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Summary
Background Overuse of blood cultures (BCs) in emergency departments (EDs) leads to low yields and high numbers
of contaminated cultures, accompanied by increased diagnostics, antibiotic usage, prolonged hospitalization, and
mortality. We aimed to simplify and validate a recently developed machine learning model to help safely withhold
BC testing in low-risk patients.

Methods We extracted data from the electronic health records (EHR) for 44.123 unique ED visits with BC sampling
in the Amsterdam UMC (locations VUMC and AMC; the Netherlands), Zaans Medical Center (ZMC; the Nether-
lands), and Beth Israel Deaconess Medical Center (BIDMC; United States) in periods between 2011 and 2021. We
trained a machine learning model on the VUMC data to predict blood culture outcomes and validated it in the AMC,
ZMC, and BIDMC with subsequent real-time prospective evaluation in the VUMC.

Findings The model had an Area Under the Receiver Operating Characteristics curve (AUROC) of 0.81 (95%-
CI = 0.78�0.83) in the VUMC test set. The most important predictors were temperature, creatinine, and C-reactive
protein. The AUROCs in the validation cohorts were 0.80 (AMC; 0.78�0.82), 0.76 (ZMC; 0.74�0.78), and 0.75
(BIDMC; 0.74�0.76). During real-time prospective evaluation in the EHR of the VUMC, it reached an AUROC of
0.76 (0.71�0.81) among 590 patients with BC draws in the ED. The prospective evaluation showed that the model
can be used to safely withhold blood culture analyses in at least 30% of patients in the ED.

InterpretationWe developed a machine learning model to predict blood culture outcomes in the ED, which retained
its performance during external validation and real-time prospective evaluation. Our model can identify patients at
low risk of having a positive blood culture. Using the model in practice can significantly reduce the number of blood
culture analyses and thus avoid the hidden costs of false-positive culture results.
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Research in context

Evidence before this study

We performed a Pubmed title/abstract search on Janu-
ary 18th, 2022, using the terms “Bacteremia” OR “Bacter-
aemia” OR “Bloodstream Infection” AND “Machine
Learning” OR “Prediction” AND “Emergency Depart-
ment.” The search yielded 62 papers, and we found
additional articles through the references. The literature
shows that various (machine learning) prediction tools
for blood cultures outcomes in the emergency depart-
ment (ED) have been developed. Most studies only
describe the model development, while the few exter-
nally validated models are tested in at most one other
center. Only the Shapiro Decision Rule seems to have
made it into clinical practice.

Added value of this study

We have created a robust tool for predicting blood cul-
ture outcomes in the ED. The tool was validated in mul-
tiple geographical locations and various types of
hospitals during the development phase and subse-
quently prospectively evaluated in real-time. We dem-
onstrated a net benefit of using this tool during the
real-time evaluation with a decision-curve analysis.

Implications of all the available evidence

The literature suggests that it is possible to predict
the outcome of a blood culture that is drawn in the
ED. This information can be used to substantially and
safely reduce unnecessary blood culture analyses and
avoid the hidden costs of false-positive culture
results. We now present a robust tool that can be eas-
ily implemented in various settings, and which is
already implemented in the VUMC electronic health
record environment. The tool is ready to be tested in
a clinical trial to formally study its impact on clinical
practice.
Introduction
Blood cultures are indispensable for diagnosing blood-
stream infections (BSIs), ranking among the top seven
causes of death in most European and North American
countries.1 An estimated 536.000�628.000 episodes of
BSI occur annually in the United States alone, with
79.000�94.000 associated deaths.1 Physicians tend to
order blood cultures frequently due to the fear of miss-
ing such a severe but treatable condition.2,3 In emer-
gency departments (EDs), blood cultures are collected
in many patients with suspected infections, even when
the primary condition is one with a low probability of
being accompanied by bacteremia, such as pneumonia
or cellulitis.2,3 Consequently, the yield of blood cultures
in the ED is low.3 The percentage of true-positive blood
cultures, disregarding contamination, ranges from 1.4%
to 12.2% in ED populations worldwide.4�10 Due to these
low yields, blood culture outcomes affect treatment deci-
sions in only 0.18�2.8% of patients presenting to the
ED with suspected infection.4,5

The primary goal of blood culture testing should be
to maximize the identification of true BSIs. However,
testing all patients with suspected infections has
unwanted consequences.11 The abundant use of blood
cultures leads to unnecessarily high numbers of con-
taminated cultures. A substantial 40�55% of positive
cultures can be contaminated.5,6,8,9,12 Three decades of
research on this topic has consistently shown that con-
tamination is associated with additional resource use
(laboratory and microbiological testing), increased use
of antibiotics, prolonged hospital stay, and even
increased in-hospital mortality.9,12�14

Diagnostic stewardship interventions that provide a
swift and personalized blood culture testing approach
are urgently needed to reduce the overuse of blood cul-
tures and the serious secondary effects of contamina-
tion.15 We recently demonstrated the feasibility of using
electronic health record (EHR) data in a machine learn-
ing model to detect patients at low risk of a positive
blood culture, in whom blood culture analyses could
safely be avoided.10 However, this model did not lend
itself well to external validation and clinical implemen-
tation due to the many features included. The current
study aimed to create a simplified machine learning-
based blood culture prediction tool that only uses
patient characteristics, vital sign measurements, and
routine laboratory results to facilitate clinical use and
implementation in other hospitals. To examine the per-
formance of this model in different care settings, we
carried out a multicenter external validation in academic
and teaching hospitals in various geographical loca-
tions. We also evaluated the predictions prospectively in
the EHR environment and performed a decision curve
www.thelancet.com Vol 82 Month , 2022
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analysis to establish the tool's potential net benefit to
safely reduce unnecessary blood cultures.
Methods

Study design, population, and data sources
We performed a retrospective multicenter study with
EHR data collected from four hospitals to develop and
validate a logistic regression model and a gradient-
boosting decision tree model (XGBoost) for blood cul-
tures results in the ED. The better performing XGBoost
model was subsequently subjected to a prospective sin-
gle-center real-time evaluation. This study adheres to
the “transparent reporting of a multivariable prediction
model for individual prognosis or diagnosis
(TRIPOD)”.16

Patients were included if they were 18 years or older
and underwent blood culture sampling during their ED
stay. Data for developing the blood culture prediction
models were extracted from the Amsterdam UMC -
location VU Medical Center (VUMC) EHR system
between 2016 and 2021. External validation data were
extracted from the EHR systems of Amsterdam UMC �
location Academic Medical Center (AMC; between
2020 and 2021) and the Zaans Medical Center (ZMC;
between 2016 and 2021). We further validated the mod-
els on data from the Beth Israel Deaconess Medical Cen-
ter (BIDMC; Boston, Massachusetts, United States)
between 2011 and 2019, available to researchers in the
online MIMIC-IV-ED database.17 The VUMC and AMC
are academic hospitals, while the ZMC and BIDMC are
teaching hospitals.

For prospective real-time evaluation, the XGBoost
model was further integrated into the VUMC EHR envi-
ronment from EPIC (EPIC Systems Corporation, Ver-
ona, Wisconsin, United States). The model predicted
blood culture results for all adults who underwent blood
culture sampling in the ED. The model started predict-
ing the probability of a positive blood culture as soon as
sufficient variables were documented in the EHR (see e-
Methods section on patient selection for further expla-
nation) and updated the prediction whenever additional
results came in. For the prospective evaluation in this
study, we analyzed all results between October 19th,
2021, and January 25th, 2022. Before the patients were
either admitted or discharged from the ED, the final
prediction was used to evaluate the model’s perfor-
mance. Notably, the predictions were registered in the
EHR but not visible to the physicians.
Variable selection and data preprocessing
The candidate variable selection, guided by our aim to
simplify the machine learning model we created earlier,
was based on the VUMC cohort.10 We selected age, sex,
vital sign measurements, and laboratory results. These
www.thelancet.com Vol 82 Month , 2022
variable groups were the primary predictors in the ini-
tial model and are readily available in most hospitals.10

Based on the timestamps in the EHR, we selected only
the vital signs and laboratory results that were registered
in the system before the end of the ED visit. We selected
laboratory tests measured in more than 50% of the
patients as predictor variables. Other selection decisions
were made to facilitate easy integration in different hos-
pital systems, as discussed in the e-Methods. The most
important of these selection decisions was that we only
selected patient visits in which at least 20% of the vital
sign data and 20% of the laboratory results were avail-
able for the prediction. Missing data was further han-
dled using median imputation in combination with
indicator variables (which indicate whether a value was
measured (1) or not (0) on a patient-level), which is
especially effective with data missing not at random, as
is the case in our data.18 The AMC, ZMC, and BIDMC
datasets were processed similarly, and the complete pre-
processing pipeline is discussed in more detail in the
e-Methods of the supplementary appendix, where we
also reference all the packages, modules, and libraries
that were used. We cleaned the data using the R statisti-
cal software version 3.6.1 (R Foundation for Statistical
Computing, Vienna, Austria).
Outcome
The outcome of interest was a BSI, defined as the
growth of a clinically relevant pathogen in at least one
blood culture bottle collected during the ED visit.
Among the cultured microorganisms, we defined con-
taminants based on previous literature and classified
those as negative cultures.2,6,10,19,20 e-Table 5 lists all
organisms that were classified as contaminants. We
also experimented with a contamination classification
based on the number of bottles that grew a particular
pathogen, highlighted in the e-Methods.
Statistics
Model development and validation. For the model
development and validation, we used Python version
3.8.1. The VUMC cohort was randomly split into a train-
ing (80%) and test set (20%), stratified by the blood cul-
ture outcomes. Subsequently, the training data were
scaled to unit variance and imputed when missing. The
same standardization factor and medians of the training
data were used to scale and impute the test and valida-
tion data. As with our earlier approach, we trained a
logistic regression model and a gradient-boosting deci-
sion tree model, implemented through Python’s
XGBoost (eXtreme Gradient Boosting; XGB) library.10

The optimal hyperparameters for both models were
found through a fivefold cross-validated grid search (see
e-Table 2 for further details).
3



Articles

4

We validated the models derived from the VUMC
training set in the VUMC test set, AMC, ZMC, and
BIDMC datasets. Therefore, according to the TRIPOD
criteria, our study can be classified as both a type 2a and
type 3 prediction model study.16 The discriminatory per-
formances were assessed using the Area Under the
curve of the Receiver Operating Characteristics
(AUROC) and the Area Under the Precision-Recall
Curve (AUPRC). The AUPRC is more robust to class
imbalances, as we see with the low incidence of positive
blood culture outcomes.21 The model calibration was
assessed visually using calibration plots. Feature contri-
butions for the logistic regression were presented using
the coefficients, and those of the XGBoost model were
reported using Shapley values, which correspond to the
local contributions of the features for each prediction.22

On top of evaluating the model’s performance, we
analyzed the potential clinical net benefit through a
decision curve analysis of the prospective real-time eval-
uation, as recommended by editorials in leading medi-
cal journals.23 The net benefit decision curve analysis
takes into account the relative impact of false negatives
(i.e., missing a BSI) and false positives (i.e., more con-
taminated cultures, with associated side-effects) for a
range of threshold probabilities.23,24 A detailed descrip-
tion of the net benefit calculations can be found in the
e-Methods.
Ethics
The Amsterdam University Medical Centers’ (UMC)
local medical ethics review committee waived the review
of the retrospective and prospective part of this study
(IRB number: IRB00002991; case: 2020.486), as the
medical research involving Human Subjects Act did not
apply. De-identified data extracts were used for this
study, adhering to the local privacy officer’s protocol.
Therefore, no informed consent needed to be obtained
for the use of the data. Participant data underlying the
results of this study can be shared. The data can be
requested following publication of this work. The data
can be shared with researchers who provide a methodo-
logically sound proposal, which is allowed under our
local privacy regulations. Proposals should be directed
to the corresponding author and requestors will need to
sign a data access agreement. Part of the data is avail-
able to all researchers through the MIMIC-IV-ED data-
base (https://physionet.org/content/mimic-iv-ed/1.0)
Role of funding source
The funding sources (Amsterdam Public Health �
Quality of Care program and the “Doen of Laten” proj-
ect (project number: 839205002)) had no involvement
in any part of the research project and did not have any
influence on the decision to submit the work for publi-
cation.
Results

Cohort description
This multicenter development and validation study used
retrospective EHR data from four hospitals (VUMC,
AMC, ZMC, and BIDMC) where patients with all cate-
gories of diseases and severity presented at the ED. After
selecting only adult patients who underwent blood cul-
ture sampling during their ED stay and who had over
20% of the vital signs and 20% of the laboratory varia-
bles measured, the VUMC cohort consisted of 8.027
unique visits, of whom 6.421 were randomly allocated
to the training set and 1.606 to the test set. The valida-
tion cohort sizes were 2.429 (AMC), 5.961 (ZMC), and
27.706 (BIDMC). The percentage of true-positive blood
cultures ranged from 5.4% (BIDMC) to 12.3% (ZMC).
The percentage of contaminated cultures, which we
later classified as negative, ranged from 4.9%
(BIDMC) to 10.6% (AMC). Detailed information
about the predictor variables and outcomes in the
different cohorts is presented in Table 1. The num-
ber of ED visits included following each step of the
selection procedure is presented in e-Figure 1 and
frequently found microorganisms in the different
cohorts are presented in e-Figure 7.
Training performances during the model development
Based on the AUROC and AUPRC, the XGBoost model
consistently outperformed the logistic regression
model. Therefore, we only present the XGBoost model
performances here. A detailed description of the logistic
regression model performance can be found in the sup-
plementary appendix. The XGBoost model reached an
average AUROC of 0.78 (standard deviation
(SD) = 0.01) and an AUPRC of 0.34 (SD = 0.01) during
the training phase, visualized in Figure 1a and 1a. The
calibration plot, presented in Figure 1c, shows that the
model is well-calibrated. Notably, the calibration plot
comprises ten bins of equal population size. High prob-
abilities were rare, as shown in the grey histogram of
the prediction distributions in Figure 1c.
Features and feature importances
Based on the VUMC development cohort, we selected
age, sex, six vital sign measurements, and eighteen labo-
ratory tests as predictor variables in the model. With an
additional 23 indicator variables, the model included 49
features. Details on the percentage of imputed values
per feature are presented in e-Table 3. Summary statis-
tics of the features, stratified by blood culture outcome,
are presented in e-Table 4.

Figure 2a shows the twenty most important fea-
tures in the XGBoost model in descending order.
These features were a mixture of vital signs and lab-
oratory results, while there was just one indicator
feature among the top 20 (measurement of urea).
www.thelancet.com Vol 82 Month , 2022
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Variable VUMC training
(n=6.421)

VUMC test
(n=1.606)

AMC
(n=2.429)

ZMC (n=5.961) BIDMC
(n=27.706)

Age, median, y (IQR) 66 (52�76) 66 (53�76) 62 (48�73) 71 (58�81) 61 (49�73)

Sex, Female, n (%) 3666 (43.2%) 896 (44.2%) 1134 (46.7%) 2770 (46.5%) 14,075 (50.8%)

Vital signs, median (IQR)

Temperature, Celsius 37.7 (36.9�38.5) 37.8 (36.9�38.5) 37.0 (36.3�37.7) 37.4 (36.6�38.3) 36.8 (36.6�37.1)

Heart rate, /min 94 (81�106) 93 (81�105) 90 (78�102) 95 (83�109) 85 (74�96)

Systolic blood pressure, mmHg 124 (110�140) 123 (110�140) 128 (113�144) 129 (114�145) 125 (112�139)

Diastolic blood pressure, mmHg 74 (66�83) 74 (65�83) 76 (67�85) 78 (68�87) 70 (62�78)

Respiratory rate, /min 20 (16�25) 20 (16�25) 20 (16�24) 20 (16�25) 18 (16�19)

Saturation, % 96 (95�98) 96 (94�98) 97 (95�98) 96 (93�98) 98 (96�99)

Laboratory results, median (IQR)

C-Reactive Protein 63 (21�141) 58 (19�142) 46 (12�115) 69 (28�160) 48 (11�113)

Creatinine 85 (66�119) 84 (65�116) 88 (69�129) 85 (67�114) 88 (62�133)

Leukocytes 10.4 (7.0�14.5) 10.3 (6.9�14.5) 9.1 (6.2�13.1) 10.6 (7.3�14.75) 9.3 (6.6�12.9)

Outcome

Positive blood cultures, % 11.5 11.5 11.2 12.3 5.4

Contaminated cultures, % 6.3 6.3 10.6 5.2 4.9

Table 1: Cohort descriptions of predictor variables and outcomes in the datasets used to develop and validate the XGBoost model to
predict blood culture outcomes in the emergency department.
IQR = Interquartile Range; VUMC = VU Medical Center; AMC = Academic Medical Center; ZMC = Zaans Medical Center; BIDMC = Beth Israel Deaconess

Medical Center.
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Temperature, creatinine, and C-reactive protein were
the top predictors. Figure 2b shows that low (blue)
temperatures are generally associated with a negative
blood culture (to the left of 0 on the x-axis), whereas
high (red) temperatures are usually associated with
positive blood cultures (to the right side of 0 on the
x-axis).
External validation of the prediction model
We validated the performance on the VUMC test set
and external datasets from a Dutch academic medical
center (AMC), a Dutch regional teaching hospital
(ZMC), and a large United States-based teaching hospi-
tal (BIDMC). Figure 3a shows that the model achieves
an AUROC of 0.81 (95%-CI = 0.78�0.83) within the
VUMC test set and retains AUROCs of 0.80 (95%-
CI = 0.78�0.82), 0.76 (95%-CI = 0.74�0.78), and 0.75
(95%-CI = 0.74�0.76) in the AMC, ZMC, and BIDMC
cohorts, respectively. Figure 3b shows that the AUPRC
is 0.34 (95%-CI = 0.29�0.38) in the internal test set.
The AUPRC is comparable in the AMC (0.38; 95%-
CI = 0.34�0.42) and ZMC (0.33; 95%-CI = 0.31�0.36),
but lower in the BIDMC (0.19; 95%-CI = 0.18�0.20).
Overall, the model seems to be well-calibrated in all
cohorts, as seen in Figure 3c.
Prospective evaluation
Following the external validation, we integrated the
XGBoost model into the EHR environment of the
www.thelancet.com Vol 82 Month , 2022
VUMC for a single-center real-time prospective evalua-
tion. The model reached an AUROC of 0.76 (95%-
CI = 0.71�0.81) and an AUPRC of 0.34 (95%-
CI = 0.27�0.41) during the evaluation, as shown in
Figure 4. In e-Figure 8, we display the pathogens found
in the prospective evaluation cohort. If we had avoided
blood culture draws or cancelled the analysis thereof in
all patients with a risk of a positive culture of less than
5%, we would have avoided 179 (30.3%) blood cultures,
of which 18 gave false-positive results, and missed 5 out
of 76 pathogens in the cohort.
Decision curve analysis
The net benefit decision curve in Figure 5 shows that
using the model to guide blood culture analyses in the
ED could yield a net benefit over the current “culture
all” approach across a range of threshold probabilities
between 0.01 and 0.4 (40% probability of a positive cul-
ture) during the prospective real-time evaluation.
According to Figure 5, the most significant benefits
would be gained when thresholds between 0.1 and 0.2
would be used as cut-offs to withhold blood culture anal-
yses. Although the net benefit at a threshold of 0.05 (5%
probability of a positive culture) is much smaller, we
presented the results of the prospective analysis at this
cut-off since higher probabilities of missing a positive
culture may not be accepted in practice. For more
details on the decision curve analysis and net benefit cal-
culations, see the e-Methods.
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Figure 1. Discriminatory performance and calibration of the XGBoost model for predicting the outcome of blood cultures in the emergency department in the VUMC training set: a. the area
under the receiver operating characteristics curve (AUROC). b. the area under the precision-recall curve (AUPRC). c. the calibration plot of predicted probabilities compared with actual proba-
bilities. In grey, we further see a histogram of the distribution of the predictions in the training set in this figure.
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Figure 2. Feature importances of the top 20 predictors of the XGBoost model when predicting the outcome of blood cultures in the
emergency department. According to the Shapley values, we see a. The average impact of the features on the prediction (either
positive or negative). b. The local contributions of each feature for every prediction. Contributions on the left of 0 on the x-axis are
associated with negative blood culture predictions, and contributions to the right of 0 on the x-axis are associated with positive
blood culture predictions. The color represents the actual value of the feature at that particular prediction: blue represents a low
actual value and red a high actual value.(For interpretation of the references to color in this figure legend, the reader is referred to
the web version of this article.)
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Discussion
We created a machine learning prediction model for
blood culture outcomes in the ED that performed well
during internal and external validations. The XGBoost
model reached an AUROC of 0.81 (95%-
CI = 0.78�0.83) in the test set and up to 0.80 (95%-
CI = 0.78�0.82) in external validations. Furthermore, a
prospective real-time evaluation in the EHR environ-
ment of the VUMC showed that the model could retain
a real-time performance with an AUROC of 0.76 (95%-
CI = 0.71�0.81). A decision curve analysis showed that
using the model in practice could provide a net benefit
over the current approach across a large range of thresh-
old probabilities for a positive blood culture.

Researchers have created several prediction models
for blood culture outcomes in the past. Eliakim-Raz and
colleagues presented fifteen such models in a 2015 sys-
tematic review.25 Of those models, only the Shapiro
decision rule seems to have been implemented in prac-
tice.26 This striking gap between the development and
implementation of prediction models has been apparent
throughout the medical literature.27,28 A review by Fleu-
ren et al. on machine learning readiness showed that
93% of machine learning papers discuss the develop-
ment of a predictive model, while just 5% externally vali-
date the models, and only 1% do real-time testing.28 In
our study, we present a machine learning model that
outperforms the current standard set by the Shapiro
decision rule, and we complete stages one (problem
www.thelancet.com Vol 82 Month , 2022
identification) through six (real-time testing) of the
machine learning readiness process.28 Further steps
will be to acquaint physicians with the prediction model
in a pilot study and then perform a randomized clinical
trial to establish the model’s effects in practice.

Various aspects of our analyses support the validity
of the predictions. Firstly, the model retained its predic-
tive performance during external validations in different
hospitals, geographical locations, and periods. Data for
validation represented a mix of academic and teaching
hospitals in the Netherlands and the United States. The
data were captured between 2011 and 2021, including a
validation set (AMC) exclusively captured during the
COVID-19 pandemic. The model performance
decreased slightly when we used the model in the Dutch
ZMC teaching hospital or the population of Boston’s
BIDMC. Given the substantial differences in patient
populations, outcomes, and clinical protocols, this lim-
ited performance drop is reasonable. It suggests that
minor recalibrations should suffice to obtain similar
performances when using the model in different hospi-
tals.29 The potential value of the predictions is strength-
ened by the comparable results we observed during the
real-time prospective evaluation and is reinforced by fea-
sible associations between the features in our model and
the outcome. High temperatures, high C-reactive pro-
tein levels, and high neutrophil counts are associated
with positive blood culture outcomes in our model.
These variables are all associated with BSIs and
7



Figure 3. Discriminatory performance and calibration of the XGBoost model for predicting the outcome of blood cultures in the emergency department during validation in the VU Medical
Center (VUMC) test set, Academic Medical Center (AMC), Zaans Medical Center (ZMC), and the Beth Israel Deaconess Medical Center (BIDMC). a. the area under the receiver operating charac-
teristics curve (AUROC). b. the area under the precision-recall curve (AUPRC). c. the calibration plot of predicted probabilities compared with actual probabilities. In grey, we further see a his-
togram of the distribution of the various predictions of all four datasets combined.
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Figure 4. Prospective evaluation of the XGBoost prediction model for blood culture outcomes in the emergency department in the VU Medical Center. a. the area under the receiver operat-
ing characteristics curve (AUROC). b. the area under the precision-recall curve (AUPRC). c. the calibration plot of predicted probabilities compared with actual probabilities. In grey, we further
see a histogram of the distribution of the predictions in the prospective evaluation.
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Figure 5. A net benefit decision curve analysis of the use of the XGBoost model to decrease blood culture testing during a prospec-
tive evaluation in the VUMC. Using the model provides a net benefit over a treat-all or treat none approach over an extensive range
of potential cut-offs for converting the probability into an advice to do or withhold a blood culture.
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infections in general in the literature.2,7,26 Levels of
serum creatinine, bilirubin, and thrombocytes are also
associated with the blood culture outcomes in our
model, just as dysregulated vital sign measurements. In
this case, the associations may represent critically ill
patients with potential sepsis, in whom the prevalence
of BSIs is known to be higher.30

Our machine learning tool can help reduce unneces-
sary blood culture analyses in the ED by identifying
patients at low risk of a BSI, in whom we can safely
withhold blood culture draws or cancel the analysis
when the blood culture has already been sent to the lab.
The consequent decrease in false-positive blood cultures
may lead to lower resource use, shorter hospital stays,
more appropriate use of antibiotics, and perhaps even
lower in-hospital mortality.9,12�14 Choosing which
threshold probability for a positive culture is acceptable
as a cut-off for doing or withholding a blood culture in
practice depends on the physicians’ preferences and
concerns about the patient. The decision curve analysis
showed that our model could provide net benefits across
an extensive range of cut-offs. When using a threshold
of just 5% for withholding a blood culture analysis, the
model could already prevent over 30% of blood cultures,
while missing a true-positive culture in 1% of cases. A
clinical trial and health economic assessment are
needed to fully capture the associated health- and cost
gains. Choosing a higher threshold as a cut-off would
help avoid even more unnecessary blood cultures, but at
the cost of missing additional true positives. In the
worst-case scenario, withholding blood culture sam-
pling could lead to a missed opportunity to identify a
pathogen. We showed that this scenario rarely occurs at
the 5% probability threshold during the prospective
evaluation. And even when it did, it could still be that
the pathogens were also found through other cultures
(e.g., the missed E. coli may also have been found
through urine cultures), or that the treatment strategy
would have been the same regardless of the finding of
the BSI. To better understand the workflow alterations
that come with using our model to avoid blood culture
analyses in low-risk patients, we present two cases in
Textbox 1. Strictly, all available blood culture prediction
tools, including the Shapiro rule, can only validly be
used in situations where the physician has already
decided to do a blood culture, as they are derived from
datasets of patients who underwent a blood culture
draw. A valid prediction will thus need to override a clin-
ical decision that the physician already made.

A primary limitation of this study is that we were
unable to reliably examine the performance of our tool
in subgroups of the population with specific comorbid-
ities or medications. We would need data stored in free-
text fields for this analysis. Arguably, the performance
of our model could be worse for immunocompromised
patients. This limitation warrants a detailed investiga-
tion when we test the model in a clinical trial, where we
could reliably capture this information. Furthermore,
we defined certain microorganisms as contaminants,
while they may still represent a pathogen in specific
patient groups. Examples are clinically relevant infec-
tions with coagulase-negative staphylococci (CoNS) in
central line-associated BSI and prosthetic cardiac valve
infections. The model must be validated separately for
these patient groups in a clinical trial. A final limitation
of our study is that the performance of static prediction
models, including our model, could vary over time due
to changes in the patient characteristics or the preva-
lence of positive blood cultures. When we introduce the
model in practice, we expect a change in the blood
www.thelancet.com Vol 82 Month , 2022
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culture positivity rate, as physicians may be tempted to
use the model in an even broader population of patients.
The performance should thus be closely monitored dur-
ing implementation. We hope that future developments
will make it possible to more easily implement dynamic
models that can be updated in real-time and adjust pre-
dictions based on new outcome prevalence and cohort
characteristics.

In conclusion, we developed a machine learning
model to predict blood culture outcomes in the ED,
which retained its performance during external valida-
tion and real-time prospective evaluation. Our model
can identify patients at low risk of having a positive
blood culture. Using the model in practice could reduce
the number of unnecessary blood cultures by at least
30% and thus avoid the hidden costs of false-positive
culture results.
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