimmune encephalitis) [148–154]. EAE is a
commonly used animal model of MS and one of the oldest models of immunopathology.
Animals present with neuroinflammation, destruction of myelin sheath, axon damage and
gliosis, which are key features observed in MS pathology, but also undergo resolution of
inflammation and remyelination. Therefore, EAE is a complex model system for testing and
development of potential MS medications [155]. Unlike in MS, the disease is not initiated
through the production of myelin-directed autoantibodies but requires induction. Active
immunization is induced with myelin antigens or spinal cord homogenate in combination
with an adjuvant, whereas passive immunization is induced through the adoptive transfer
of myelin-specific CD4+ T cells from a donor animal [156,157].

5.2. Role of NF-κB Activation in Macrophages and Microglia in MS

NF-κB activation in macrophages or microglia in MS and EAE exacerbates inflamma-
tion by promoting the production of proinflammatory mediators. Therefore, additional
macrophages/microglia are activated, enhancing inflammation even further [158,159]. In
mice with a myeloid-specific conditional IκBα knockout, constitutive NF-κB activity exac-
erbates the severity of EAE. This is due to an increase in T cell and macrophage/microglia
infiltration. In addition, inducible nitric oxide synthase (iNOS) expression promoted by
NF-κB activity is increased as well as the production of myeloid-derived proinflammatory
cytokines [160].

Research using myeloid cells from mice with conditional knockouts of IKKβ demon-
strates the role of the kinase in demyelination and neurodegeneration. IKKβ depletion
specifically in microglia and macrophages decreases T cell and macrophage infiltration, the
permeability of the BBB, the transcription of proinflammatory genes as well as neuroin-
flammation, demyelination and EAE severity. In addition, the amount of Th1 and Th17
cells is reduced, whereas the percentage of Treg cells increases in the spinal cord [161,162].
To determine the role of microglia independently from peripheral macrophages, Goldmann
et al. developed a microglia-specific conditional TAK1 knockout mouse model. TAK1 de-
pletion inhibited the NF-κB pathway and reduced damage to the axons and myelin sheaths
as well as overall CNS inflammation [163]. Taken together, these results demonstrate the
proinflammatory role of NF-κB activity in macrophages and microglia in EAE.

However, NF-κB expression in macrophages might also have a neuroprotective effect.
When TREM2, a target of NF-κB, was overexpressed in bone-marrow derived myeloid
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precursor cells which were applied to EAE mice, an increase in the production of anti-
inflammatory cytokines was observed. This was accompanied by the amelioration of
EAE symptoms and the reduction of demyelination and axon damage, while increased
phagocytosis led to the clearance of destroyed myelin [164].

Table 4. Role of NF-κB activity in different cell types in MS/EAE.

Cell Type
Genotypic

Alteration in NF-κB
Signaling

Effect on Neuroinflammation References

T cells

IKKβ deficient T cells
Resistance to EAE, impaired

autoreactive T cell activation and
expansion

[149]

p50 deficient
Attenuated EAE incidence and
severity, impaired Th1 and Th2

differentiation
[150]

c-Rel deficient Resistance to EAE, defective Th1 and
Th17 development [148,151]

MALT1 deficient

Protection from EAE, absence of
demyelination, proinflammatory

cytokines and immune cell infiltration
into spinal cord. Effector function of

autoreactive Th17 cells impaired

[165,166]

CARMA1 deficient Resistance to EAE, impaired Th17
differentiation [167]

IκBα∆N Resistance to EAE, reduced Th17
differentiation [167]

NIK deficient
Protection from EAE due to DC

function and independent from CD4+
T cell function

[168]

NIK deficient Resistance to EAE, impaired Th17
differentiation [152]

NIK deficient T cells
Attenuation of EAE, reduced

generation of Th1 and Th17 cells,
reduced immune cell infiltration

[153]

Macrophages/
Microglia

IκBα deficient
Exacerbated EAE, increased immune
cell infiltration and myeloid-derived

proinflammatory cytokines
[160]

IKKβ deficient
macrophages/

microglia

Attenuation of EAE, reduced immune
cell infiltration, production of

proinflammatory cytokines and
permeability of the BBB. Increase in
Tregs and decrease of Th1 and Th17

cells

[161,162]

TAK1 deficient
microglia

Reduced CNS inflammation and
neurodegeneration, NF-κB inhibition [163]

TREM2
overexpressing

myeloid precursor
cells

Attenuation of EAE, reduced
neurodegeneration, increase in

anti-inflammatory cytokines and
phagocytosis

[164]

A20 deficient
microglia

Aggravated EAE, Nrp3 inflammasome
activation, increase in immune cell
infiltration and proinflammatory

cytokine production

[169]
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Table 4. Cont.

Cell Type
Genotypic

Alteration in NF-κB
Signaling

Effect on Neuroinflammation References

Astrocytes

IκBα overexpressing
astrocytes

Attenuation of EAE, decreased
immune cell infiltration and

production of proinflammatory
cytokines

[170–172]

IKKβ deficient
astrocytes

Protection from myelin loss in
cuprizone-induced inflammation

model
[173]

A20 deficient
astrocytes

Aggravated EAE, increase in immune
cell infiltration and proinflammatory

cytokine production
[174,175]

Oligoden-
drocytes

IκBα∆N in
oligodendrocytes

Aggravated EAE, reduced
remyelination and oligodendrocyte

death in cuprizone-induced
inflammation model

[176]

IKKβ deficient
oligodendrocytes

No protection from demyelination in
cuprizone-induced inflammation

model
[173]

Neurons

IKKβ deficient
neurons

Aggravated EAE, increased Th1
infiltration and proinflammatory

cytokine production. Reduced
production of neuroprotective factors

[177]

IκBα overexpressing
neurons

No effect on EAE progression or
inflammation [178]

5.3. NF-κB Activation in CNS Cells in MS

In the CNS, the conditional deletion of NEMO or IKKβ in nonmicroglial cells (astro-
cytes, oligodendrocytes and neurons) has an anti-inflammatory effect. This is abrogated
when IKK1 is eliminated in the cells, suggesting that NF-κB activation through the canonical
NF-κB pathway plays a role in CNS cells in EAE. However, the model made it impossi-
ble to determine the contribution of the individual nonmicroglial CNS cell types to the
proinflammatory function [179].

In astrocytes, NF-κB signaling seems to be an important driver of their proinflamma-
tory activity in EAE. An improvement of EAE symptoms, a decrease in proinflammatory
gene expression and immune cell infiltration was detected in mice with astrocyte-specific
overexpression of IκBα, resulting in the inhibition of NF-κB signaling. In addition, the trans-
genic mice also showed improved recovery from EAE [170–172]. The ubiquitin-modifying
protein A20, which inhibits NF-κB activity, could be an important regulator of NF-κB
signaling in EAE. The deletion of A20 in astrocytes leads to increased production of proin-
flammatory cytokines and immune cell recruitment, resulting in aggravated EAE disease
severity [174,175]. In line with this, the astrocyte-specific deletion of IKK2 protects mice
from myelin loss in a cuprizone-induced inflammation model [173].

In contrast to astrocytes, NF-κB activation has a protective effect on oligodendrocytes
in multiple models of MS. The overexpression of the NF-κB repressor IκBα in oligoden-
drocytes increases oligodendrocyte death and hypomyelination in IFN-γ expressing mice
and causes the failure of remyelination and the death of IFN-γ induced remyelinating
oligodendrocytes in the cuprizone model. NF-κB inhibition also increases the susceptibility
of the IκBα∆N mice to EAE [176]. However, oligodendrocyte-specific IKK2 depletion does
not protect mice from demyelination in the cuprizone model, which indicates that IKK2-
mediated NF-κB activation does not play an important role in remyelination [173]. These
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results contrast with earlier findings that NF-κB activity was detected in oligodendrocytes
and microglia/macrophages on the edge of inactive MS lesions but not silent MS plaques,
which suggests that oligodendrocytes are involved in tissue repair [180]. In addition, mice
with a conditional knockout of RelB in oligodendrocytes display enhanced p65 NF-κB activ-
ity and survival of mature oligodendrocytes, resulting in reduced EAE severity. Increased
p65 activation was previously shown to promote oligodendrocyte survival in inflammation
and was suggested to be due to the lack of RelB-mediated inhibition [181].
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NF-κB has a neuroprotective effect on neurons in EAE. Mice with a deletion of IKKβ

specific to Ca2+/calmodulin-dependent kinase IIα-expressing neurons developed severe
EAE, characterized by axon loss, Th1 cell infiltration, reduced production of neuroprotective
factors in the CNS and NK cell recruitment as well as the up-regulation of proinflammatory
cytokine and chemokine expression [177]. However, Lee and colleagues were unable
to detect any effect of NF-κB activity on neurodegeneration in EAE. The conditional
overexpression of IκBα, a repressor of NF-κB, in neurons did not influence EAE progression,
inflammation or axon degeneration. The authors speculated that the deletion of IKKβ

upstream of IκBα may have more widespread effects or that unknown targets of IKK2,
besides IκBα, may be involved in neuroprotection in EAE [178].

These results demonstrate that NF-κB activity in inflammatory T cells, macrophages
and microglia as well as astrocytes has proinflammatory effects and aggravates MS and
EAE pathology. However, some data also indicate that NF-κB signaling might have an
anti-inflammatory effect in oligodendrocytes and neurons and possibly in macrophages in
some cases, which can protect against neurodegeneration (Figure 5). The role of NF-κB in
MS and EAE seems to be highly dependent on the specific cell type (Table 4).

NF-κB activity plays a key role in the development and progression of inflammation
in MS and EAE. It causes Th17 cells, macrophages and microglia and astrocytes to produce
an increased amount of proinflammatory cytokines, chemokines and adhesion molecules.
Furthermore, the transcription factor leads to the recruitment of more immune cells, thereby
exacerbating neuroinflammation. Conversely, NF-κB activity can also have a neuroprotec-
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tive effect in MS and EAE, depending on the cell type. Proinflammatory cell-specific roles
of NF-κB in MS/EAE are shown in red boxes in Figure 5, whereas anti-inflammatory and
protective effects are shown in green. Therefore, the role of NF-κB in MS strongly depends
on the cell type, which needs to be considered when developing treatment strategies.

5.4. Repurposing NF-κB Inhibitors to Treat CNS Inflammation

The anti-inflammatory effect of many FDA-approved drugs used to treat MS is thought
to be linked in part to their ability to inhibit NF-κB signaling [87,159]. These drugs were not
developed as specific NF-κB inhibitors; however, they were found to interfere with NF-κB
activation at different stages of the pathway. Therefore, finding approved drugs with the
ability to inhibit NF-κB activity for drug repurposing in MS seems like a promising strategy
to identify new treatment options (Table 5).

Table 5. Drug repurposing candidates for inflammatory diseases targeting NF-κB signaling.

New
Indication Drug Original

Implication
Effect on NF-κB

Signaling Effect On Inflammation References

MS

Imatinib mesylate Cancer (CML, ALL,
GIST, HES, CEL)

Inhibits IκB
phosphorylation

and DNA binding
of NF-κB

Attenuates inflammation and
enhances BBB integrity in EAE,

Phase II clinical trial for MS
[183–185]

Clemastine Relief of allergy
symptoms

Decreases NF-κB
activity and TLR4

expression

Promotes oligodendrocyte
differentiation and remyelination in
EAE/MS, inhibits inflammation and

microglial M1-like activation

[52,53,55–58,61]

Ibudilast Asthma, stroke

Inhibits NF-κB
activity (possibly

by preventing
nuclear

translocation)

Reduces inflammation in rats with
chronic cerebral reperfusion and MS

patients, Phase II clinical trial for
MS

[186–189]

Topotecan
Cancer (ovarian

cancer, lung cancer,
SCLC)

Inhibits IKKβ and
thus IκBα

degradation
Attenuates inflammation in EAE [99]

RA

Ibrutinib Cancer (MCL, CLL,
WM)

Inhibits NF-κB
nuclear

translocation

Anti-inflammatory effects in models
of RA, sepsis and diabetes [190–193]

Bortezomib Cancer (MM, MCL)

Proteasome
inhibitor, prevents

degradation of
IκBα

Anti-inflammatory effects in models
of MS, RA, lupus erythematosus
and colitis, promotes osteoblast
activation and RA pathogenesis,

Phase II clinical trial for RA

[194–199] [200,201]

TDZ Schizophrenia,
psychosis

Inhibits IKKβ
phosphorylation

and IκBα
degradation

Attenuates inflammation in
endotoxemia model [83]

Dasatinib Cancer (CML,
ALL)

Inhibits
phosphorylation of

IKKα,
p65/p100/p105

and c-Rel

Inhibits inflammation and bone
erosion in CIA and human FLS,

increases IL-10 in CIA
[122,202–204]

COVID-19

Dexamethasone

Inflammatory
conditions (RA,

asthma, allergies
etc.)

Induces the
expression of IκBα

Reduces mortality in later stage
COVID-19 patients [205–208]

Anakinra Relief of RA
symptoms

Prevents activation
of IL-1R

Reduces hyperinflammation and
mortality and improves clinical

signs of COVID-19
[209–214]

Imatinib mesylate is a tyrosine kinase inhibitor targeting Bcr-Abl, first approved
for the treatment of chronic myeloid leukemia (CML) in 2003. Since then, imatinib has
shown to also be a potent inhibitor of NF-κB signaling and inflammation in vivo and
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in vitro [183,184]. This effect was linked to a reduction of IκB phosphorylation as well as
DNA binding of NF-κB in human myeloid cells [185]. Imatinib is currently being tested in
a phase II clinical trial to compare the effects of the drug to those of standard treatment in
patients with relapsing multiple sclerosis (Trial number NCT03674099).

While repurposing NF-κB inhibitors to treat MS seems like a promising strategy,
certain limitations of this approach must be considered. A variety of studies highlight the
important role of NF-κB activity in the development and progression of MS and EAE. In
immune cells such as macrophages, microglia and T cells, NF-κB signaling promotes the
production of proinflammatory cytokines, which enhances inflammation and contributes
to tissue damage and disease progression. However, the protective role of NF-κB activation
in oligodendrocytes and neurons has also been demonstrated [154]. NF-κB plays different
roles in different cell types in MS. Therefore, broad inhibition of NF-κB activity does not
seem like an ideal therapy strategy for MS. Tight regulation of NF-κB signaling in a cell-type
specific manner will be necessary to avoid toxic side effects or the impairment of general
immune function.

6. NF-κB as a Potential Target for Drug Development in Joint Inflammation

Rheumatoid arthritis (RA) is a chronic systemic autoimmune disorder, in which the
lining of the synovial joints is degraded due to immune cell infiltration and inflamma-
tion [13,215]. As the disease progresses, it results in the destruction of cartilage and bone,
leading to disability. Systemic inflammation associated with RA can cause premature death,
often due to cardiovascular disease, with 0.5 to 1% of the population being affected in
2002 [215,216]. There are currently no drugs available to cure RA. To decrease disease
activity and treat joint stiffness and pain, nonsteroidal anti-inflammatory drugs and corti-
costeroids are prescribed. However, these treatments do not affect disease progression [215].

NF-κB has been identified as a key player in RA in both human and animal models
(Figure 6) [217–219]. Multiple studies have found increased NF-κB activity in inflamed
synovial tissue in human patients with RA [217–219]. More specifically, p50 and p65 were
detected in CD14+ macrophages in synovial tissue from RA patients, which highlights the
contribution of NF-κB activation in macrophages and macrophage-derived cytokines to
RA pathology [220].

In animal models of RA, NF-κB is activated in the synovium [221]. NF-κB inhibition
reduces proinflammatory gene transcription, resulting in the attenuation of inflamma-
tion [221–223]. Interestingly, NF-κB activation can be detected before the onset of clinical
symptoms. As the disease progresses, NF-κB activity increases [224]. These findings
demonstrate that inhibiting the NF-κB pathway could be a promising target to treat RA.

6.1. NF-κB Activation in Innate Immune Cells in RA

In innate immune cells, the NF-κB pathway promotes the expression of proinflamma-
tory mediators such as the cytokines IL-1, IL-6 and TNF-α, as well as adhesion molecules
required for leukocyte migration such as VCAM1 and ICAM1 [225]. Besides playing a key
role in inflammatory processes, macrophage-monocyte precursors are directly responsible
for bone destruction observed in RA (Figure 6). Triggered by M-CSF, RANK expression
is induced on the precursor cells, causing the innate immune cells to differentiate into
osteoclasts and as such contribute to bone loss, since the balance between bone degradation
and bone formation is lost [226,227]. Furthermore, many of the cytokines produced by
monocytes/macrophages activate NF-κB signaling in other innate immune cells as well
as in fibroblasts, resulting in the expression of additional proinflammatory mediators, the
recruitment of proinflammatory immune cells and the exacerbation of inflammation [228].
In RA, monocytes/macrophages amplify inflammation further through the production of
cytokines like IL-1, IL-6 or IL-23, which induce the differentiation of proinflammatory Th17
cells that play a key role in driving RA pathogenesis [229].
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Bone destruction in RA is mediated by the interplay of macrophages, fibroblasts, DCs,
B cells and infiltrating T cells in the synovium [227,231,232]. NF-κB activation in those cells
can trigger proinflammatory responses, exacerbating disease pathology. In the synovial
membrane, NF-κB activation causes proinflammatory T cells, macrophages and synovial
fibroblasts to produce proinflammatory mediators, creating positive feedback loops. This
results in the progression of inflammation and bone erosion. The arrows in Figure 6 indicate
the effect of cytokines/proteins up-regulated upon NF-κB activation on other cells, thus
exacerbating bone destruction in RA.

6.2. NF-κB Activation in T and B Cells in RA

Besides indirectly promoting the development of proinflammatory T cells through
macrophage/monocyte activation, NF-κB also directly regulates the transcription of lineage
factors of T cells [233–235] (Figure 6). In the serum and the synovial fluid of RA patients,
elevated levels of BAFF (B cell activating factor) were detected, which correlate with the
severity of the disease. BAFF binds to BCMA, which then activates the canonical and
the noncanonical NF-κB pathway [236,237]. In turn, noncanonical NF-κB signaling was
suggested to contribute to this increase in BAFF levels. This promotes the survival of
B cells that react to self-antigens and produce autoantibodies, thereby accelerating RA
pathogenesis [238,239].

Furthermore, NF-κB activity plays a role in B and T cell activation, proliferation and
the differentiation of DCs [240–242] (Figure 6). The activation of the canonical and the
noncanonical NF-κB pathway in DCs has different outcomes with regards to inflammation.
While canonical NF-κB signaling results in the production of inflammatory cytokines early
on in the inflammatory process, the noncanonical NF-κB pathway induces Treg function
by promoting the expression of indoleamine 2,3-dioxygenase (IDO), thus modulating
inflammation by reducing the production of proinflammatory cytokines and promoting
Treg development by DCs [243]. In addition, NIK and the p50-RelB dimer induce Treg
survival, proliferation and activation [244,245]. However, the noncanonical NF-κB pathway,
has also been linked to proinflammatory responses. NIK is required in DCs to induce
Th1 and Th17 proliferation, differentiation and effector function, thereby promoting the
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development of autoimmune disease [168]. In B cells, activation of the noncanonical
pathway by BAFF is required for proliferation and survival as well as antibody production
and thus drives chronic inflammation in the synovium in RA [246].

6.3. Repurposing NF-κB Inhibitors to Treat Joint Inflammation

Drug repurposing efforts have identified medicines that have anti-inflammatory effects
in RA animal models by inhibiting NF-κB signaling, making them promising candidates
for further studies (see Table 5).

Bruton’s tyrosine kinase (BTK) has emerged in recent years as a therapeutic target
for the treatment of inflammatory disease. Originally discovered for its critical role in B
cell development, and notable as the cause of the primary immunodeficiency X-linked
agammaglobulinemia (XLA), in which patients harbor a loss-of-function mutation, BTK is
also highly expressed in monocytes, macrophages and neutrophils [247]. In these myeloid
cells, BTK has been demonstrated to play a role in NF-κB and NLRP3-inflammasome
activation [193,247–249]. The BTK inhibitor ibrutinib demonstrates anti-inflammatory
activity in preclinical models of RA [190,192], sepsis [191] and diabetes [193].

An alternative approach to inhibit NF-κB signaling is to target the proteasome using
proteasome inhibitors (PIs). Bortezomib is a proteasome inhibitor that is clinically used to
treat multiple myeloma [250]. The drug forms covalent adducts with the threonine residues
in the active site of the proteasome and has proven to be an effective anti-inflammatory
treatment in autoantibody-mediated immune disease models including MS, RA or coli-
tis [194–197,199]. In addition to selectively destroying plasma cells in antibody-mediated
autoimmune disorders, bortezomib also promotes the differentiation and activation of
osteoblasts in multiple myeloma patients [250–253]. In patients with multiple myeloma
and RA, bortezomib improved the condition of the joints [197,198]. In addition, bortezomib
prevents the release of cytokines induced by NF-κB, and promotes apoptosis in T effector
cells in RA patients [201].

7. Drug Repurposing for Targeting Inflammation in COVID-19 Pneumonia

The coronavirus disease 2019 (COVID-19) pandemic, caused by SARS-CoV-2, created
an urgent need for both novel antiviral and anti-inflammatory drugs. In severe cases,
SARS-CoV-2 induced pneumonia can result in life-threatening acute respiratory distress
syndrome (ARDS) [254,255]. The most prominent cause of death in COVID-19 patients is
a hyperinflammatory immune response characterized by production of proinflammatory
cytokines, which causes tissue damage, mostly in the lung [254,256,257]. Severe COVID-19
is linked to hyperactivation of NF-κB signaling, which causes the increased release of
proinflammatory molecules such as IL-1, IL-6, IL-12, IL-17, IFN-γ or TNF-α by infiltrating
immune cells [254,256,258].

Several studies have shown that SARS-CoV infection triggers NF-κB activation. The
viral nucleocapsid protein causes dose-dependent activation of NF-κB in SARS-CoV sus-
ceptible Vero E6 cells [259], and the nucleocapsid protein of SARS-CoV-2 was shown to
recruit TAK1 and the IKK complex in HEK293T cells [260] to induce NF-κB signaling. The
spike protein of SARS-CoV as found to induce activation and translocation of NF-κB in
human PBMCs and THP-1 cells in vitro, which resulted in a dose-dependent increase in
proinflammatory gene transcription. This effect was reversed by TPCK, a specific NF-κB in-
hibitor [261]. In vivo studies confirmed that the inhibition of NF-κB in SARS-CoV infected
mice with severe acute respiratory syndrome reduced inflammation and lung pathology
and significantly increased survival rates [262].

During coronavirus infection, the NF-κB pathway gets activated through viral pattern
recognition receptors via MyD88, resulting in the induction of transcription of proinflamma-
tory mediators [263]. Accordingly, in MyD88−/− mice infected with SARS-CoV, a reduction
of infiltrating monocytes and macrophages in early disease stages was observed, along with
the persisting absence of cytokine and chemokine production [264]. Furthermore, another
study demonstrated that the spike protein of the virus induces NF-κB activation in a TLR2
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and MyD88-dependent manner, resulting in the production of proinflammatory cytokines
and chemokines by human and murine macrophages [265]. These results strongly support
the notion that identifying NF-κB inhibitors with anti-inflammatory properties could help
mitigate hyperinflammation and attenuate disease severity in COVID-19 patients (Table 5).

Dexamethasone, a glucocorticoid commonly used to treat inflammatory diseases
such as RA, is known to inhibit NF-κB signaling and the production of proinflammatory
cytokines by promoting the overexpression of IκBα [207,208]. The RECOVERY trial found
that dexamethasone reduced mortality in hospitalized COVID-19 patients in later but not
earlier stages of the disease [205,206]. The authors concluded that at later stages of the
disease, hyperinflammatory events dominate, which may explain why dexamethasone
is more effective in these patients [205]. At earlier stages of COVID-19, viral replication
needs to be limited by an appropriate antiviral immune response. Previous studies have
shown that glucocorticoid treatment at early stages of the disease dampens the immune
response and hence increases the risk of enhanced viral replication. This might explain why
dexamethasone treatment might be a more attractive treatment option for patients with
severe disease pathology [258,266]. The impressive therapeutic benefits of dexamethasone
in severe COVID-19 have been demonstrated extensively and the scientific literature
suggests a strong link between its anti-inflammatory effects and its ability to inhibit NF-κB
signaling. However, its effect has not yet been exclusively linked to NF-κB inhibition.

Due to their anti-inflammatory properties, other RA drugs and kinase inhibitors
were considered as potential candidates to be repurposed for the treatment of COVID-
19 [267,268]. The IL-1 receptor antagonist anakinra reduces proinflammatory cytokine
production by preventing NF-κB activation and has been shown to be effective in treating
patients who exhibit hyperinflammation [214]. The effectiveness of anakinra to treat COVID-
19 was tested in clinical trials. The drug reduced hyperinflammation and improved clinical
signs of COVID-19 as well as mortality rates [209–213]. These examples of successful drug
repurposing demonstrate that this strategy is a time- and cost-efficient way to discover
drugs with useful anti-inflammatory properties in a short period of time.

8. Problems with Progressing Repurposed Drugs to Clinical Applications

The effectiveness and safety of drugs identified by repurposing still need to be care-
fully assessed before they can be approved for a new indication. A recent, well-publicized
example of rushed approval of a drug repurposing candidate is the use of hydroxychloro-
quine (HCQ) in COVID-19 infected patients. HCQ is commonly used for the treatment of
nonresistant malaria, RA and systemic lupus erythematosus. Its anti-inflammatory proper-
ties are attributed to the inhibition of NF-κB signaling and NLRP3 inflammasome inhibition,
reducing the production of proinflammatory cytokines and macrophage and neutrophil
infiltration in animal models of renal ischemia/reperfusion injury and immunoglobulin A
nephropathy [269–271].

Early in the COVID pandemic, HCQ was suggested to have anti-inflammatory effects
on SARS-CoV-2 infection in vitro [272,273]. A small open-label nonrandomized trial associ-
ated HCQ with lower viral load in patients hospitalized with COVID-19 [274], causing the
FDA to issue an early use authorization (EUA) [275,276]. However, multiple studies subse-
quently showed that HCQ had no beneficial effect for COVID-19 patients or when used
as pre or postexposure prophylaxis [277–287]. On the contrary, studies reported serious
cardiac adverse events attributed to HCQ treatment [288,289], which is of great concern
as COVID-19 is associated with cardiac complications [290,291]. Consequently, the FDA
revoked the EUA [292]. The case of HCQ as treatment for COVID-19 demonstrates that
extensive high-quality clinical trials, not just small, underpowered nonrandomized studies
or unreliable observational data, are necessary to investigate the safety and efficacy of a
drug before it can receive approval to be repurposed for the treatment of a different disease.
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9. Conclusions and Future Prospects

The NF-κB pathway is a key player in many inflammatory diseases. Modulating
NF-κB activity is a promising target for the treatment of inflammation, as many FDA
approved drugs or drugs currently in clinical trials inhibit NF-κB signaling in addition to
their originally identified mechanisms. In this review, we have shown how different drug
repurposing strategies can be used to identify new modes of action for existing drugs as
well as to indicate new applications for these drugs in inflammatory diseases linked to
NF-κB signaling.

The SARS-CoV-2 pandemic has highlighted the advantages and limitations of drug
repurposing, While drug repurposing offers higher success rates and is more time- and
cost-efficient than de novo drug discovery, it is crucial to carefully assess candidate drugs
in well-designed and sufficiently powered clinical trials before they receive approval for
any new indication. Even though off-target effects of repurposed drug candidates may
be well known, they still need to be carefully monitored, particularly when the molecular
target for the new indication differs from that of the current indication.

Furthermore, many NF-κB inhibitors have been tested only in specific cell types using
a limited number of stimuli such as LPS or TNFα. In addition, concentrations used in many
assays that were necessary to achieve sufficient NF-κB inhibition are often higher than what
would be feasible in vivo [42]. It will therefore be necessary to use more pathologically
relevant stimuli and to carry out drug screening in whole organisms such as zebrafish
where possible.

Many components of the NF-κB pathway overlap with other pathways, making the
development of specific NF-κB inhibitors a complex task. This problem could be overcome
by using combinations of inhibitors targeting different steps in the NF-κB pathway in
low concentrations [42]. Furthermore, the transcription of specific target genes could be
modulated to achieve the desired specificity. One example is the nuclear modification of
RelA. Phosphorylation, ubiquitination and acetylation at certain sites can modulate the
transactivation activity of the transcription factor and influence its DNA binding ability
and/or protein stability [293]. The specificity of NF-κB signaling is further determined by
the interaction of NF-κB dimers with the DNA and promoters/enhancers [294]. Therefore,
interfering with nuclear modification of NF-κB could be a promising strategy to inhibit a
specific set of NF-κB target genes while minimizing the effect on other signaling pathways.
However, NF-κB has many essential physiological functions, which need to be preserved
while its pathological effect is inhibited. Global NF-κB suppression is associated with
severe toxicities in animal models and in humans [295–298].

In addition to the cell-type specific role of NF-κB in diseases such as MS, systemic
NF-κB inhibition may result in multiple unwanted side effects, especially if employed as a
long-term treatment. Therefore, identifying NF-κB inhibitors that predominantly target
certain cell types over others might lead to a more favorable outcome in inflammatory
diseases. Recently, the “sneaking ligand” (SL) approach was proposed for specific NF-
κB inhibition: These ligands consist of an N-terminal domain, which binds to the cell
surface, a translocation domain and a C’-terminal effector peptide, which interacts with
its cytoplasmic ligand to modulate NF-κB signaling. This was validated in E-selectin-
expressing endothelial cells, in which IKK complex assembly was inhibited in vitro and
in vivo, resulting in the reduction of NF-κB activity specifically in E-selectin-expressing
cells as well as the attenuation of experimental arthritis (STIA and AIA) in mice [230,299].
To achieve cell-specific NF-κB inhibition, several targeted drug delivery systems have
been developed that combine ligands that are linked to cargo. Recombinant monoclonal
antibodies can be coupled to a drug to achieve cell specificity. This approach is already
being tested in clinical trials for application in various autoimmune diseases. Furthermore,
aptamers that recognize specific patterns on a receptor can be conjugated to small molecules
and peptide-drug conjugates, or peptide-modified nanocarriers can help target drugs to
specific tissues or cells [35]. Many of these strategies are currently being explored in clinical
trials and could be applied for specific NF-κB inhibition.



Biology 2022, 11, 372 21 of 32

NF-κB mediates both pro and anti-inflammatory effects in MS depending on the cell-
type. As most currently used or repurposed, NF-κB inhibitors inhibit their target more
systemically. Their application may be more suitable to treating systemic inflammation (e.g.,
sepsis) or diseases in which NF-κB inhibition is more clearly linked only to proinflammatory
processes (e.g., COVID-19, RA).
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