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Background: Discriminating between different patterns of diastolic dysfunction in heart

failure (HF) is still challenging. We tested the hypothesis that an unsupervised machine

learning algorithm would detect heterogeneity in diastolic function and improve risk

stratification compared with recommended consensus criteria.

Methods: This study included 279 consecutive patients aged 24–97 years old

with clinically stable HF referred for echocardiographic assessment, in whom diastolic

variables were measured according to the current guidelines. Cluster analysis was

undertaken to identify homogeneous groups of patients with similar profiles of the

variables. Sequential Cox models were used to compare cluster-based classification with

guidelines-based classification for predicting clinical outcomes. The primary endpoint

was hospitalization for worsening HF.

Results: The analysis identified three clusters with distinct properties of diastolic function

that shared similarities with guidelines-based classification. The clusters were associated

with brain natriuretic peptide level (p < 0.001), hemoglobin concentration (p = 0.017)

and estimated glomerular filtration rate (p = 0.001). During a mean follow-up period

of 2.6 ± 2.0 years, 62 patients (22%) experienced the primary endpoint. Cluster-based

classification predicted events with a hazard ratio 1.68 (p= 0.019) that was independent

from and incremental to the Meta-analysis Global Group in Chronic Heart Failure

(MAGGIC) risk score for HF, and from left ventricular end-diastolic volume and global

longitudinal strain, whereas guidelines-based classification did not retain its independent

prognostic value (hazard ratio = 1.25, p = 0.202).

Conclusion: Machine learning can identify patterns of diastolic function that better

stratify the risk for decompensation than the current consensus recommendations in

HF. Integrating this data-driven phenotyping may help in refining prognostication and

optimizing treatment.
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INTRODUCTION

Left ventricular (LV) diastolic dysfunction is a key
pathophysiological feature of heart failure (HF) and its
assessment plays an important role in diagnosing, monitoring
and prognosticating HF. It appears early in the natural course of
various types of cardiovascular diseases and once severe, diastolic
dysfunction is associated with elevated left atrial pressure (1, 2).
The clinical diagnosis of HF requires not only the presence
of symptoms and/or signs of HF, but also objective evidence
of cardiac structural or functional abnormalities, including
LV diastolic dysfunction, especially when LV ejection fraction
(LVEF) is preserved. LV diastolic dysfunction also predicts
adverse outcomes in HF, as demonstrated in a number of
large-scale cohort studies (1, 3–5).

In clinical practice, LV diastolic function is assessed using
echocardiography by measuring multiple variables, for example
from transmitral flow and mitral annular velocity profiles. Each
variable reflects a different physiological aspect of LV filling,
and all are inter-related in a complex manner (2). Standard
criteria do not always change linearly with the elevation of
LV filling pressure (6). No single parameter by itself is robust
enough to be used for diagnosing diastolic dysfunction, so it
is recommended that all relevant parameters should be taken
into account when grading diastolic dysfunction. Consensus
diagnostic recommendations propose decision-tree algorithms
which have been constructed based on expert consensus and
theoretical considerations rather than on clinical evidence (7).
The utility of the updated consensus recommendations requires
further investigation.

Machine learning is a method for analyzing data that,
unlike traditional statistics, can deal with complex datasets with
multivariable non-linear interactions. It constructs analytical
models to extract insights, patterns and relationships that can be
used for decision-making. In cardiovascular medicine, machine
learning has identified new clinical phenotypes, predicted
responses to treatment, and improved prognostication (8–10).
Accordingly, we tested the hypothesis that applying cluster
analysis would detect heterogeneity in diastolic function and
improve risk stratification in a HF population.

MATERIALS AND METHODS

Study Population
From the HF database of the Cardiovascular Institute, Japan
(Shinken database, registered in University Hospital Medical
Information Network, ID000008598), we retrospectively
identified a consecutive series of 815 patients with clinically
stable HF. Patients were eligible for this study if they were
older than 20 years at the time of the index echocardiographic
examination, and if they had been referred to echocardiography
for hemodynamic assessment between February 2010 and
August 2018, and if they had a history of previous hospitalization
for acute decompensated HF with symptoms sufficient to
warrant hospitalization and for which intravenous therapy was
required. In total 561 patients fulfilled these criteria, but those
were excluded who had any of the following: (1) being treated
with intravenous therapy at the index examination, (2) atrial

fibrillation at the index examination (patients with paroxysmal
atrial fibrillation who were in sinus rhythm at the index
examination were included), (3) any missing data for diastolic
variables, (4) rheumatic heart valve disease, (5) any other types of
primary heart valve disease more than moderate, (6) pericardial
disease and (7) history of cardiac surgery (Figure 1). This
exclusion left 279 patients as the study population.

This study was approved by the institutional review board. All
the patients gave written informed consent when registered in the
hospital database.

LV Chamber Quantification and
Guidelines-Based Classification of
Diastolic Function
Comprehensive echocardiographic examination was performed,
using commercially available ultrasound machines with a 2.5
MHz sector transducer (Vivid E95 and E9, General Electric
Company; iE33 and Epic7, Phillips; Artida, Cannon; Prosound
alpha10, Hitachi). LV end-diastolic and end-systolic volumes and
LVEF were calculated by the disk summation method. LV mass
was calculated as recommended and normalized by body surface
area (LVMi). LV global longitudinal and circumferential strains
were measured using Image Arena (TOMTEC Imaging Systems
GmbH, Germany). Left atrial volume was also measured by the
disk summation method and normalized by body surface area
(LAVi). Pulse-wave Doppler tracings at the tip of the mitral
valve leaflets were recorded, and early to late diastolic transmitral
velocity ratio (E/A) was calculated. Mitral annular velocities
were recorded using pulsed tissue Doppler from the base of the
septum in an apical 4-chamber view, to evaluate LV longitudinal
function (s’, e’ and a’). Left atrial pressure was estimated from
the ratio of transmitral E velocity to early diastolic mitral
annular velocity (E/e’). A continuous-wave Doppler tracing of
tricuspid regurgitation (TRV) was recorded to assess pulmonary
hypertension. Right ventricular end-diastolic area and fractional
area change were measured in an apical 4-chamber view to derive
right ventricular size and systolic function.

The current American Society of Echocardiography/European
Association of Cardiovascular Imaging consensus
recommendations proposed two different algorithms for
assessing diastolic function (7). In this study, diastolic function
was graded using the algorithm for patients with reduced LVEF
and/or myocardial disease. This algorithm uses 4 variables:
E/A, E/e’, LAVi, and TRV and classifies patients into grade 1–3
diastolic dysfunction. Because lateral e’ velocity was not available,
we employed septal E/e’>15, instead of average E/e’>14 for
grading (7). Because it was an inclusion criterion for this study
that every patient had a complete dataset of diastolic variables,
no patient was graded as indeterminate.

Cluster Analysis
Model-based cluster analysis, an unsupervised machine learning
algorithm, was performed using mclust package in R (version
3.5.1, Vienna, Austria). This assumes that data points within a
cluster are normally distributed, and it finds themixture of multi-
dimensional Gaussian probability distributions that best models
the input dataset (11).
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FIGURE 1 | Study design.

The analysis was applied in order to group the study
population into clusters with distinct diastolic function
properties. The diastolic variables used for cluster modeling
were chosen based on their inclusion in current consensus
recommendations (E/A, e’, E/e’, LAVi and TRV) (7). The degree
of correlations between these variables were assessed by partial
correlation analysis. All these variables were standardized to a
mean= 0 and a standard deviation= 1 so that they were equally
weighted in the analysis. The optimal number of clusters was
selected based on Bayesian information criterion. The model
parameters were estimated using expectation-maximization
algorithm. The patients were assigned to a cluster where their
posterior probability of membership was the highest. The clusters
were numbered from low to high average values of E/e’ and LAVi.

Clinical Relevance
The learned clusters were characterized by comparing clinical
and echocardiographic variables. These variables, including
demographics, vital signs, cardiac risk factors, HF symptoms,
time since the first diagnosis of HF, drug treatment, and
laboratory data such as hemoglobin level and estimated
glomerular filtration rate (eGFR), which had all been
recorded within 3 months of the index examination, were
collected from the hospital database. Brain natriuretic peptide
(BNP) measurement was available in 193 (70%) patients.

The Meta-analysis Global Group in Chronic Heart Failure
(MAGGIC) score, an established clinical risk score for HF, was
calculated from all relevant variables (12).

Whether or not the learned clusters reasonably captured
diastolic phenotypes was tested by studying the associations
of BNP level and clinical outcomes with the clusters. The
outcome data were obtained from the hospital database which
integrates events documented in the hospital medical records and
those recorded through an annual postal survey. Patients were
censored when they stopped visiting the hospital or responding
to the postal survey. Those who continued to attend and
remained free from events at 5 years were automatically censored
then. The primary endpoint was hospitalization for worsening
HF. The secondary endpoint was a composite of cardiovascular
death and hospitalization for worsening HF. The cardiovascular
death was ascertained from medical records of the patients and
from direct contact with local physicians. Sudden death was
considered as cardiovascular death in this study.

Discordance Between Cluster-Based and
Guidelines-Based Classifications
We did not expect full agreement between the two classifications
and would rather highlight discordance where cluster-based
classification could help further risk stratification. Principal
component analysis was performed on the same five diastolic
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FIGURE 2 | Comparisons of diastolic function variables. These five variables (A–E) were used for cluster analysis. The e’ (B) decreased and E/e’ (C), LAVi (D) and

TRV (E) increased, as diastolic function worsened (grade/cluster number increased). LAVi, left atrium volume index; TRV, tricuspid regurgitation velocity.

variables as used for the clustering, to plot and compare the
patterns of grade and cluster distribution. A contingency table
was created to identify where cluster-based classification was the
most discordant with guidelines-based classification. BNP level
and clinical outcomes were compared among the clusters in a
subgroup of patients with discordant classifications.

Statistical Analysis
Categorical variables were expressed as number and percentage
and were compared using chi-square test. Continuous variables
were expressed as mean ± standard deviation and were
compared using analysis of variance if the variables were
normally distributed. If they were not found to be normally
distributed, they were expressed as median (25–75th percentile)
and were compared using Kruskal-Wallis test. Survival curves
were estimated separately for cluster-based and guidelines-based
classifications, using the Kaplan-Meier method, and compared
using a log-rank test. Sequential Cox models were used to
compare cluster-based and guidelines-based classifications. A
baseline model was constructed by entering MAGGIC score and
LV end-diastolic volume (LVEDV) and LV global longitudinal
strain (LVGLS). We did not add LVEF in the model because
it is already included in the MAGGIC score. Nested Cox
models with separate addition of cluster-based and guidelines-
based classification to the baseline model were constructed.
The increase in predictive power after the addition of the
classification variables was assessed by the change in overall

model χ (2). Concordance between the two diastolic function
classifications was assessed using Cohen’s kappa statistic and
Kendall’s correlation coefficient. P value < 0.05 was considered
as statistically significant. All statistical analyses were performed
using IBM SPSS statistics version 19 (International Business
Machines Corporation, Illinois, United States of America).

RESULTS

Study Population
The comparisons of diastolic variables across the grades are
illustrated in Figure 2 and the baseline characteristics are
summarized in Table 1. A majority of the subjects (70%) were
diagnosed as grade 1 diastolic dysfunction according to the
current consensus recommendations. By definition, E/A (p <

0.001), E/e’ (p < 0.001), LAVi (p < 0.001) and TRV (p < 0.001)
progressively increased from grade 1 to 3. The e’ (p = 0.001)
was higher in grade 1 than in grade 2 and 3. Patients with
grade 2 diastolic dysfunction were older (p < 0.001), more
often women (p < 0.001) and more often had comorbidities
such as hypertension (p = 0.001), diabetes (p = 0.016) than
those with the other grades; heart failure with preserved ejection
fraction (HFpEF, LVEF ≥ 50%) accounted for more than half
in this subgroup. In comparison, patients with grade 3 diastolic
dysfunction had lower blood pressure (p < 0.001) and were
more often prescribed diuretics (p = 0.026). Heart failure with
reduced ejection fraction (HFrEF, LVEF < 40%) associated with
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TABLE 1 | Baseline characteristics of the study population.

Diastolic function grade

Total

(n = 279)

Grade 1

(n = 188)

Grade 2

(n = 59)

Grade 3

(n = 32)

P value

Age, years 68 ± 15 65 ± 14 76 ± 13 65 ± 14 <0.001

Male gender, n (%) 193 (69) 141 (75) 27 (46) 25 (78) <0.001

BMI, kg/m2 23.9 ± 5.1 24.2 ± 5.2 24.0 ± 5.0 22.2 ± 4.1 0.150

SBP, mmHg 120 ± 19 120 ± 18 126 ± 20 109 ± 19 <0.001

HR, beats/min 67 ± 12 67 ± 11 70 ± 14 67 ± 12 0.321

Comorbidities

Hypertension, n (%) 183 (66) 111 (59) 50 (85) 22 (69) 0.001

Diabetes, n (%) 103 (37) 60 (32) 31 (53) 12 (38) 0.016

Underlying heart disease

CAD, n (%) 96 (34) 57 (30) 26 (44) 13 (41) 0.112

Paroxysmal AF, n (%) 91 (33) 62 (33) 16 (27) 13 (41) 0.416

HF duration, years 1.4 ± 2.7 1.4 ± 2.8 1.5 ± 2.4 1.5 ± 2.5 0.319

MAGGIC score 22 ± 8 20 ± 8 26 ± 8 24 ± 7 <0.001

Medications

ACEi, n (%) 86 (31) 60 (32) 16 (27) 10 (31) 0.784

ARB, n (%) 142 (51) 96 (51) 31 (53) 15 (47) 0.872

β-blocker, n (%) 211 (76) 144 (77) 39 (66) 28 (88) 0.066

Loop diuretics, n (%) 197 (71) 124 (66) 45 (76) 28 (88) 0.026

MRA, n (%) 114 (41) 74 (39) 24 (41) 16 (50) 0.527

Devices

Pacemaker, n (%) 19 (7) 10 (5) 8 (14) 1 (3) 0.061

CRT, n (%) 3 (1) 3 (2) 0 (0) 0 (0) 0.480

ICD, n (%) 10 (4) 7 (4) 2 (3) 1 (3) 0.982

Laboratory

Albumin, g/dl 3.9 ± 0.5 4.0 ± 0.5 3.8 ± 0.4 3.7 ± 0.4 <0.001

Hemoglobin, g/dl 13.2 ± 2.0 13.5 ± 1.9 12.0 ± 1.9 13.4 ± 2.5 <0.001

Creatinine, mol/l 97 ± 39 95 ± 42 108 ± 39 93 ± 27 0.036

eGFR, ml/min/1.73 m2 55.9 ± 20.6 59.4 ± 20.8 43.9 ± 17.4 57.3 ± 17.1 <0.001

BNP, pg/ml 233 ± 395 124 ± 159 346 ± 346 700 ± 894 <0.001

Electrocardiography

QRS duration, msec 113 ± 35 112 ± 37 119 ± 32 107 ± 23 0.226

Echocardiography

LVEDV, ml 135 ± 66 133 ± 63 130 ± 78 161 ± 57 0.069

LVMi, g/m2 157 ± 55 150 ± 47 173 ± 60 175 ± 76 0.002

RWT 0.36 ± 0.11 0.36 ± 0.10 0.39 ± 0.13 0.31 ± 0.12 0.005

LVEF, % 49 ± 17 50 ± 17 50 ± 17 40 ± 13 0.009

< 40%, n (%) 93 (33) 58 (31) 19 (32) 16 (50) 0.046

40 - 49%, n (%) 52 (19) 37 (20) 7 (12) 9 (25)

≥ 50%, n (%) 134 (48) 93 (50) 33 (56) 8 (25)

GLS, % −10.9 ± 4.7 −11.2 ± 4.5 −10.7 ± 4.8 −9.3 ± 6.0 0.112

GCS, % −16.8 ± 8.3 −17.3 ± 8.3 −17.0 ± 8.3 −12.8 ± 6.8 0.016

s’, cm/sec 4.9 ± 1.6 5.1 ± 1.6 4.6 ± 1.4 4.0 ± 1.5 <0.001

e’, cm/sec 4.3 ± 1.4 4.6 ± 1.5 3.8 ± 1.0 4.0 ± 1.2 0.001

a’, cm/sec 6.3 ± 2.2 7.0 ± 1.9 5.7 ± 1.8 3.5 ± 1.0 <0.001

E/A 1.18 ± 0.92 0.84 ± 0.32 1.07 ± 0.41 3.33 ± 1.08 <0.001

E, cm/s 63 ± 23 53 ± 15 81 ± 21 91 ± 24 <0.001

E/e’ 16.1 ± 8.3 12.6 ± 4.6 22.3 ± 7.1 25.5 ± 12.2 <0.001

LAVi, ml/m2 36.2 ± 17.4 28.8 ± 13.1 49.6 ± 15.2 55.2 ± 13.5 <0.001

TRV, m/sec 2.3 ± 0.4 2.2 ± 0.3 2.6 ± 0.5 2.9 ± 0.5 <0.001

RVEDA, cm2 16.0 ± 5.5 15.7 ± 5.0 15.8 ± 6.7 18.5 ± 5.1 0.024

RVFAC, % 48 ± 14 49 ± 13 51 ± 13 37 ± 16 <0.001

BMI, body mass index; SBP, systolic blood pressure; HR, heart rate; CAD, coronary artery disease; AF, atrial fibrillation; HF, heart failure; MAGGIC, Meta-analysis Global Group in Chronic

Heart Failure; ACEi, angiotensin-converting enzyme inhibitor; ARB, angiotensin receptor blocker; MRA, mineralocorticoid receptor antagonist; CRT, cardiac resynchronization therapy;

ICD, implantable cardioverter defibrillator; eGFR, estimate glomerular filtration rate; BNP, brain natriuretic peptide; LVEDV, left ventricular end-diastolic volume; LVMi, left ventricular mass

index; RWT, relative wall thickness; LVEF, left ventricular ejection fraction; GLS, left ventricular global longitudinal strain; GCS, left ventricular global circumferential strain; LAVi, left atrium

volume index; TRV, tricuspid regurgitation velocity; RVEDA, right ventricular end-diastolic area; RVFAC, right ventricular fractional area change.
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TABLE 2 | Partial correlations among diastolic function variables.

E/A e’ E/e’ LAVi TRV

1 0.03 0.41 0.46 0.53 E/A

1 −0.55 −0.25 −0.10 e’

1 0.45 0.44 E/e’

1 0.46 LAVi

1 TRV

Abbreviations were the same as in Table 1.

FIGURE 3 | Bayesian information criterion. This result demonstrated that

three-cluster model fit the best, because the absolute value of Bayesian

information criterion was the lowest when the dataset was modeled with three

clusters.

was prevalent in this subgroup; global circumferential strain was
lower (p = 0.016) than in the other grades, although LVGLS
was not different (p = 0.112); right ventricular function was also
reduced (p < 0.001).

Clustering
After confirming that diastolic variables (E/A, e’, E/e’, LAVi
and TRV) were not strongly correlated each other (Table 2),
we performed a cluster analysis using only these variables as
input. Bayesian information criterion indicated that a three-
cluster models best fit the dataset, because absolute value of
Bayesian information criterion was the lowest when the dataset
was modeled with three clusters (Figure 3).

E/e’ (p < 0.001), LAVi (p < 0.001) and TRV (p < 0.001)
progressively increased from cluster 1 to 3, as assigned (Table 3,
Figure 2). Cluster 1 had higher E/A and e’ than cluster 2,
indicating that cluster 1 represented less abnormal diastolic
function. From cluster 1 to 3, patients were older (p < 0.001)
and thinner (p = 0.028). HFpEF was dominant in clusters 1
(59%) and 2 (50%), whereas HFrEF was more prevalent in
cluster 3 (44%). LVmyocardial functionmeasured by LVGLS and

LV circumferential strains was abnormal in all the clusters and
decreased gradually from cluster 1 to 3 (p= 0.018 and p= 0.005,
respectively). Right ventricular function was reduced in cluster 3
(p= 0.010). These trends resulted in increasing MAGGIC scores
from cluster 1 to 3 (p < 0.001).

Clinical Relevance
Figure 4A compares BNP level across the clusters and grades; in
193 patients (70%) in whom BNP measurements were available,
the median values increased similarly for both classifications
(p < 0.001). There were no significant differences in major
baseline characteristics between patients with and without BNP
measurement (Table 4). Figures 4B,C show progressive anemia
(p = 0.017) and worsening renal function (eGFR, p = 0.001)
across the clusters but not across the grades.

During a follow-up period of 2.6 ± 2.0 years, 62 patients
(22%) experienced the primary endpoint of worsening HF,
and 69 patients (25%) experienced the secondary composite
endpoint of worsening HF (62 patients) and/or cardiovascular
death (seven patients). Figure 5 compares survival curves
stratified by guidelines-based classification with those obtained
using cluster-based classification. When stratified by grades, the
survival curves showed significant overall separations for both
primary and secondary endpoints, but grades 2 and 3 diastolic
dysfunction had similar survival curves (Figures 5A,B). Cluster-
based classification, however, produced clearer separations of
survival curves for both primary and secondary endpoints
(Figures 5C,D), as demonstrated by higher χ2 (primary
endpoint: χ2 = 20.3, p < 0.001 for clusters, χ2 = 13.1,
p = 0.001 for grades; secondary endpoint: χ2 = 25.8, p <

0.001 for clusters, χ2 = 16.9, p < 0.001 for grades). In
the sequential Cox proportional hazard analysis, the baseline
model including MAGGIC score, LVEDV and LVGLS gave
an overall χ2 value of 48.1 for the primary endpoint and
44.5 for the secondary endpoint (Figure 6). The addition of
diastolic function grades did not improve the predictive power
(χ2 = 50.5, p = 0.211 for primary endpoint; χ2 = 48.4,
p = 0.101 for secondary endpoint), whereas the addition of
clusters significantly improved the predictive power for both
study endpoints (χ2 = 54.6, p= 0.017 for primary endpoint: and
χ2 = 54.4, p= 0.003 for secondary endpoint).

Concordance Between Cluster-Based and
Guidelines-Based Classifications
The patterns of grade and cluster distributions were mapped
in Figure 7. The whole study population was distributed in a
U-shape; grade 1 to 3 were aligned sequentially from the left
to the right side, indicating that there was a spatial gradient
of diastolic function in the patient distribution map; cluster
1–3 were aligned similarly, although the boundaries between
the clusters shifted leftward. Table 5 shows a contingency table
comparing cluster-based classification against guidelines-based
classification; moderate ordinal association was observed (Kappa
statistic = 0.113, Kendall’s correlation coefficient = 0.599, p <

0.001 for both statistics). Patients diagnosed as grade 1 diastolic
dysfunction by the guidelines (n = 188) were allocated mostly
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TABLE 3 | Comparison of baseline characteristics by clusters.

Cluster

Cluster 1

(n = 46)

Cluster 2

(n = 167)

Cluster 3

(n = 66)

P value

Age, years 60 ± 16 68 ± 13 71 ± 15 <0.001

Male gender, n (%) 34 (74) 118 (71) 41 (62) 0.333

BMI, kg/m2 24.3 ± 5.8 24.3 ± 5.1 22.4 ± 4.4 0.028

SBP, mmHg 116 ± 20 123 ± 18 116 ± 20 0.008

HR, beat/min 67 ± 12 66 ± 11 70 ± 14 0.127

Comorbidities

Hypertension, n (%) 26 (57) 106 (64) 51 (77) 0.050

Diabetes, n (%) 14 (30) 65 (39) 24 (36) 0.569

Underlying heart disease

CAD, n (%) 14 (30) 56 (34) 26 (39) 0.575

Paroxysmal AF, n (%) 12 (26) 54 (32) 25 (38) 0.421

HF duration, years 1.1 ± 1.8 1.5 ± 2.9 1.5 ± 2.5 0.716

MAGGIC score 19 ± 8 21 ± 8 26 ± 8 <0.001

Medications

ACEi, n (%) 13 (28) 55 (33) 18 (27) 0.644

ARB, n (%) 22 (48) 86 (52) 34 (52) 0.901

β-blocker, n (%) 32 (70) 131 (78) 48 (73) 0.380

Loop diuretics, n (%) 29 (63) 114 (68) 54 (82) 0.058

MRA, n (%) 21 (46) 66 (40) 27 (41) 0.755

Devices

Pacemaker, n (%) 1 (2) 12 (7) 6 (9) 0.344

CRT, n (%) 0 (0) 3 (2) 0 (0) 0.362

ICD, n (%) 1 (2) 8 (5) 1 (2) 0.410

Laboratory

Albumin, g/dl 4.1 ± 0.4 4.0 ± 0.5 3.7 ± 0.4 <0.001

Hemoglobin, g/dl 13.7 ± 2.1 13.3 ± 1.9 12.6 ± 2.3 0.017

Creatinine, mol/l 89 ± 39 97 ± 44 101 ± 35 0.318

eGFR, ml/min/1.73m2 65.4 ± 22.6 55.3 ± 20.1 50.8 ± 18.7 0.001

BNP, pg/ml 113 ± 159 137 ± 163 547 ± 659 <0.001

Electrocardiography

QRS duration, msec 102 ± 20 116 ± 39 115 ± 30 0.081

Echocardiography

LVEDV, ml 133 ± 61 131 ± 63 147 ± 76 0.256

LVMi, g/m2 133 ± 61 155 ± 46 181 ± 69 <0.001

RWT 0.35 ± 0.10 0.37 ± 0.10 0.35 ± 0.14 0.452

LVEF, % 51 ± 19 50 ± 16 44 ± 16 0.018

<40%, n (%) 13 (28) 51 (31) 29 (44) 0.105

40–49%, n (%) 6 (13) 32 (19) 14 (21)

≥ 50%, n (%) 27 (59) 84 (50) 23 (35)

GLS, % −12.1 ± 4.6 −11.0 ± 4.4 −9.6 ± 5.4 0.018

GCS, % −19.4 ± 8.3 −17.0 ± 8.5 −14.4 ± 7.2 0.005

s’, cm/sec 5.7 ± 1.7 4.9 ± 1.5 4.2 ± 1.4 <0.001

e’, cm/sec 6.1 ± 1.7 4.0 ± 1.1 4.2 ± 1.4 <0.001

a’, cm/sec 7.2 ± 2.3 6.8 ± 1.8 4.5 ± 1.7 <0.001

E/A 1.19 ± 0.39 0.75 ± 0.23 2.24 ± 1.33 <0.001

E, cm/s 63 ± 13 54 ± 16 88 ± 25 <0.001

E/e’ 11.0 ± 3.4 14.0 ± 4.9 25.0 ± 10.6 <0.001

LAVi, ml/m2 26.3 ± 8.6 30.9 ± 12.8 56.6 ± 15.9 <0.001

TRV, m/sec 2.2 ± 0.3 2.2 ± 0.3 2.8 ± 0.5 <0.001

RVEDA, cm2 15.8 ± 5.2 15.5 ± 4.9 17.5 ± 6.6 0.038

RVFAC, % 50 ± 13 49 ± 13 43 ± 16 0.010

Abbreviations were the same as in Table 1.
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FIGURE 4 | Comparisons of BNP, eGFR and hemoglobin level across grades and clusters. (A) Comparisons of BNP, (B) eGFR, and (C) hemoglobin level across

grades and clusters. BNP, brain natriuretic peptide; eGFR, estimate glomerular filtration rate.

to cluster 1 (22%) and cluster 2 (76%) but 5 patients (3%) were
allocated even to cluster 3.

To assess whether clustering helped stratify risk in grade
1 diastolic dysfunction, BNP levels and clinical outcomes
were assessed within this subgroup (Figure 8). BNP levels
increased from cluster 1 to cluster 3, but not significantly so
perhaps because of the small number of subjects in cluster
3 in this subgroup. Kaplan-Meier curves demonstrated a
progressive deterioration in prognosis for both primary and
secondary endpoints from cluster 1–3, that was significant
by Cox regression analysis (hazard ratio = 5.61, p <

0.001) even after adjusting for MAGGIC score, LVEDV
and LVGLS.

DISCUSSION

We demonstrated that cluster analysis outperforms diastolic
function classification by echocardiographic consensus
recommendations, for the prediction of hospitalizations
or cardiovascular deaths in patients with HF, irrespective
of LVEF. The improved performance was the greatest
for subjects with grade 1 diastolic dysfunction. These
results suggest a more data-driven approach for developing
diagnostic recommendations.

Advantage of Using Cluster Analysis for
Discriminating Diastolic Function Patterns
Precise assessment of diastolic function is essential for
diagnosing and managing HF. To grade diastolic function
in clinical practice, the consensus recommendations have
proposed complex decision-tree algorithms that evolved
through multiple iterations (7). The update published in

2016 narrowed down the diastolic variables and simplified
the algorithms for ease of daily clinical application. The
iterations resulted in considerable changes in the diagnosis
of diastolic function, as shown by retrospective analyses of
population-based cohorts; (13, 14) it decreased when diagnosed
by the 2016 recommendation (1.4%), compared with the
2009 recommendations (38.1%) (13). Large validation studies
indicated that the 2016 update increased specificity for detecting
elevated LV filling pressure (from 70–75 to 74–81%) but did not
improve overall accuracy (67–75%, compared to 63–74% for the
2009 version) (15–17).

There are some reasons why the current diagnostic algorithms
remain suboptimal. The algorithms have been developed by
theoretical considerations that diastolic variables uniformly
follow typical changes during the progression from normal to
severe diastolic dysfunction in all patients (1, 2). However,
LV diastolic filling involves several distinct physiological
processes, including myocardial relaxation and LV compliance
(7). These processes may be differentially affected in different
cardiac diseases (18, 19). Because each diastolic variable
reflects a different aspect of LV diastolic filling, it would
be better if diastolic variables are considered separately
and independently.

The current diagnostic algorithms use discrete categorizations
defined by cut-off points. These categorizations are easier
for us to analyze and interpret than measured continuous
variables themselves, but they cause a loss of information on
between-subject variability. For example, two subjects between
whom a diastolic variable differs greatly but with both values
above the cut-off point will be graded similarly, while two
subjects with a similar difference in a diastolic variable but
with one value lying above and the other below the cut-off
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TABLE 4 | Comparison of baseline characteristics between patients with and without BNP measurement.

Patients with

BNP measurement

(n = 193)

Patients without

BNP measurement

(n = 86)

P value

Age, years 68 ± 15 67 ± 14 0.504

Male gender, n (%) 131 (68) 62 (72) 0.481

BMI, kg/m2 24.0 ± 5.3 23.5 ± 4.6 0.404

SBP, mmHg 121 ± 20 119 ± 18 0.558

HR, beat/min 67 ± 12 68 ± 13 0.612

Comorbidities

Hypertension, n (%) 129 (67) 54 (63) 0.511

Diabetes, n (%) 68 (35) 35 (41) 0.382

Underlying heart disease

Paroxysmal AF, n (%) 68 (35) 13 (27) 0.163

CAD, n (%) 63 (33) 33 (11) <0.001

HF duration, years 1.2 ± 2.5 1.9 ± 2.9 0.028

MAGGIC score 22 ± 8 22 ± 8 0.649

Medications

ACEi, n (%) 56 (29) 30 (35) 0.327

ARB, n (%) 102 (53) 40 (47) 0.328

β-blocker, n (%) 139 (72) 72 (84) 0.036

Loop diuretics, n (%) 142 (74) 55 (64) 0.103

MRA, n (%) 80 (42) 34 (40) 0.764

Devices

Pacemaker, n (%) 14 (7) 5 (6) 0.659

CRT, n (%) 3 (2) 0 (0) 0.245

ICD, n (%) 9 (5) 1 (1) 0.146

Laboratory

Albumin, g/dl 3.9 ± 0.5 3.9 ± 0.5 0.849

Hemoglobin, g/dl 13.1 ± 2.0 13.4 ± 2.2 0.234

Creatinine, mol/l 97 ± 44 97 ± 35 0.432

eGFR, ml/min/1.73m2 55.2 ± 21.0 57.3 ± 19.8 0.440

Electrocardiography

QRS duration, msec 113 ± 37 113 ± 28 0.967

Echocardiography

LVEDV, ml 132 ± 64 144 ± 71 0.152

LVMi, g/m2 156 ± 49 160 ± 66 0.634

RWT 0.37 ± 0.11 0.34 ± 0.11 0.044

LVEF, % 50 ± 16 46 ± 17 0.059

GLS, % −11.1 ± 4.8 −10.3 ± 4.5 0.228

GCS, % −17.3 ± 8.2 −15.6 ± 8.5 0.114

s’, cm/sec 4.9 ± 1.6 4.8 ± 1.7 0.441

e’, cm/sec 4.4 ± 1.4 4.3 ± 1.6 0.563

a’, cm/sec 6.4 ± 2.1 6.3 ± 2.3 0.757

E/A 1.18 ± 0.93 1.16 ± 0.90 0.863

E, cm/s 64 ± 23 61 ± 24 0.392

E/e’ 16.1 ± 7.8 16.2 ± 9.3 0.919

LAVi, ml/m2 36.5 ± 17.7 35.6 ± 16.7 0.975

TRV, m/sec 2.3 ± 0.4 2.3 ± 0.4 0.526

RVEDA, cm2 16 ± 6 16 ± 4 0.713

RVFAC, % 49 ± 14 46 ± 14 0.194

Abbreviations were the same as in Table 1.
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FIGURE 5 | Kaplan–Meier curves stratified by grades and clusters. (A) Primary endpoint (WHF) and (B) secondary endpoint (a composite of CV deaths and WHF)

when stratified by guidelines-based classification. (C) Primary endpoint and (D) secondary endpoint when stratified by cluster-based classification. WHF, worsening

heart failure; CV, cardiovascular.

point will be categorized in different grades. Echocardiographic
measurements of diastolic variables are subject to errors of
5–10% (20). This small degree of variance can result in
different grading, if measured variables fall close to cut-off

points. Each diastolic variable has been shown to correlate
with left atrial pressure (15), so treating them as continuous
would be better than dichotomizing them to predict left
atrial pressure.
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FIGURE 6 | Nested Cox models. A baseline Cox model was first constructed with MAGGIC score, LVEDV and LVGLS. A nested model was then constructed by

adding grades and cluster separately. (A) For primary endpoint. (B) For secondary endpoint. MAGGIC, Meta-analysis Global Group in Chronic Heart Failure; LVEDV,

left ventricular end-diastolic volume; LVGLS, left ventricular global longitudinal strain.

FIGURE 7 | Comparison of grade and cluster distribution. Grade (A) and cluster (B) distribution in the first 2 dimensions identified by principal component analysis.

(C) Mahalanobis distance from each subject to the center of cluster 1 was color-coded.

Cluster analysis captures the natural structure of
multivariate data without a priori knowledge and it has
been applied extensively in medical science, for example
to identify clinical phenotypes (8, 21). This approach
is suitable for creating new diagnostic criteria for LV
diastolic function, because it can overcome the above issues

involved in the current diagnostic recommendations. It can
categorize diastolic function, independent of the current
diagnostic labels, so that the resulting model will not be
biased by possible erroneous diagnoses. It can also treat
multiple variables independently and continuous variables
as continuous.
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A previous study has already investigated the natural
clustering of diastolic variables and successfully isolated a
high-risk phenotype in a convenience sample of subjects
predominantly with preserved LVEF (22). Our current study
extended this application to a consecutive series of patients
with HF comprised equally of HFpEF and HFrEF and
confirmed that cluster analysis blindly identified distinct diastolic
function phenotypes that exhibited a clear association with
BNP level and a more significant prognostic impact than
did conventional grading of diastolic function. The learned
clusters were found to correlate with LV myocardial strains
and with the prevalence of cardiovascular risk factors such as
age, hypertension and chronic kidney disease, more than did
the diastolic function grades. These correlations may lead to
an increased sensitivity for detecting at-risk patients, especially
when diastolic function was diagnosed as grade 1 by the
consensus recommendations.

Clinical Implications
The learned clusters can be used for assessing new patients.
Model-based cluster analysis, which we used in this study,

TABLE 5 | Concordance between cluster-based and guidelines-based

classifications.

Cluster 1 Cluster 2 Cluster 3 Total

Grade 1 41 (22%) 142 (76%) 5 (3%) 188

Grade 2 4 (7%) 25 (42%) 30 (51%) 59

Grade 3 1 (3%) 0 (0%) 31 (97%) 32

Total 46 167 66 279

will give the probability of membership for each cluster or
distance from each cluster if we enter diastolic variables obtained
from new patients into the learned model (Figure 7C); those
criteria could then be used to help diagnose HF or quantify
treatment effects. A prognostic score developed using cluster
analysis can also be more adaptable and give a continuous
probability of adverse outcomes in HF. Large-scale datasets of
echocardiographic diastolic variables are required to establish a
definitive cluster model.

There are several limitations. Firstly, because of the
retrospective nature of this study, there were some patients
in the HF database in whom all the diastolic variables were not
measured. We excluded them from the study population to avoid
imputation for cluster modeling. This exclusion may bias the
results. Secondly, we did not include stress echocardiographic
data in the cluster modeling. Previous studies have demonstrated
that diastolic variables obtained using resting echocardiography
were not sensitive enough to diagnose elevated left atrial
pressure and diastolic stress test would improve the diagnosis
(23), so current consensus recommendations advise the use of
stress tests to diagnose HF, especially when LVEF is preserved
(24). However, a major purpose of this study was to examine
whether cluster analysis would improve the diagnosis of diastolic
function over current diagnostic criteria, so we included
those diastolic variables measured at rest that are listed in
the current recommendations. Thirdly, we studied patients
with preserved and reduced LVEFs together. The diagnostic
accuracy of the current diagnostic criteria has been shown
to depend on LVEF (16), so the results might be different if
diastolic variables were modeled separately for preserved and
reduced LVEFs. Fourthly, septal E/e’ instead of average E/e’ was
used for diastolic grading and clustering, because measuring

FIGURE 8 | Clinical validations of clusters in the subgroup of all 188 patients with grade 1 diastolic dysfunction by echocardiographic criteria. (A) Comparison of BNP

level, (B,C) clinical outcomes [(B) for primary endpoint, (C) for secondary endpoint] stratified by clusters. BNP, brain natriuretic peptide; WHF, worsening heart failure;

CV, cardiovascular.

Frontiers in Cardiovascular Medicine | www.frontiersin.org 12 December 2021 | Volume 8 | Article 755109

https://www.frontiersin.org/journals/cardiovascular-medicine
https://www.frontiersin.org
https://www.frontiersin.org/journals/cardiovascular-medicine#articles


Kameshima et al. Diastolic Phenotyping in Heart Failure

e’ at the septum was our standard protocol at that time. We
acknowledge that E/e’ is recommended to be measured by
averaging septal and lateral e’ and lateral e’ has been shown
to be more sensitive for detecting diastolic dysfunction (25).
Fifth, patients with atrial fibrillation, which commonly coexists
in HF, were excluded in this study, because their diastolic
function cannot be graded by the current diagnostic algorithm.
Diastolic variables used for grading in sinus rhythm cannot
always be measured nor are useful in atrial fibrillation, for
example, E/A and LAVi. Separate clustering would be required
to model diastolic function in atrial fibrillation. Sixth, our
learned model has not been tested in a different population.
External validation is required to assess the generalizability of
the model.

CONCLUSIONS

Machine learning allows echocardiographic diastolic function
phenotyping that associates with HF biomarker and stratifies
HF risk better than the current recommendations. The results
of this study provide the basis for applying this data-driven
approach for precise diagnosis and prognostication in HF, in
order to formulate diagnostic recommendations that are based
on evidence rather than consensus.
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