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Abstract
Emerging evidence indicates that molecular aging may follow nonlinear or discon‐
tinuous trajectories. Whether this occurs in human neuromuscular tissue, particularly 
for the noncoding transcriptome, and independent of metabolic and aerobic capaci‐
ties, is unknown. Applying our novel RNA method to quantify tissue coding and long 
noncoding	 RNA	 (lncRNA),	we	 identified	 ~800	 transcripts	 tracking	with	 age	 up	 to	
~60	years	in	human	muscle	and	brain.	In	silico	analysis	demonstrated	that	this	tempo‐
rary linear “signature” was regulated by drugs, which reduce mortality or extend life 
span	in	model	organisms,	including	24	inhibitors	of	the	IGF‐1/PI3K/mTOR	pathway	
that mimicked, and 5 activators that opposed, the signature. We profiled Rapamycin 
in nondividing primary human myotubes (n	=	32	HTA	2.0	arrays)	and	determined	the	
transcript signature for reactive oxygen species in neurons, confirming that our age 
signature	was	 largely	 regulated	 in	 the	 “pro‐longevity”	 direction.	Quantitative	 net‐
work	modeling	 demonstrated	 that	 age‐regulated	 ncRNA	equaled	 the	 contribution	
of	protein‐coding	RNA	within	structures,	but	tended	to	have	a	lower	heritability,	im‐
plying	 lncRNA	may	better	 reflect	environmental	 influences.	Genes	ECSIT,	UNC13,	
and	SKAP2	contributed	to	a	network	that	did	not respond to Rapamycin, and was 
associated with “neuron apoptotic processes” in protein–protein interaction analysis 
(FDR	=	2.4%).	ECSIT	links	inflammation	with	the	continued	age‐related	downwards	
trajectory	of	mitochondrial	complex	I	gene	expression	(FDR	<	0.01%),	implying	that	
sustained inhibition of ECSIT may be maladaptive. The present observations link, for 
the first time, model organism longevity programs with the endogenous but tempo‐
rary	genome‐wide	responses	to	aging	in	humans,	revealing	a	pattern	that	may	ulti‐
mately underpin personalized rates of health span.
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1  | INTRODUC TION

Aging is such an important “risk factor” for a number of chronic pa‐
thologies that enabling “healthy aging” represents a logical strategy to 
improve	human	health	 (Longo	et	al.,	2015).	 In	model	organisms,	 reg‐
ulators of longevity and health span have been extensively validated 
(De	Haes	et	al.,	2014;	Schaar	et	al.,	2015);	these	include	inhibition	of	
mTOR	 (Lamming,	Ye,	Sabatini,	&	Baur,	2013)—a	nutrient	and	growth	
factor	sensing,	GTPase	regulated	protein	complex	(Pan	&	Finkel,	2017),	
which	regulates	“protective”	autophagy	programs	 (Yang	et	al.,	2014),	
and strategies down‐regulating mitochondrial components accompa‐
nied	by	modest	increases	in	reactive	oxygen	species	(ROS)	production	
(Arriola	Apelo	et	al.,	2016;	Lamming	et	al.,	2013).	Interestingly,	activa‐
tion	of	the	mTOR	pathway	has	been	reported	 in	Alzheimer's	disease	
(AD;	Tramutola	et	al.,	2015)	and	excessive	TORC1	activity	may	contrib‐
ute	to	muscle	degeneration	(Tang	et	al.,	2019).	In	humans,	age‐related	
molecular changes are typically modeled using linear methods, yet in 
shorter‐lived	organisms	(Hall	et	al.,	2017;	Manczak,	Jung,	Park,	Partovi,	

& Reddy, 2005; Rana et al., 2017; Rangaraju et al., 2015; Yang & Hekimi, 
2010)	nonlinear	molecular	responses	to	age	are	observed	(Rangaraju	et	
al.,	2015),	featuring	the	aforementioned	canonical	pathways	(Lamming	
et	al.,	2013;	Pan	&	Finkel,	2017).

Beyond the need to consider different “phases” of molecular 
aging,	 clinical	 phenotypes	 such	 as	 aerobic	 capacity	 (Koch	 et	 al.,	
2011)	and	insulin	resistance	(Timmons	et	al.,	2018)—highly	variable	
environmentally	 sensitive	 and	 inherited	 traits—potentially	 interact	
with	aging.	Quantitatively	important	biomarkers	for	health,	neither	
parameter has been previously available when modeling the molecu‐
lar	features	of	human	aging.	Furthermore,	no	study	has	utilized	tech‐
nology	to	both	measure	exon‐specific	transcript	signals	and	provide	
robust	coverage	of	 tissue	 long	noncoding	RNAs	 (lncRNAs,	50%	of	
the human transcriptome; Timmons et al., 2018; Deveson, Hardwick, 
Mercer,	&	Mattick,	2017).	Furthermore,	emerging	evidence	demon‐
strates that lncRNAs can modulate mTOR activity (Chen et al., 2018; 
Li	et	al.,	2016).	These	 factors	could	combine	 to	explain	why	exist‐
ing models of human aging do not consistently identify a molecular 

F I G U R E  1  A	schematic	representation	of	the	study	analysis	strategy.	(a)	For	the	HTA	2.0	or	exon	arrays,	the	25‐mer	array	probes	
were	realigned	to	the	current	genome;	“single	match”	probes	were	GC	content‐adjusted	and	study‐specific	expression	confirmed	(low	
signal/variance	filtering)	before	creating	the	template	for	combining	probes	into	a	transcript	signal	(selected	from	ensembl,	ENST,	Figure	
S1).	(b)	Linear	modeling	for	“age”	versus	RNA	was	conducted	using	independent	cohorts	of	human	muscle	profiles	from	physiologically	
characterized	“healthy”	drug‐free	humans	(n	=	330	biopsies	for	decades	third	to	sixth,	n	=	247	for	decades	sixth	to	ninth).	The	clinical	data	
originate	from	our	studies:	Cohort	A	(Timmons	et	al.,	2018),	Cohort	B	(Phillips	et	al.,	2013),	Cohort	C	(AbouAssi	et	al.,	2015),	Cohort	D	
(Phillips	et	al.,	2017),	Cohort	E	(Slentz	et	al.,	2016),	and	Cohort	F	(Hangelbroek	et	al.,	2016).	The	pattern	of	muscle	age‐related	transcript	
expression was confirmed in human brain (n	=	299)	and	skin	(n	=	59),	relying	on	published	exon	array	data	and	our	optimized	transcript	
detection	protocol.	(c)	An	age‐related	protein‐coding	transcriptome	was	identified,	adjusting	for	metabolic	and	aerobic	capacity,	and	this	
provided	a	robust	framework	for	characterization	of	the	biology	of	age‐regulated	lncRNAs,	which	are	largely	of	unknown	function,	using	
network	analysis	and	an	age	signature	for	in	silico	cMAP	database	drug	screening.	(d)	The	results	of	in	silico	drug	screening	were	validated	
primary muscle cell studies
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program dominated by the canonical regulators of longevity in non‐
human systems. In the present study, we combine our advanced RNA 
methodology	(Figure	1a)	with	the	production	of	physiological	data	at	

scale,	to	model	these	three	interacting	phenotypes	(Figure	1b).	This	
revealed a molecular program in three human tissue types dominated 
by mTOR and ROS signaling, including selective loss of mitochondrial 
complex I gene expression.

2  | RESULTS

2.1 | A linear protein‐coding RNA response to aging 
is switched off by the sixth decade of life

We first examined the protein‐coding transcript responses during 
the	first	and	second	30‐year	time	spans	of	adulthood	(20–55	years,	
n	=	330,	Figure	1b),	a	choice	ensuring	a	similarly	large	sample	for	ana‐
lyzing	the	following	30‐year	period.	The	RNA‐versus‐age	relationship	
was adjusted for insulin sensitivity and aerobic capacity (Phillips et 
al.,	2017).	This	identified	1,967	ENSTs	consistently	age‐related	across	
four	clinical	cohorts	(Figure	2a,	mean	FDR	1.3%,	Appendix	S1),	repre‐
senting	694	protein‐coding	genes,	of	which	two‐thirds	declined over 
three	decades.	This	adjusted	“linear”	age‐related	signature	included	
components	of	the	mTORC1	pathway	(LAMTOR5/HBXIP)—a	regula‐
tor of protein translation and cellular autophagy (Zoncu, Efeyan, & 
Sabatini,	2011)—and	members	of	the	mTORC2	pathway	(MAPKAP1;	
mSIN1)—a	regulator	of	apoptosis	and	substrate	metabolism	(Liu,	Gan,	
et	al.,	2013).	Background	bias‐adjusted	ontology	analysis	(Timmons,	
Szkop,	&	Gallagher,	2015)	 identified	down‐regulated	mitochondrial	
complex	I	(12.8	times	enrichment,	FDR	<	0.01%)	and	mitochondrial	
translation	(9.9	times	enrichment,	FDR	<	0.01%)	processes.	Using	the	
only	human	brain	dataset	with	this	age‐range	and	exon‐based	tran‐
script	data	 (Kang	et	 al.,	 2011),	we	examined	 these	1,967	ENSTs	 in	
cerebellum, hippocampus, and frontal cortex (18–55 years; n = 116; 
Appendix	S2).	Despite	the	more	limited	sample	size,	47%	of	the	age	
genes were regulated in an identical manner to our observations in 
muscle	(Appendix	S3).	Skin,	like	brain,	is	of	ectodermal	origin	and	re‐
modeling	of	an	exon	array	dataset	(Haustead	et	al.,	2016)	found	that	
57%	of	 the	age	genes	were	 regulated	 in	a	manner	consistent	with	
muscle aging (n	=	59,	drug‐free	subjects,	Appendix	S2).	Thus,	a	linear	
protein‐coding	gene	expression	program,	containing	model	organism	
longevity genes, is identifiable in human tissue aging during the first 
three	decades	of	adulthood	(Figure	2a).

Applying the same analysis approach across the subsequent 
three decades (51–86 years, n	=	247),	it	was	observed	that	none of 
the	73,654	protein‐coding	ENSTs	demonstrated	 a	 statistically	 sig‐
nificant	 relationship	 with	 age	 in	 skeletal	 muscle	 (the	 lowest	 FDR	
was	9%,	Figure	2a).	Undiagnosed	disease	could	result	in	stochastic	
gene	expression	(reducing	statistical	power),	so	we	modeled	only	the	
1,967	ENSTs.	Five	now	reached	a	modest	level	of	statistical	signifi‐
cance:	MLF1,	HEXIM2,	TMEM266,	MYLK4,	and	GRSF1	(<10%FDR).	
Critically,	on	laborious	visual	inspection,	a	majority	(76%)	of	the	1,967	
transcripts	(507	genes)	demonstrated	close	to	a	zero	correlation	co‐
efficient with age beyond the sixth decade (referred to as “Group 2” 
genes,	Appendix	S1,	Figure	2b),	while	24%	had	similar	 trajectories	
over	both	periods	(“Group	1”	transcripts,	Figure	2b).	The	coefficient	
of	variation	for	RNA	expression	(Figure	2c)	for	Group	1	did	not	differ	

F I G U R E  2  Linear	modeling	and	protein‐coding	transcript	
expression variation in 577 adult human muscle RNA samples. 
(a)	Linear	modeling	applied	over	two‐	three‐decade	periods	of	
adulthood identified a statistically significant gene expression 
program	during	the	first	period	but	not	in	the	second.	(b)	Two‐thirds	
of the Spearman rank correlation coefficients were negatively 
associated with age during the third to sixth decade of adulthood 
(FDR	<	3%).	A	minority	of	these	were	related	in	a	similar,	numerical,	
manner	to	age,	from	the	sixth	decade	(“Group	1	genes”),	while	
the	majority	(557	from	853)	had	zero	correlation	with	age	
beyond	the	sixth	decade	(“Group	2	genes”).	HKG	were	potential	
neuromuscular “housekeeping genes” identified as demonstrating 
a	very	low	coefficient	of	variation	across	age,	in	both	tissues.	(c)	
The coefficient of variation for the transcript expression values of 
the	age	transcripts	were	calculated	for	the	two	age‐regulated	gene	
sets and found to be similar and stable across seven decades of 
adulthood.	This	is	evidence	that	the	observed	age‐related	pattern	
was	not	due	to	transcriptional	stochasticity	(“noise”)	but	due	to	the	
active	switching‐off	of	a	transcriptional	program	regulating	Group	
2 genes
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from the Group 2, implying specific termination of interaction with 
age	for	Group	2	genes.	For	human	brain,	the	only	sufficiently	sized	
older	age‐range	exon‐based	dataset	was	from	Hardy	and	colleagues	
(Trabzuni	et	al.,	2011).	One	hundred	and	eighty‐three	samples	from	
the same three brain regions used above, passed quality checks (cer‐
ebellum, hippocampus, and frontal cortex; 49–91 years, Appendix 
S4).	 Fifty‐two	 Group	 1	 age	 genes	 were	 consistently	 regulated	 in	
brain	and	muscle	 (36%	of	 those	detected),	while	190	Group	2	age	
genes	 (64%	 of	 those	 detected)	 had	 a	 consistent	 relationship	with	
age,	in	muscle	and	brain	(Appendix	S4).	Thus,	a	linear	gene	expres‐
sion program active during the first three decades of adulthood is 
largely “switched off” in human neuromuscular tissue, from the sixth 
decade of life.

2.2 | In vitro and in silico analyses demonstrate 
that the human age signature is regulated by proven 
mediators of model organism longevity

Multiple	independent	resources	were	utilized	to	provide	insight	into	
the regulators of this human age signature. Reactive oxygen species 
(ROS)	are	generated	 in	mitochondrial	 respiratory	chain	Complex	 I,	
and	down‐regulated	Complex	I	genes	were	a	highly	enriched	com‐
ponent of Group 2 genes (14.8× enriched, p	<	1	×	10−9).	Paraquat	
increases	superoxide	production	in	vitro	(Lenzken	et	al.,	2011),	and	
updated analysis of data from neuronal cells treated for 18 hr found 
~60%	 of	 the	 expressed	 protein‐coding	 age	 transcripts	 (n	 =	 461)	
were	 regulated	 by	 ROS	 (vs.	 ~20%	 of	 all	 transcripts,	 Appendix	 S3,	
FDR	≤	1%).	Strikingly,	19	mitochondrial	complex	I	genes	were	regu‐
lated by Paraquat in the same direction as age, in vivo. Upstream 
analysis,	used	as	previously	described	(Nakhuda	et	al.,	2016),	identi‐
fied RICTOR activation (p	<	1	×	10−11,	Z‐score	=	4.03)—a	component	
of	mTORC2	required	for	the	function	of	long‐term	memory	(Huang	
et	al.,	2013)—and	two	synthetic	retinoids,	ST1926	(p	<	1	×	10−4,	Z‐
score	=	3.0)	 and	CD437	 (p	<	1	×	10−3,	Z‐score	=	3.0).	 In	 contrast,	
XBP1	was	predicted	to	be	upstream	but	inhibited	(p	<	1	×	10−4,	Z‐
score	=	−2.38);	XBP1	is	a	transcriptional	component	of	the	unfolded	
protein	response	(Rana	et	al.,	2017).

We	used	Group	1	and	Group	2	age	signatures	in	CMap‐L1000v1	
(https	://clue.io/)	 to	 establish	whether	 they	matched	 the	 RNA	 sig‐
natures	 for	 >8,000	 cell	 line	 drug‐screening	 assays	 (Corsello	 et	 al.,	

2017).	This	analysis	identified	24	inhibitors	of	the	IGF‐1/PI3K/mTOR	
longevity‐regulating	 pathway	 across	 the	 nine	 cell	 lines,	 a	 striking	
observation	as	only	55	compounds	in	CMap‐L1000v1	are	listed	to	
inhibit	this	pathway	(Appendix	S5).	The	24	inhibitors	included	rapa‐
mycin, an mTORC1 inhibitor, and Torin2, a direct active site inhibitor 
of	mTOR	kinase	 (Liu,	Xu,	et	al.,	2013).	 In	addition,	five	compounds	
which activate	 IGF‐1/PI3K/mTOR	 pathway	 components,	 opposed 
our	age	signature	(Figure	3a),	confirming	the	bi‐directional	relation‐
ship between pathway status and our in vivo signature.

To validate these in silico results from cell lines in terminally 
differentiated cells, we studied mTOR inhibition in human primary 
postmitotic myotubes (n	=	32).	Treated	with	IGF1	and	amino	acids,	
with	or	without	100	nM	rapamycin	(4	hr	and	24	hr,	Figure	3b),	the	
coding and lncRNA transcriptome was profiled using the same tech‐
nology as the clinical studies (n	=	32).	We	observed	that	106	Group	
2	age	genes	(46%	of	the	Group	2	genes	expressed	in	vitro)	and	21	
of	the	83	Group	1	genes	were	responsive	to	rapamycin.	Hierarchical	
clustering	 (Figure	 3c)	 indicated	 that	 Group	 2	 age	 transcript	 re‐
sponses	 more	 closely	 resembled	 short‐term	 rapamycin	 treatment	
(4	hr,	Figure	3c),	while	Group	1	age	transcript	responses	were	more	
closely	associated	with	a	24‐hr	 rapamycin	exposure	 (Figure	S2).	 In	
contrast, when a large and robust human muscle insulin resistance 
RNA	signature	(Timmons	et	al.,	2018)	was	utilized	as	a	control	input	
for	tissue‐related	bias	(Timmons	et	al.,	2015),	very	few	compounds	
were	significant	(Appendix	S5).

2.3 | Network and heritability analysis reveals 
potential functions for noncoding RNA

A subset of samples (n	=	238,	Figure	1	and	Table	S1)	was	profiled	on	
the	latest	generation	technology,	enabling	the	study	of	genome‐wide	
lncRNA relationships with age. Our RNA quantification method de‐
tects	~15,000	ncRNAs	across	brain	and	muscle	(Figures	S4	and	S5),	five	
times	more	than	short‐read	RNA‐seq	(Deveson	et	al.,	2017;	Jaffe	et	al.,	
2014).	After	accounting	for	variations	in	aerobic	and	metabolic	fitness	
in subjects aged 18–51 years (n	=	124,	Table	S1),	239	ncRNA	transcripts	
(180	noncoding	genes)	were	age‐related;	this	included	43	natural	an‐
tisenses	and	36	long	intergenic	RNAs	(Appendix	S6).	The	relationship	
with age for these ncRNAs was examined in older subjects (Cohort E 
(n	=	68,	45–75	years)	and	Cohort	F	 (n	=	46,	65–86	years),	Table	S1).	

F I G U R E  3  Discovery	and	validation	that	the	in	vivo	muscle	age	signature	is	largely	regulated	by	the	canonical	IGF1/PI3K/mTOR	
“longevity‐related”	pathway.	(a)	The	protein‐coding	age	transcripts	were	used	as	a	signature	to	match	to	the	CMap‐L1000v1	database	of	
>8,000	chemicals	profiled	in	nine	distinct	cell	lines.	The	maximum	possible	scores	are	−100/100	and	only	169	drugs	(<2%)	scored	above	
−90/90.	The	linear	age	signature	matched	proven	longevity	canonical	signaling	pathway	(IGF1–PI3K–mTOR);	24	“inhibitory”	compounds	
mimicked	the	first	period	of	aging,	and	five	compounds	activating	aspects	of	the	IGF1–PI3K–mTOR	pathway	opposed	the	in	vivo	pattern.	
(b)	The	relationship	between	the	activity	of	mTOR	pathway	and	the	age	transcripts	was	evaluated	in	human	primary	muscle	myotubes,	
using	rapamycin	(100	nM).	Relative	changes	in	phosphorylation	of	mTOR	Ser2448	and	4E‐BP1	Thr37/46	following	IFG1/amino	acid	feeding,	
confirming	the	activity	of	rapamycin	(RAU	=	relative	arbitrary	units;	for	4E‐BP1).	Protein	data	represent	experiments	using	four	independent	
experiments	per	treatment	and	time‐point.	*p	<	0.05,	**p	<	0.01,	***p	<	0.001	versus	baseline,	respectively.	#p	<	0.05,	##p	<	0.01,	
###p	<	0.001	versus	time‐matched	control	group,	respectively.	(c)	RNA	was	isolated	from	eight	independent	experiments	(per	treatment/
time‐point)	and	profiled	on	the	HTA	2.0	array	(n	=	40	arrays).	Overlap	between	primary	muscle	rapamycin‐regulated	transcripts	(up/down‐
regulation)	and	the	in	vivo	age	signature	(positive/negative	correlation)	was	evaluated	at	4	and	24	hr.	For	Group	2	age	transcripts,	the	pattern	
of	expression	after	4	hr	rapamycin	treatment	clustered	more	closely	with	the	in	vivo	age	signature	(more	likely	only	mTORC1),	while	the	
Group	1	genes	clustered	with	the	24‐hr	in	vitro	signature,	when	activity	mTORC2	can	also	be	affected	via	depletion	of	TOR	kinase

https://clue.io/
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Again, many of ncRNAs no longer linearly correlated with age later in 
life, while interestingly 71 ncRNA transcripts demonstrated a Group 1 
type	profile.	LncRNA	responses	were	integrated	with	protein‐coding	
aging transcripts using quantitative network analysis (Song & Zhang, 
2015).	We	used	 the	 largest	possible	batch	of	 samples	 (18–67	years,	
n	=	185,	median	age	=	43	years),	modeling	the	840	coding	and	noncod‐
ing age transcripts, and discovered that the node statistics for lncRNA 
genes	equaled	those	of	the	protein‐coding	genes	 (as	well	as	subsets	
such	 as	 “mitochondrial	 genes”	 and	 “in	 vitro	 rapamycin‐responsive”	
genes,	Appendix	S7).	Thus,	lncRNAs	equally	contribute	to	the	network	
structure of the muscle age regulated transcriptome. Numerous lncR‐
NAs	were	quantitatively	co‐regulated	with	components	of	the	mTOR	
canonical	and	protein	synthesis	pathways	(Figure	4).	For	example,	the	
mTOR	amino	acid	sensing	Ragulator	complex	gene,	LAMTOR5	(Li	et	al.,	
2016),	was	down‐regulated	from	the	third	to	sixth	decade	and	densely	
associated with lncRNAs (n	=	22).	Using	blood	gene	expression	data	
from	monozygotic	twins	(Sood	et	al.,	2016),	we	conducted	pilot	her‐
itability	analyses	 (Figure	4b,	Table	S2,	and	Figure	S6).	Heritability	of	
the	 age‐related	 gene	 expression—estimated	 from	 intraclass	 correla‐
tion	analysis	using	blood	RNA—was	less	for	lncRNAs	(p = 2.2 × 10−16, 

mean	difference:	−0.2756	[95%	CI:	−0.2828,	−0.2685]),	compared	with	
age‐related	protein‐coding	gene	expression.	This	indicates	that	altered	
regulation of lncRNAs may better reflect environmental than genetic 
influences during human aging.

3 | DISCUSSION

We find that humans endogenously activate a transcriptional pro‐
gram related to enhanced longevity in model organisms and this 
“switches off” in human muscle and brain around the sixth decade 
of life. There is support for functionally important age “switches” 
in Drosophila, where selective midlife induction of mitochondrial 
fission	via	over‐expression	of	 the	GTPase	gene,	drp1	 (DNM1L	 in	
humans),	extends	lifespan	(Rana	et	al.,	2017).	Modulation	of	GTP	
and ROS can subsequently impact on aging via mTOR activity and 
mitochondrial	 redox	signaling	 (Wang,	Yang,	&	Zhang,	2016).	Our	
modeling approach was pragmatic, relying on two large groups of 
samples to examine the “early” and “later” phase of human neu‐
romuscular aging. Our signature identified drugs used to treat 

F I G U R E  4  LAMTOR5	and	associated	lncRNAs.	(a)	Network	structures	within	the	coding/lncRNA	transcript	expression	data	were	
evaluated (n	=	185,	<68	years,	FDR	<	1%	for	Spearman	correlation;	p	<	0.01	for	module	significance	and	p	<	0.01	for	network	connectivity	
and	10,000	permutations	for	calculating	FDR	and	connectivity	p‐values)	and	plotted	using	a	Fruchterman–Reingold	force‐directed	method	
(Song	&	Zhang,	2015).	A	network	was	identified,	containing	components	of	the	mTOR	pathway	(LAMTOR5	and	LAMTOR2,	which	decline	
with	age).	LAMTOR5	was	strongly	co‐regulated	with	>22	lncRNA	(blue	rectangle	positively	regulated	with	age;	purple	rectangle	genes	
decline	with	age),	including	antisense,	lincRNA,	and	RNA	pseudogenes	related	to	the	translational	machinery.	Additional	modules	included	
mitochondrial,	endoplasmic	reticulum,	and	ribonuclear	proteins	with	ncRNA	of	unknown	function	closely	integrated	with	these	protein‐
coding	genes.	(b)	Intraclass	correlations	(ICCs)	of	age‐regulated	genes	as	indicators	of	heritability	plotted	for	noncoding	and	protein‐coding	
expression	using	HTA	2.0	blood	RNA	profiles	obtained	from	17	pairs	of	homozygotic	twins	(Sood	et	al.,	2016).	The	heritability	estimate	was	
greater	for	protein‐coding	genes	(p	<	0.0001,	See	Table	S2)
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age‐associated	 diseases	 (Figure	 S3b,	 Appendix	 S5),	 for	 example,	
nitrendipine	 (Tuomilehto	 et	 al.,	 1999),	 losartan	 (Lindholm	 et	 al.,	
2002),	 and	 fluvastatin	 (Arampatzis	et	 al.,	 2005)—all	of	which	 re‐
duce mortality. Aliper et al	 assayed	 for	 potential	 anti‐age	 com‐
pounds	using	an	artificial	 intelligence	(AI)	approach	(Aliper	et	al.,	
2016),	 finding	 HA‐1004	 (calcium	 channel	 blocker)	 and	 Fasudil	
(HA‐1077),	both	of	which	regulate	our	Group	2	age	genes.	Using	
a similar approach to search for natural mimetics of rapamycin 
they	 identified	Withaferin	A	 (Aliper	et	al.,	2017),	and	Withaferin	
A	was	our	top‐ranked	hit,	while	another	11	other	drugs	were	com‐
mon to both projects. Together, these observations demonstrate 
that chemicals, which extend longevity (Arriola Apelo et al., 2016; 
Lamming	 et	 al.,	 2013;	 Lesniewski	 et	 al.,	 2017;	 Majumder	 et	 al.,	
2012)	or	drugs	that	reduce	mortality	in	human	clinical	trials,	also	
regulate	our	human	age‐related	transcriptional	signature,	suggest‐
ing	it	could	be	an	endogenous	pro‐survival	program.

The mitochondrial and Toll pathway protein ECSIT has been hy‐
pothesized	 to	 be	 a	 disease	 hub	 in	 dementia	 (Soler‐López,	 Badiola,	
Zanzoni,	&	Aloy,	2012)	because	it	reflects	a	point	of	interaction	for	
inflammation	and	mitochondrial	biology.	ECSIT	(down‐regulated	with	
age)	was	the	top‐ranked	hub	gene	in	the	age	transcriptome	(Figure	S7	
and	Appendix	S7).	Composed	of	209	genes,	the	ECSIT	network	 in‐
cluded	CADM2,	UNC13C	and	ST3GAL3	genes,	with	variants	linked	to	
cognition	(Pasanen	et	al.,	2018).	ECSIT	promotes	NFκB activity (Wi et 
al.,	2014),	and	in	AD	experimental	models,	repression	of	NFκB activity 
decreases BACE1 activity and both soluble and insoluble Aβ (Paris et 
al.,	2010).	Loss	of	ECSIT	tempers	mitochondrial	Complex	I	assembly	
(Vogel	et	al.,	2007),	and	modulation	of	Complex	I	results	in	changes	
in	mitochondrial	ROS	production	(Yang	&	Hekimi,	2010).	Reactive	ox‐
ygen species links mitochondrial function and the unfolded protein 
response	(uPR)	with	aging	and	AD	(Kennedy	&	Lamming,	2016;	Miwa	
et	al.,	2016),	and	excess	ROS	generated	in	mitochondrial	respiratory	
chain	complex	I	(Kennedy	&	Lamming,	2016;	Miwa	et	al.,	2016)	can	
cause neuronal death. However, moderate increases in mitochon‐
drial	ROS	induce	pro‐longevity	pathways	(Heidler,	Hartwig,	Daniel,	&	
Wenzel,	2010;	Schaar	et	al.,	2015;	Yang	&	Hekimi,	2010).

Chronic inhibition of ECSIT, perhaps due to excess "inflammation", 
may ultimately compromise Complex I function (Geng et al., 2015; 
Soler‐López	et	al.,	2012;	Wi	et	al.,	2014).	Earlier	non‐linear‐based	ap‐
proaches	identified	a	150‐gene	protein‐coding	aging	signature	(Sood	
et	al.,	2015)	including	>30	genes	subsequently	linked	to	aging	or	de‐
mentia	[See	online	supplement	for	citations].	As	expected,	only	a	few	
of these genes are present in our linear “age‐switch”	model	(UNC13C,	
MAPKAP1,	SIN3A,	PRKAR2A,	MAPRE3,	PCDH9,	MSI2,	and	SKAP2).	
UNC13C	and	SKAP2	are	particularly	interesting	as	both	are	regulated	
by exercise training (unlike the majority of Group 1 or 2 age genes, 
Figure	S8	and	Appendix	S8);	however,	ECSIT–UNC13C–SKAP2	rep‐
resent a core of Group 1 age genes that do not respond to Rapamycin 
treatment in vitro,	 while	 protein–protein	 interaction	 analysis	 (Xia,	
Benner,	&	Hancock,	2014)	indicates	they	can	be	associated	with	“neu‐
ron	apoptotic	processes”	(Figure	S9,	FDR	=	2.4%,	Appendix	S9).

Our	 RNA	data‐processing	 approach	 produces	 a	more	 compre‐
hensive	map	of	the	lncRNA	transcriptome	than	short‐read	RNA‐seq	

approaches	(FigureS	1,	S4	and	S5).	Numerous	lncRNAs	were	quantita‐
tively	co‐regulated	with	mTOR‐related	genes,	included	pseudogenes	
of	 the	 protein	 translation	machinery	 (Figure	 4a)	 which	 act	 as	 de‐
coys	 for	 miRNAs	 and	 RNA	 binding	 proteins	 (Zheng	 et	 al.,	 2018).	
Five	 lncRNA	 neighbors	 of	 LAMTOR5	 were	 down‐regulated	 with	
age and	 rapamycin	 treatment	 (EIF2S2P4,	 SNORD51,	 FO681548.1,	
AC046176.1,	 and	BX842559.2,	 Figure	4a	 and	Appendix	 S7),	while	
AC068338.2	 and	 the	U3	 snoRNA	 (from	 chromosome	1)	were	 up‐
regulated	by	rapamycin.	U3	 is	upregulated	with	age	until	 the	sixth	
decade of life and is a regulator of 18 s rRNA folding during ribo‐
some	 biogenesis	 (Dutca,	 Gallagher,	 &	 Baserga,	 2011).	 In	 contrast,	
LINC00319	is	down‐regulated	with	age	and	promotes	tumor	growth	
via	transcriptional	silencing	(Zhang	et	al.,	2018).	Given	the	emerging	
evidence that lncRNAs help direct mTOR specificity in vitro (Chen 
et	al.,	2018;	Li	et	al.,	2016),	this	suggests	that	our	age‐regulated	ln‐
cRNAs	can	fine‐tune	the	regulation	of	longevity‐related	proteins.

In conclusion, we identify a molecular signature active up to 
the sixth decade of human life that largely dissipates thereafter. 
Representing	 inhibition	 of	 mTOR	 (and	 other	 strategies),	 excessive	
loss of activity might be predicted to impair metabolic homeostasis 
through,	among	other	things,	depletion	of	skeletal	mass	in	gravity‐
sensitive humans. Whether this juxtaposition underpins the mid‐
life	 switch‐off	 that	 we	 have	 observed	 remains	 to	 be	 determined.	
Regulating this age signature perhaps through a combination of al‐
ready	existing	drugs	may	provide	an	achievable	and	cost‐effective	
means of promoting healthy aging and delaying dementia. On the 
other hand, the natural termination of the signature, by midlife, may 
indicate that it has outlived its usefulness.

4  | E XPERIMENTAL PROCEDURES

Extended data analysis methods are provided online and utilized nu‐
merous informatics resources (Bengtsson, Simpson, Bullard, & Hansen, 
2008;	Dai	et	al.,	2005;	Gentleman	et	al.,	2004;	Wang	et	al.,	2012).	All	
clinical studies complied with the 2008 Declaration of Helsinki, and 
RNA profiling was approved by the relevant ethics committees stated 
in each clinical article; all participants provided written informed con‐
sent	(AbouAssi	et	al.,	2015;	Phillips	et	al.,	2017,	2013;	Slentz	et	al.,	2016;	
Timmons	et	al.,	2018).	An	overview	of	the	analytic	steps	can	be	found	
in	Figure	1,	and	the	clinical	characteristics	can	be	found	in	Table	S1.	
The	HTA	2.0	array	data	have	been	deposited	at	GEO	(GSE104235	and	
GSE130789)	including	(n	=	32,	plus	8	nontreated	controls,	GSE130789)	 
the primary skeletal muscle cell rapamycin study. Our existing 
array data are available at GEO (GSE47969, GSE47881, GSE48278, 
GSE18732,	GSE73142).	We	utilized	 two	human	brain	public	domain	
datasets	on	exon	arrays	 from	GEO	 (GSE25219	and	GSE46706):	one	
neuronal	cell	 line	data	on	HTA	2.0	 (GSE21450)	and	one	human	skin	
dataset	(E‐GEOD‐18876),	also	on	exon	arrays.	Our	muscle	cell	studies	 
were carried out as previously reported (Crossland, Timmons, & Atherton,  
2017).	We	conducted	the	CMap	analysis	using	a	database	of	~8,000	
chemical	perturbagens	(CMap‐L1000v1)	to	identify	chemical	compound	 
mediators	that	mimic	or	oppose	the	linear	age	protein‐coding	signature	
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(https	://clue.io/;	Corsello	et	al.,	2017).	Our	recently	published	human	
insulin	resistance	RNA	signature	(Timmons	et	al.,	2018)	was	used	as	a	
comparator	to	control	for	tissue‐related	gene	expression	bias	(Timmons	
et	al.,	2015).	We	used	the	R‐package	MEGENA	(Song	&	Zhang,	2015)	
to	 identify	network	structures	 (FDR	<	1%	for	Spearman	correlation;	
p	<	0.01	 for	module	significance,	and	p	<	0.01	 for	network	connec‐
tivity	and	10,000	permutations	for	calculating	FDR	and	connectivity	
p‐values),	and	network	data	plots	were	produced	using	Fruchterman–
Reingold	force‐directed	plotting.
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