
Systems biology

CNApy: a CellNetAnalyzer GUI in Python for analyzing

and designing metabolic networks

Sven Thiele , Axel von Kamp, Pavlos Stephanos Bekiaris, Philipp Schneider and

Steffen Klamt *

Analysis and Redesign of Biological Networks, Max Planck Institute for Dynamics of Complex Technical Systems, Magdeburg 39106,

Germany

*To whom correspondence should be addressed.

Associate Editor: Pier Luigi Martelli

Received on June 24, 2021; revised on November 30, 2021; editorial decision on December 1, 2021; accepted on December 2, 2021

Abstract

Summary: Constraint-based reconstruction and analysis (COBRA) is a widely used modeling framework for analyz-
ing and designing metabolic networks. Here, we present CNApy, an open-source cross-platform desktop application
written in Python, which offers a state-of-the-art graphical front-end for the intuitive analysis of metabolic networks
with COBRA methods. While the basic look-and-feel of CNApy is similar to the user interface of the MATLAB toolbox
CellNetAnalyzer, it provides various enhanced features by using components of the powerful Qt library. CNApy sup-
ports a number of standard and advanced COBRA techniques and further functionalities can be easily embedded in
its GUI facilitating modular extension in the future.

Availability and implementation: CNApy can be installed via conda and its source code is freely available at https://
github.com/cnapy-org/CNApy under the Apache 2 license.

Contact: klamt@mpi-magdeburg.mpg.de

1 Introduction

Constraint-based reconstruction and analysis (COBRA) has become
a powerful and widely used modeling framework for analyzing and
redesigning metabolic networks (Bordbar et al., 2014). Several soft-
ware packages in different environments have been developed to
support COBRA studies. These include command line-based tools,
such as the MATLAB-based COBRA toolbox (Heirendt et al., 2019)
or the Python packages COBRApy (Ebrahim et al., 2013) and
ReFramed (https://github.com/cdanielmachado/reframed), as well as
software with graphical user interface (GUI), e.g. OptFlux (Rocha
et al., 2010), implemented in Java, or the web-based platform DD-
DeCaf (http://dd-decaf.eu/). Various constraint-based analysis tech-
niques are also provided by the MATLAB toolbox CellNetAnalyzer
(CNA) (Klamt et al., 2007; von Kamp et al., 2017), where these
methods can be accessed within a GUI (via interactive network
maps) or from command line (via API functions). The interactive
network maps are a characteristic feature of CNA and support typ-
ical use cases of COBRA-based analyses within network visualiza-
tions. An example of such a use case is a data input (e.g. measured
metabolic fluxes), followed by a computation (e.g. growth rate
maximization) and the display of the resulting metabolic flux distri-
bution in the maps.

To overcome the dependency on proprietary software and to en-
able the integration of more advanced GUI features, we developed

the Python package CNApy, which is presented herein. CNApy
adopts CNA’s basic concept of interactive network maps but
extends it with various enhanced features for an interactive analysis
of COBRA models and allows the connection to the universe of
Python-based packages and modules.

2 Implementation and features

2.1 Architecture of CNApy
CNApy is a cross-platform desktop application written in Python
that provides a state-of-the-art graphical front-end for the intuitive
analysis of metabolic models with COBRA methods. The metabolic
model is internally part of an instance of a CNApy project class,
which also contains metadata, e.g. the associated network maps.
The metabolic model can be built from scratch within the GUI or be
imported from a Systems Biology Markup Language (SBML) file
(Keating et al., 2020). Import/export of metabolic models in SBML
format uses functionalities of the COBRApy package (Ebrahim
et al., 2013) and the models are internally represented as COBRApy
model objects. This also allows the direct use of standard COBRA
analysis methods [such as flux balance analysis (FBA), flux variabil-
ity analysis (FVA) etc.] provided by COBRApy. Further analyses,
such as computation of elementary flux modes (EFM) and elemen-
tary flux vectors (EFV) (Klamt et al., 2017) or of minimal cut sets

VC The Author(s) 2021. Published by Oxford University Press. 1467

This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unre-

stricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.

Bioinformatics, 38(5), 2022, 1467–1469

https://doi.org/10.1093/bioinformatics/btab828

Advance Access Publication Date: 8 December 2021

Applications Note

http://orcid.org/0000-0002-5812-6963
https://orcid.org/0000-0003-2563-7561
https://github.com/cnapy-org/CNApy
https://github.com/cnapy-org/CNApy
https://github.com/cdanielmachado/reframed
http://dd-decaf.eu/
https://academic.oup.com/


(MCS) (Schneider et al., 2020), are directly supported in CNApy by
newly developed custom stand-alone Python packages (these can
also be found on https://github.com/cnapy-org). Certain advanced
features of EFM, EFV and MCS computation currently require func-
tions of the original CNA toolbox. These functions can be accessed
(on the fly) through a MATLAB or, as an open-source alternative,
Octave bridge. The results of these computations are reported to
CNApy, where the project is updated and results are displayed in
the user interface. The same approach is currently also used for yield
optimization (which is more complicated than classical FBA) (Klamt
et al., 2018). The MATLAB/Octave bridge could also be employed
to perform specific calculations with other packages, such as the
COBRA toolbox. However, outsourcing of advanced calculations
will become obsolete when modules for the respective algorithms be-
come available in Python.

Regarding the graphical front-end, CNApy implements a
Model–View–Controller (MVC) architecture. The MVC model is
realized in the form of an application state class. This class includes
the data of the currently loaded project as well as data for the gen-
eral program settings and user interface features. The view and the
controller make use of objects (widgets) of the powerful Qt library
(https://www.qt.io/). These objects include maps, lists, diagrams etc.
and are integrated in a single application window. The advanced
cross-platform UI toolkit Qt is accessed by its Pyside2 binding for

Python (https://pypi.org/project/PySide2/). In contrast to CNA writ-
ten in MATLAB, Qt allows the use of network graphics in scalable
vector graphics format enabling an improved visualization of (and
zooming in) metabolic network maps. As in CNA, the metabolic
maps must be provided or generated by the user, e.g. by using avail-
able pathway maps from web resources (such as the BioCyc or
KEGG database) or by drawing metabolic maps using general draw-
ing programs (e.g. Inkscape) or specialized tools for metabolic net-
works, such as Escher (King et al., 2015) or OMIX (Droste et al.,
2013). However, GUI-based model analysis is also possible and use-
ful without any network visualization.

2.2 Key features of CNApy
CNApy supports metabolic network analysis with various standard
and advanced COBRA methods including FBA, FVA, parsimonious
FBA, phase plane analysis, yield optimization and computation of
EFM, EFV and MCS (as mentioned above, partially via the
MATLAB/Octave engine connecting CNApy with CNA). While
many improvements over the original CNA arise from the usage of a
modern UI toolkit, CNApy also offers smoother workflows. For ex-
ample, the setup, import/export and editing of flux scenarios has
been simplified and an edit history allows one to undo/redo changes
in a scenario. CNApy projects can now be saved in a self-contained
project file (*.cna) that includes graphics, the metabolic (SBML)

Fig. 1. Screenshot of CNApy

1468 S.Thiele et al.

https://github.com/cnapy-org
https://www.qt.io/
https://pypi.org/project/PySide2/


model and other metadata. This makes it easier to copy and share
CNApy projects. Additionally, it is now possible to import and ex-
port the coordinates of reaction boxes in a map, which allows reuse
of maps and text coordinates in different projects. Further, CNApy
facilitates an intuitive exploration and traversing of the network
model, e.g. by jumping from a reaction to its associated metabolites
and from a metabolite to its associated reactions. With this feature,
and since calculation results (fluxes) are also displayed in the reac-
tion list (see Fig. 1, right side), efficient model inspection and ana-
lysis is possible even if a network visualization is not available.
Finally, CNApy integrates a Jupyter python console that allows the
user to directly interact with the application from command line.
Several example projects of CNApy (including genome-scale and
core models of Escherichia coli) are provided in a project repository
at https://github.com/cnapy-org/CNApy-projects.

3 Conclusion

CNApy is a new stand-alone desktop application with a powerful
and user-friendly graphical front-end for metabolic network analysis
and it is the first of its kind developed in Python. CNApy provides
several unique GUI features including integrated model navigation
and editing. It already supports a number of standard and advanced
COBRA techniques, but other routines and new algorithms can eas-
ily be embedded in its GUI facilitating modular extension of the
toolbox in the future. CNApy is an open-source project and contri-
butions are encouraged on GitHub (https://github.com/cnapy-org).

Funding

This work was supported by the German Federal Ministry of Education and

Research (de.NBI partner project ‘ModSim’ (FKZ: 031L104B)]; and by the

European Research Council (721176).

Conflict of Interest: none declared.

References

Bordbar,A. et al. (2014) Constraint-based models predict metabolic and asso-

ciated cellular functions. Nat. Rev. Genet., 15, 107–120.

Droste,P. et al. (2013) Omix—a visualization tool for metabolic networks

with highest usability and customizability in focus. Chem. Ing. Tech., 85,

849–862.

Ebrahim,A. et al. (2013) COBRApy: COnstraints-Based Reconstruction and

Analysis for Python. BMC Syst. Biol., 7, 74.

Heirendt,L. et al. (2019) Creation and analysis of biochemical

constraint-based models: the COBRA Toolbox v3.0. Nat. Protoc., 14,

639–702.

Keating,S.M. et al.; SBML Level 3 Community members. (2020) SBML Level

3: an extensible format for the exchange and reuse of biological models.

Mol. Syst. Biol., 16, e9110.

King,Z.A. et al. (2015) Escher: a web application for building, sharing, and

embedding data-rich visualizations of biological pathways. PLoS Comput.

Biol., 11, e1004321.

Klamt,S. et al. (2007) Structural and functional analysis of cellular networks

with CellNetAnalyzer. BMC Syst. Biol., 1, 2.

Klamt,S. et al. (2017) From elementary flux modes to elementary flux vectors:

metabolic pathway analysis with arbitrary linear flux constraints. PLoS

Comput. Biol., 13, e1005409.

Klamt,S. et al. (2018) A mathematical framework for yield (vs. rate) optimiza-

tion in constraint-based modeling and applications in metabolic engineer-

ing. Metab. Eng., 47, 153–169.

Rocha,I. et al. (2010) OptFlux: an open-source software platform for in silico

metabolic engineering. BMC Syst. Biol., 4, 45.

Schneider,P. et al. (2020) An extended and generalized framework for the cal-

culation of metabolic intervention strategies based on minimal cut sets.

PLoS Comput. Biol., 16, e1008110.

von Kamp,A. et al. (2017) Use of CellNetAnalyzer in biotechnology and meta-

bolic engineering. J. Biotechnol., 261, 221–228.

CNApy: a GUI for metabolic network analysis in Python 1469

https://github.com/cnapy-org/CNApy-projects
https://github.com/cnapy-org

