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Simple Summary: The anticancer drug doxorubicin is widely used for the treatment of malignant
tumors, including colon, breast, and ovary cancers. However, prolonged use of doxorubicin causes
heart damage, ranging from changes in the structure and function of heart cells to heart failure,
the condition in which the heart does not pump enough blood. As this problem affects the quality
of life and survival of cancer patients, solutions to it are urgently needed. This study demonstrates
that Chrysanthemum morifolium extract, an extract of the purple chrysanthemum flower, reduced the
heart damage caused by doxorubicin by suppressing cell death in heart cells and heart failure in an
animal model. As Chrysanthemum morifolium has been eaten since ancient times, the extract from this
functional food is likely to be safe in clinical application, potentially allowing patients to receive the
well-established anti-cancer benefits of doxorubicin without the side effect of heart damage.

Abstract: It is well known that the anthracycline anticancer drug doxorubicin (DOX) induces car-
diotoxicity. Recently, Chrysanthemum morifolium extract (CME), an extract of the purple chrysan-
themum flower, has been reported to possess various physiological activities such as antioxidant
and anti-inflammatory effects. However, its effect on DOX-induced cardiotoxicity is still unknown.
An 3-(4,5-Dimethylthiazol-2-yl)-2,5-Diphenyltetrazolium Bromide (MTT)assay revealed that 1 mg/mL
of CME reduced DOX-induced cytotoxicity in H9C2 cells but not in MDA-MB-231 cells. A TUNEL
assay indicated that CME treatment improved DOX-induced apoptosis in H9C2 cells. Moreover,
DOX-induced increases in the expression levels of p53, phosphorylated p53, and cleaved caspase-3,9
were significantly suppressed by CME treatment. Next, we investigated the effect of CME in vivo.
The results showed that CME treatment substantially reversed the DOX-induced decrease in survival
rate. Echocardiography indicated that CME treatment also reduced DOX-induced left ventricular
systolic dysfunction, and a TUNEL assay showed that CME treatment also suppressed apoptosis in
the mouse heart. These results reveal that CME treatment ameliorated DOX-induced cardiotoxicity
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by suppressing apoptosis. Further study is needed to clarify the effect of CME on DOX-induced heart
failure in humans.

Keywords: Chrysanthemum morifolium; doxorubicin; cardiomyopathy; apoptosis; p53; systolic dysfunction

1. Introduction

In recent years, the prognosis of patients with malignant neoplasm has been improving
due to advances in surgical treatment, radiation therapy, and chemotherapy with anticancer
drugs [1,2]. However, the long-term survival of patients has increased the amount of
cardiotoxicity caused by anticancer drugs, which had not been previously observed [3,4].
As cardiotoxicity has a major impact on the prognosis and quality of life of cancer patients,
reducing it is an urgent issue, both clinically and economically [5].

Cardiotoxicity caused by anticancer drugs is classified into two types according to
clinical characteristics [6]. Type I anti-tumor agents, represented by anthracyclines, induce
dose-dependent myocardial disorders with irreversible histochemical changes. Type II
anti-tumor agents are dose-independent drugs that induce myocardial dysfunction with
reversible histochemical changes. Among the anthracyclines, doxorubicin (DOX) is indi-
cated for various cancers, including malignant lymphoma, lung cancer, gastrointestinal
cancer, breast cancer, and osteosarcoma. It is highly effective and is considered an essential
treatment for these cancers. However, the risk of DOX-induced cardiotoxicity increases
cumulatively and dose dependently, and studies of cancer patients treated with DOX
reported that from 3 to 26% of patients developed heart failure [7–9]. In order to avoid this
DOX-induced heart failure, the drug is no longer used for cancer patients with a history
of its use or for patients with cardiac disfunction [10], thus depriving these patients of the
therapeutic benefits of DOX.

DOX induces cardiotoxicity by generating reactive oxygen species (ROS) through the
direct or indirect chelation of free Fe2+ and by breaking double stranded DNA through
interaction with topoisomerase II β (TOP2β). This DNA damage then upregulates the
tumor suppressor gene p53, which activates DNA repair proteins. These proteins also
suppress the expression of genes involved in mitochondrial biosynthesis and antioxidant
activity, leading to mitochondrial deficiency [11–14]. In addition, the activation of p53
enhances the transcription of Bax, a Bcl-2 family protein, which acts on mitochondria
to promote the release of cytochrome c. The released cytochrome c activates caspase 9,
which activates caspase 3, leading to the induction of apoptosis in cardiomyocytes and
eventually to the development of heart failure [15,16].

A wide variety of compounds found in foods and plants have been reported to exhibit
various physiological functions, including antioxidant [17] and antitumor [18] activity and
the suppression of heart failure [19–22]. Several naturally occurring compounds have been
reported to suppress DOX-induced cardiotoxicity in vitro by inhibiting apoptosis; however,
there are few reports of animal and clinical studies on these compounds. Chrysanthemum
morifolium extract (CME) is an extract from the purple chrysanthemum flower containing
large amounts of luteolin and chlorogenic acid. It has been reported to have various
physiological effects, such as anti-inflammatory and free radical scavenging activity [23–26].
However, the effect of CME on DOX-induced cardiotoxicity has not been reported. In this
study, we investigated the effects of CME on DOX-treated H9C2 rat cardiomyoblast cells
and on DOX-induced cardiomyopathy in mice.

2. Materials and Methods
2.1. Materials

CME was obtained from UNIAL Co., Ltd. (Tokyo, Japan). Chrysanthemum morifolium
was extracted with hot water, then drying it into a powder. This extract is a standardized
product including chlorogenic acid (420 mg/100 g), delphinidin (690 mg/100 g), luteolin
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(32 mg/100 g), and total polyphenol (4.75 g/100 g) derived from Chrysanthemum morifolium
Ramat. CME is available on UNIAL’s website (http://www.unial.info/materials/beauty.
html (accessed on 28. January 2022). Doxorubicin hydrochloride was purchased from
MedChemExpress (Monmouth Junction, NJ, USA) and stored at −20 ◦C until use.

2.2. Cell Culture and CME Treatment

Primary cultured neonatal rat cardiomyocytes were isolated from 1- to 2-day-old
SD rats as described previously [20,27]. H9C2 cells, MDA-MB-231 cells, H1299 cells, and
HT29 cells. were purchased from American Type Culture Collection (Manassas, VA, USA).
These cells were cultured in Dulbecco’s Modified Eagle’s Medium (Nacalai Tesque, Kyoto,
Japan) with fetal bovine serum (FBS) and 1% penicillin-streptomycin-glutamine (Invitrogen,
Carlsbad, CA, USA) in a humidified incubator at 37 ◦C with 5% CO2. These cells were
treated with 0.3 or 1 mg/mL CME for 2 h, followed by stimulation with 1 µM DOX. H9C2
cells were incubated for 24 h for the MTT assay and 12 h for protein extraction. Primary
cultured cardiomyocytes were incubated for 24h for the MTT assay. MDA-MB-231 cells
were incubated for 48 h for the MTT assay and 24 h for protein extraction. H1299 cells and
HT29 cells were incubated for 48 h for the MTT assay.

2.3. MTT Cell Viability Assay

H9C2 cells, primary cultured cardiomyocytes, MDA-MB-231 cells, H1299 cells, and
HT29 cells were washed with serum free medium and added to Counting Kit-8 medium
(Dojindo, Kumamoto, Japan) for 1 h. After incubation, measurement of absorbance was
performed using a Wallac 1420 Arvo Sx multilabel counter (Perkin Elmer, Waltham, MA,
USA). The relative percentage of cell survival was calculated by dividing the absorbance of
the treated cells by that of the control in each experiment.

2.4. Animal Experiments

C57BL/6 J male mice were purchased from Japan SLC Inc. (Shizuoka, Japan). The mice
were randomly assigned to three groups: vehicle (1% gum Arabic, n = 10), 20 mg/kg DOX
(n = 9), and 20 mg/kg DOX + 400 mg/kg CME (n = 10). CME was administrated to the
mice orally by gastric gavage once a day for 14 days beginning 2 days before DOX injection.
To determine survival, mice mortality was monitored for 12 days after DOX injection.

2.5. Western Blotting

Protein extracts and nuclear extracts were obtained from H9C2 cells and MDA-MB-231
cells. Western blotting was performed as previously described [27–29]. For western blotting,
anti-cleaved caspase-3 antibody, anti-cleaved caspase-9 antibody (Abcam, Cambridge, UK),
anti-p53 antibody, phospho-p53 (Ser15) antibody (Cell Signaling Technology, Danvers, MA,
USA), and anti α-tubulin monoclonal antibody (Fujifilm Wako Pure Chemical Corporation,
Osaka, Japan) were used as primary antibodies, and goat anti-rabbit IgG–HRP (MBL, Aichi,
Japan) and sheep anti-mouse IgG-HRP (GE Healthcare, Chicago, IL, USA) were used as
secondary antibodies.

2.6. TUNEL Staining

The terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling (TUNEL
assay was performed in accordance with the manufacturer’s protocol (Roche, Basel,
Switzerland) as previously described [30,31]. In brief, H9C2 cells were fixed in 10% forma-
lin. Following permeabilization with 0.3% Triton X-100 in PBS, cells were incubated with
TUNEL reaction solution (In Situ Cell Death Detection Kit, TMR red, Roche). The mice were
euthanized, and their hearts were isolated and cut into two transverse slices at the mid-
level of the papillary muscles. The samples were fixed with Optimal Cutting Temperature
Compound (Sakura Finetek Japan Co., Ltd., Osaka, Japan) and then in 10% formalin. They
were quenched with PBS containing 100 mM Tris-HCl and 0.1% Triton X-100, and were
then permeabilized with 0.3% Triton X-100 in PBS. After permeabilization, they were
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incubated with TUNEL reaction solution. Following the application of a TrueView Autoflu-
orescence Quenching Kit (Vector Laboratories, Burlingame, CA, USA) to reduce cellular
autofluorescence signal in cardiac tissue, the samples were incubated at room temperature.
Nuclear staining was then performed with 1 µg/mL Hoechest 33258 (Dojindo, Kumamoto,
Japan) for 2 h at 4 ◦C. Fluorescence was observed with a fluorescence microscope (BZ-X810,
Keyence, Osaka, Japan). To determine the percentage of apoptotic cells, TUNEL-positive
nuclei and TUNEL-negative cells were counted using Image J software, version 1.51 (U.S.
National Institutes of Health, Bethesda, MD, USA). Samples from at least three independent
experiments were scored blindly.

2.7. Echocardiography

Echocardiography was performed using a 10–12 MHz probe and a Sonos 5500 Ultrasound
System (Philips, Amsterdam, The Netherlands) as described previously [27,32,33]. Left ven-
tricular internal diameter end-diastole (LVIDd), left ventricular internal diameter end-systole
(LVIDs), and left ventricular posterior wall thickness (LVPWT) were obtained from M-mode
recordings. Fractional shortening (FS) was calculated as (LVIDd − LVIDs)/LVIDd × 100 (%).

2.8. Statistics

Values are shown as the mean ± SEM from at least three independent experiments.
Statistical comparisons were performed using ANOVA with the Tukey–Kramer test. Survival
rate was analyzed by log-rank test. A p value of < 0.05 was considered statistically significant.

3. Results
3.1. CME Inhibited DOX-Induced Cytotoxicity in H9C2 Cells and Primary Cultured
Cardiomyocytes

The effect of CME on DOX-induced cytotoxicity was examined using an MTT assay
with H9C2 cells and primary cultured cardiomyocytes (Figure 1A,B). DOX reduced the
viability of these cells to 29% and 28%, respectively, but 1 mg/mL CME inhibited DOX-
induced cell cytotoxicity, increasing cell viability to 75% and 79%, respectively. An MTT
assay also revealed that 1 mg/mL CME did not induce cytotoxicity in H9C2 cells (Figure 1C).
Next, to determine whether CME reduces the anti-tumor activity of DOX, MDA-MB-231
human breast cancer cells, H1299 cells human non-small cell lung carcinoma cells and HT29
human colon cancer cells were treated with CME and DOX. Cell viability was decreased by
DOX, but 1 mg/mL CME did not affect viability (Figure 1D–F). These results indicate that
CME inhibited the cytotoxicity induced by DOX without reducing its anti-tumor activity.
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Figure 1. DOX-induced cytotoxicity was inhibited by CME in H9C2 cells and primary cultured
cardiomyocytes. (A) H9C2 cells were pretreated with 0.3 or 1 mg/mL CME. After 2 h, the cells were
treated with 1 µM DOX for 24 h. Cell viability was investigated by MTT assay. (B,C) H9C2 cells and
primary cultured cardiomyocytes were pretreated with 1 mg/mL CME for 2 h and then treated with
1 µM DOX for 24 h. (D–F) MDA-MB-231 cells (D), H1299 cells (E), and HT29 cells (F) were pretreated
with 1 mg/mL CME. These cells were stimulated with 1 µM DOX for 48 h. Cell viability was
measured by MTT assay. Values are presented as the mean ± SEM of three individual experiments.

3.2. CME Inhibited DOX-Induced Apoptosis in H9C2 Cells

To investigate the effects of CME on DOX-induced apoptosis in vitro, TUNEL staining
was performed on H9C2 cells. The results showed that DOX-induced apoptosis was
inhibited by CME (Figure 2).
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Figure 2. DOX-induced apoptosis was inhibited by CME in H9C2 cells. H9C2 cells were pretreated
with 1 mg/mL CME. After 2 h, the cells were treated with 1 µM DOX. Twenty-four hours after
treatment, TUNEL assay and nuclear staining were performed. (A) Representative images of TUNEL
staining and nuclear staining with 1 µg/mL Hoechest 33258 of H9C2 cells. Arrows show TUNEL
positive cells. (B) TUNEL positive ratio is defined as the number of TUNEL positive cells divided by
the total number of cells. Values are presented as the mean ± SEM of three individual experiments.

3.3. CME Inhibited DOX-Induced Upregulation of p53, p-p53, Cleaved Caspase-3,
and Cleaved Caspase-9

First, to investigate whether CME affects the expression levels of p53, phosphorylated
p53 (p-p53), cleaved caspase-3, and cleaved caspase-9, H9C2 cells were pretreated with
1 mg/mL CME for 2 h and then incubated with 1 µM DOX for 12 h. One mg/mL CME
significantly inhibited DOX-induced upregulation of p53 and p-p53 (Figure 3A–C). More-
over, 1 mg/mL CME inhibited DOX-induced increases in cleaved caspase-3 and -9 activity
(Figure 3D–F). Next, to determine whether CME inhibits DOX-induced upregulation of
p53, MDA-MB-231 cells were pretreated with 1 mg/mL CME for 2 h and then incubated
with 1 µM DOX for 24 h. Western blotting demonstrated that 1 mg/mL CME did not affect
DOX-induced increases in p53 upregulation (Figure 3G). These results revealed that CME
inhibited DOX-induced apoptosis by inhibiting p53 and cleaved casapase-3 activity.
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Figure 3. DOX-induced protein expression of cellular apoptosis markers was inhibited by CME. H9C2
cells were pretreated with 1mg/mL CME for 2 h, and then cardiac cytotoxicity was induced with
1 µM DOX for 12 h. MDA-MB-231 cells were pretreated with 1mg/mL CME for 2 h, and then cardiac
cytotoxicity was induced with 1 µM DOX for 24 h. (A,D) Representative images of WB in H9C2 cells.
(B,C,E,F) Expression levels of p53 (B), phosph-p53 (C), cleaved caspase-3 (E), and cleaved caspase-9
(F) were calculated as ratios relative to β-actin. (G) Representative images of WB in MDA-MB-231
cells. Values are presented as the mean ± SEM of three individual experiments.

3.4. CME Improved a DOX-Induced Decrease in Survival Rate

DOX-induced cardiomyopathy model mice were used to investigate the effects of
CME on DOX-induced cardiotoxicity. Eight-week-old C57BL/6J male mice were randomly
assigned treatment with vehicle, DOX, or 400 mg/kg CME + DOX. CME or solvent was
administrated to the mice orally for 15 days beginning 2 days before an intraperitoneal
injection of DOX. As shown in Figure 4, a DOX-induced decrease in survival rate was
improved by CME.

Cancers 2022, 14, 683 8 of 14 
 

 

DOX-induced cardiomyopathy model mice were used to investigate the effects of 

CME on DOX-induced cardiotoxicity. Eight-week-old C57BL/6J male mice were ran-

domly assigned treatment with vehicle, DOX, or 400 mg/kg CME + DOX. CME or solvent 

was administrated to the mice orally for 15 days beginning 2 days before an intraperito-

neal injection of DOX. As shown in Figure 4, a DOX-induced decrease in survival rate was 

improved by CME. 

 

Figure 4. Survival rate that had been decreased by DOX was improved by CME. Survival rate was 

determined for 12 days after intraperitoneal injection of 20 mg/kg DOX. Blue, vehicle (n = 10); red, 

DOX (n = 9); purple, 400 mg/kg CME + DOX (n = 10). * p < 0.01. 

3.5. CME Improved DOX-Induced Cardiac Dysfunction  

Cardiac function was assessed by echocardiography 7 days after intraperitoneal injec-

tion of DOX (Figure 5A). The results indicated that FS and EF were decreased by DOX, and 

that CME suppressed these changes (Figure 5B,C). Body weight was decreased in the DOX 

and DOX + CME groups compared to the vehicle group (Figure 5D). CME improved a DOX-

indued decrease in the ratio of heart weight to tibia length (HW/TL) (Figure 5E). These re-

sults indicate that CME improved DOX-induced cardiac disfunction in mice. 

Figure 4. Survival rate that had been decreased by DOX was improved by CME. Survival rate
was determined for 12 days after intraperitoneal injection of 20 mg/kg DOX. Blue, vehicle (n = 10);
red, DOX (n = 9); purple, 400 mg/kg CME + DOX (n = 10). * p < 0.01.
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3.5. CME Improved DOX-Induced Cardiac Dysfunction

Cardiac function was assessed by echocardiography 7 days after intraperitoneal in-
jection of DOX (Figure 5A). The results indicated that FS and EF were decreased by DOX,
and that CME suppressed these changes (Figure 5B,C). Body weight was decreased in the
DOX and DOX + CME groups compared to the vehicle group (Figure 5D). CME improved
a DOX-indued decrease in the ratio of heart weight to tibia length (HW/TL) (Figure 5E).
These results indicate that CME improved DOX-induced cardiac disfunction in mice.
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3.6. CME Suppressed DOX-Induced Cardiac Apoptosis in Mice

To determine the protective effect of CME against DOX-induced cardiac damage,
a histological analysis was carried out. Representative myocardial cross-sectional images
stained with hemotoxin/eosin and picrosirius red are shown in Figure S1. There were
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no significant differences in cardiac morphology, collagen, or fibrosis in the heart tissue
between the DOX-treated group and Control group. TUNEL staining was performed
to investigate the effect of CME on DOX-induced cardiac apoptosis in vivo (Figure 6A).
Apoptosis in the heart was increased by DOX, and this increase was suppressed by CME
(Figure 6B). These results reveal that CME improved DOX-induced cardiac dysfunction by
inhibiting DOX-induced apoptosis.
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Figure 6. DOXinduced apoptosis in mouse heart was inhibited by CME. (A) Representative images
of TUNEL staining and nuclear staining with 1 µg/mL Hoechest 33258 of mouse heart. Arrows
show TUNEL positive cells. (B) TUNEL positive ratio is defined as the number of TUNEL posi-
tive cells divided by the total number of cells. Values are presented as the mean ± SEM of three
individual experiments.



Cancers 2022, 14, 683 10 of 13

4. Discussion

This study found that CME suppressed DOX-induced cytotoxicity in H9C2 cells and
primary cultured myocytes without inhibiting the anti-tumor effect of DOX in MDA-MB-
231 cells, H1299 cells and HT29 cells. This suggests that CME suppresses DOX-induced
cardiotoxicity without inhibiting the anti-tumor effect of DOX.

CME also suppressed in vitro the activation of caspase-3 and -9, which regulate DOX-
induced apoptosis, as well as that of the tumor suppressor gene p53, which is upstream
of these caspases in H9C2 cells. In contrast, CME didn’t affect DOX-induced upregula-
tion of p53 in MDA-MB-231. DOX is known to cause DNA damage by the interaction of
three factors: ROS production and a subsequent increase in oxidative stress, mitochondrial
metabolic dysfunction, and the interaction of damaged DNA with TOP2β. This DNA dam-
age then activates p53 [34–36]. CME has been reported to possess mainly anti-inflammatory
and anti-tumor activities [23,25,37]. The results of the present study show that CME inhib-
ited the activation of p53. This suggests that CME inhibits the activation of p53 by affecting
oxidative stress, mitochondrial dysfunction, and the interaction of damaged DNA with
TOP2β in cardiomyocytes.

To investigate whether CME inhibits DOX-induced cardiotoxicity in vivo, we used
DOX-induced heart failure model mice. Echocardiography showed that CME suppressed
cardiac dysfunction due to DOX, and TUNEL staining revealed that CME suppressed DOX-
induced apoptosis in vivo. Wencker, et al. reported that low levels of myocyte apoptosis
(23 myocytes per 105 nuclei) were sufficient to cause a lethal, dilated cardiomyopathy of in
mice with cardiac specific expression of caspase-8 fusion protein [38]. Our study showed
that 26 myocytes per 105 (2.6 × 10−2%) nuclei were detected at one week after DOX
administration, indicating this ratio can be considered sufficient to have induced cardiac
dysfunction in vivo. These results indicate that CME improves DOX-induced cardiotoxicity
by suppressing apoptosis, which is a major cause of the progression of heart failure.

Luteolin and chlorogenic acid, which are the main components of CME, are known
to have antioxidant and anti-inflammatory effects. As oxidative stress and inflammatory
response cause DNA damage, activate p53, and induce cardiac apoptosis in DOX treated
mice, the antioxidant and anti-inflammatory effects of CME may suppress DOX-induced
cardiotoxicity [23,25,37]. Studies using isoproterenol-induced cardiomyopathy model mice
have shown that luteolin-7-diglucuronide, a glycoside of luteolin, prevents cardiomyopathy
by suppressing the expression of the gene encoding the subunit of NADPH oxidase that
is responsible for ROS production. This suggests that luteolin in CME may also suppress
oxidative stress and have a cardioprotective effect [39,40]. Several studies have investigated
the pharmacological activity of CME. In a hypertension rat model, CME reduced blood
pressure and improved cardiac hypertrophy [41]. This suggests that CME may prevent
not only antitumor drug-induced cardiotoxicity but also hypertension-induced heart fail-
ure. In addition, CME has been shown to possess anti-diabetic, antitumor, and antiviral
effects [42–46]. These findings suggest that CME may have a preventive effect on various
diseases due to its anti-inflammatory and antioxidant effects.

A previous study evaluating the safety of CME showed that no toxicity was observed
even after daily oral administration of 1280 mg/kg to SD rats for 26 weeks [47]. As Chrysan-
themum morifolium has been eaten since ancient times, it is likely to be safe. Nevertheless,
further clinical safety studies on CME should still be carried out.

This study has several limitations. CME is known to contain large amounts of delphini-
din, luteolin, and chlorogenic acid; however, in this study we were unable to identify which
compounds contributed to the beneficial effect of CME on DOX-induced cardiotoxicity.
Second, to determine the effect of CME, this study focused only on the acute cardiotoxicity
induced by a single high dose of DOX. Therefore, based on this study, it is not possible
to predict the protective effect of CME on chronic cardiomyopathy induced by low doses
of DOX. Recently, human pluripotent stem cell-derived cardiomyocytes and endothelial
cells have emerged as useful tools for analyzing cardiotoxicity in physiologically relevant
human cells [48]. As this study confirmed the safety of CME only in primary cultured
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cardiomyocytes and H9C2 cells, future studies are needed to clarify the safety of the com-
pound in human pluripotent stem cell-derived cardiomyocytes and endothelial cells in
order to predict potential adverse effects of DOX in the clinical setting.

5. Conclusions

In summary, this study demonstrates that CME suppresses DOX-induced cytotoxicity,
apoptosis, and cardiac dysfunction without inhibiting the antitumor activity of DOX. More
detailed studies of the mechanism of CME on DOX-induced cardiotoxicity may lead to the
development of a novel therapy that can bring the well-established anti-cancer benefits of
DOX to patients without the side effect of heart failure.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/cancers14030683/s1, Figure S1. Representative myocardial cross-sectional images stained
with hemotox-in/eosin and picrosirius red and results of quantitative RT-PCR, Figure S2. Original
Western blots of Figure 3A, Figure S3. Original Western blots of Figure 3D.
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