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ABSTRACT

The mechanism underlying T cell-mediated fulminant
hepatitis is not fully understood. In this study, we
investigated whether myeloid derived suppressor cells
(MDSCs) could prevent the concanavalin A (ConA)-
induced hepatitis through suppressing T cell prolifera-
tion. We observed an increase in the frequencies of
MDSCs in mouse spleen and liver at early stage of
ConA treatment, implicating that the MDSCs might be
involved in the initial resistance of mice against ConA-
mediated inflammation. Subpopulation analysis showed
that the MDSCs in liver of ConA-induced mice were
mainly granulocytic MDSCs. Adoptive transfer of the
bone marrow-derived MDSCs into ConA-treated mice
showed that the MDSCs migrated into the liver and
spleen where they suppressed T cell proliferation
through ROS pathway. In addition, the frequencies of
MDSCs in mice were also significantly increased by the
treatment with immune suppressor glucocorticoids.
Transfer of MDSCs into the regulatory T cell (Treg)-
depleted mice showed that the protective effect of
MDSCs on ConA-induced hepatitis is Treg-independent.
In conclusion, our results demonstrate that MDSCs
possess a direct protective role in T cell-mediated
hepatitis, and increasing the frequency of MDSCs by
either adoptive transfer or glucocorticoid treatment
represents a potential cell-based therapeutic strategy
for the acute inflammatory disease.

KEYWORDS myeloid derived suppressor cells, T cell-
mediated hepatitis, ROS, glucocorticoids, concanavalin A
(ConA), adoptive transfer, glucocorticoid treatment

INTRODUCTION

T cell-mediated immune response plays a central role in
inducing hepatocellular injury during hepatitis. Activated T
cells are detected in a variety of human liver diseases
including autoimmune hepatitis, chronic active hepatitis B or
C, alcoholic liver diseases, hepatitis ischemia/reperfusion
injury, and allograft rejection (Hong et al., 2002; Lafdil et al.,
2009). Tcell-mediated hepatitis can be induced in rodents by
injection of concanavalin A (ConA): a lectin, originally
extracted from Canavalia brasiliensis plant, which rapidly
induces clinical and histological hepatitis, including up reg-
ulation of transaminase activity and CD4+CD69+ T cells and
down regulation of NK1.1+ and CD3+ NKT cells within 24 h
(Hines et al., 2007). In the past two decades, major progress
has been made in understanding of the molecular and cel-
lular mechanisms underlying T cell-mediated liver injury
through use of this model. Evidence suggests that ConA-
induced T cell-mediated hepatitis is initiated and tightly
controlled by interactions between multiple cell types and
cytokines. Immune cells involved in ConA-induced hepatitis
include CD4+ T cells, natural killer T cells, Tregs, Kupffer
cells (Erhardt et al., 2007), neutrophils, and eosinophils
(Lafdil et al., 2009). The inflammatory cytokines, IFN-γ, IL-4
(Jaruga et al., 2003), and TNF-α (Wolf et al., 2001) have
been shown to play an essential role in T cell-mediated
hepatitis. Additionally, IL-2, IL-6, IL-10, and IL-22 are also
involved in ConA-induced liver injury (Radaeva et al., 2004;
Erhardt et al., 2007; Takahashi et al., 2011).

Myeloid-derived suppressor cells (MDSCs) represent a
heterogeneous population of immature myeloid cells
including myeloid progenitors, macrophage precursors,
granulocytes, and dendritic cells, which share a common
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capacity of suppressing immune responses (Gabrilovich,
2004). Murine MDSCs are characterized by the surface co-
expression of Gr-1 and CD11b, and are further subdivided
into two major groups: CD11b+ Ly6G+ Ly6Clow granulocytic
MDSCs and CD11b+ Ly6G- Ly6Chigh monocytic MDSCs.
Granulocytic MDSCs and monocytic MDSCs differ in their
abilities to suppress T cell responses (Gabrilovich, 2004).
Monocytic MDSCs suppress T cell proliferation by high lev-
els of inducible nitric oxide synthase (iNOS) and Arginase 1
(ARG1), while granulocytic MDSCs mainly through high
levels of reactive oxygen species (ROS) and Arginase 1
(ARG1) (Gabrilovich, 2004; Bronte and Zanovello, 2005;
Gabrilovich and Nagaraj, 2009; Gabrilovich et al., 2012).
MDSCs exploit various mechanisms to influence both innate
and adaptive immune responses (Gabrilovich et al., 2012).
In short, MDSCs can deprive T cells of L-cysteine and
L-arginine which are essential for their growth and differen-
tiation, generate oxidative stress that cause the loss of the
TCR ζ-chain, decrease CD62L expression to interfere with
T cell migration and viability, and induce the activation and
expansion of regulatory T (Treg) cell populations. Under
pathological conditions such as tumor growth and graft-ver-
sus-host disease, the documented accumulation of MDSCs
in patients and mice suggested a critical contribution of
MDSCs to these immunosuppressive conditions (Almand
et al., 2001). The expansion of MDSC and its protective role
in suppressing body inflammation and autoimmunity has
also been observed in various pathophysiological conditions.
Recent findings suggest that the accumulation of MDSCs
may be related to inflammatory bowel disease (Zhang et al.,
2013), type 1 diabetes (Yin et al., 2010; Xia et al., 2011),
systemic lupus erythematosus, inflammatory eye disease,
multiple sclerosis (Cripps and Gorham, 2011), and hepatitis
B and C virus infection (Chen et al., 2011; Hegde et al., 2011;
Tacke et al., 2012; Cai et al., 2013). Furthermore, Hegde
et al. (Hegde et al., 2011) recently observed an upregulation
of MDSCs subsequent to cannabidiol treatment of autoim-
mune liver injury. However, the direct anti-inflammatory role
of MDSCs in autoimmune hepatitis remains unclear.

In the present study, we characterized the role of MDSCs
in ConA-induced mouse hepatitis by detecting serum cyto-
kines and activation markers of lymphocytes. The tissue
localization of adoptive transferred MDSCs in mice under
inflammatory or non-inflammatory conditions were deter-
mined. The protective effects of MDSCs on experimental
hepatitis were further analyzed through increasing the fre-
quency of MDSCs in mice through the adoptive transfer of
MDSCs into mice or the glucocorticoid treatment.

RESULTS

ConA-induced hepatitis mice model

In this experiment, 8–10 weeks C57BL/6 mice were injected
either with 0.9% NaCl or 20 mg/kg ConA intravenously.

Following ConA administration, mice were sacrificed at dif-
ferent time points. Multiple evidences collectively indicated
that the ConA-induced hepatitis mice model was success-
fully developed. H&E staining indicated recipients of ConA
had increasing liver necrosis compared to the control
(Fig. 1A). Examination of serum ALT and AST activities
(Fig. 1B) revealed that the ConA treatment caused a severe
liver injury. The peak of ALTand ASTactivities was observed
at the time point of 6 h. The enhanced hepatitis injury over
time was also reflected by the up regulation of serum TNF-α,
IL-6, IL-12p70, and IFN-γ (Fig. 1C), with the peak concen-
tration at the time point of 6 h, followed by a rapid decrease
within 48 h. In addition, splenic and hepatic T lymphocytes
were rapidly activated as demonstrated by the expression of
CD69+ on CD4+ lymphocytes with a time dependent manner
(Fig. 1D). Together, the data demonstrate that the persis-
tence of liver injury, T cell activation, and the peak of ALT,
AST, cytokines levels was 6 h after ConA injection, which
was the time point chosen for the next experiment.

CD11b+Gr-1+ cells are expanded during acute T cell-
mediated hepatitis

MDSCs play an important role during benign inflammation
in vivo, shaping immune responses to viral antigens, influ-
encing antibody production, and down regulating T cell
responses to auto-antigens (Haverkamp et al., 2011). To
examine the potential role of MDSC in T cell-mediated hep-
atitis, the levels of CD11b+ cells, CD11b+Gr-1− cells,
CD11b+Gr-1+ MDSCs (Fig. 2A) were analyzed in the spleen
and liver over time. As shown in Fig. 2A, ConA injection
rapidly induced accumulation of CD11b+ cells in the liver,
and the majority of these cells are CD11b+Gr-1+ MDSCs. To
characterize the suppressive capacity of CD11b+Gr-1+

MDSCs from inflammatory liver, we purified MDSCs from the
inflammatory liver and co-cultured them with CFSE-labeled
T cells at different ratios. As shown in Fig. 2B, MDSCs
purified from ConA-treated mouse liver strongly suppressed
T cell proliferation. Subpopulation analysis showed that the
accumulated CD11b+Gr-1+ MDSCs are mainly from the
granulocytic subsets (Fig. 2C). Further, we sorted MDSC
from the liver of mice treated with ConA, and found that
Arginase-1 was enriched in the isolated cells (Fig. 2D). To
determine whether MDSCs inhibit T cell proliferation through
ROS, we used DPI as ROS inhibitor and found that DPI
could significantly inhibit the function of MDSCs isolated
from the ConA-treated mouse liver (Fig. 2E). These data
suggest that MDSCs may regulate T cell function during
ConA-induced mouse hepatitis through ROS pathway.

BM-MDSCs migrate to lymphocytes-accumulated
organs and exert a protective effect on ConA-induced
hepatitis

To directly view the effect of transferred BM-MDSCs on
attenuation of ConA-induced hepatitis in mouse model, we
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isolated BM from GFP transgenic mice, induced BM-MDSCs
with GM-CSF and IL-6, and traced their localization in mice
with ConA-induced hepatitis. Mice without ConA treatment
were used as control. As shown in Fig. 3A and 3B, at only
3 h after ConA injection, GFP+ BM-MDSCs were readily
detected in BM, spleen, and liver tissues, but not visible in
BM, spleen, and liver of control mice, suggesting the homing
of exogenous MDSCs is modulated by inflammatory condi-
tion. Furthermore, as shown in Fig. 3C, the transferred BM-
MDSCs significantly increased the frequency of CD11b+Gr-1+

MDSCs in mouse liver. Adoptive transfer of BM-MDSCs also
markedly decreased the population of CD4+CD69+ T cells.
These results suggest that the transferred BM-MDSCs could
migrate to certain organs where lymphocytes accumulated
under inflammatory condition.

To better understand the effect of MDSCs on the sup-
pression of T cell-mediated hepatitis development, we com-
pared ConA-induced hepatitis with or without exogenous
transfer of BM-MDSCs in different number. Examination of
liver pathology showed massive necrosis in mice without
BM-MDSCs transfer, but not in mice transferred with BM-
MDSCs (Fig. 3D). The levels of AST and ALT were dramat-
ically decreased in serum of mice transferred with BM-
MDSCs (Fig. 3E). Since TNF-α, IL-6, IL-12p70, and IFN-γ
have been shown to play an important role in Tcell-mediated
hepatitis (Lafdil et al., 2009), we compared the serum TNF-α,
IL-6, IL-12p70, and IFN-γ levels in mice with or without BM-

MDSCs transfer. As expected, the ConA-induced elevation
of TNF-α, IL-6, IL-12p70, and IFN-γ levels significantly
attenuated in BM-MDSCs-transferred mice compared to
those of non BM-MDSCs-transferred mice (Fig. 3F). From
the concentration gradient we could also find that the effect
of BM-MDSCs on protection of ConA-induced injury was
dose-dependent. When the number of MDSC was less than
5 × 105, the protection effect was disappeared in ConA-
induced mice. Besides, there was also no significant differ-
ence of liver damage, level of ALT/AST and cytokine
between only MDSC and vehicle control, suggesting that
MDSCs themselves do not damage liver cells.

Glucocorticoids protect mice from ConA-induced
hepatitis through expanding MDSC

Glucocorticoids (GC) provide the most effective anti-inflam-
matory treatments for many inflammatory and immune dis-
eases, including asthma, rheumatoid arthritis, inflammatory
bowel disease, and autoimmune diseases (Barnes and
Adcock, 2009). Systemically active conventional corticoste-
roids have played a significant role in the induction of
remission in autoimmune liver diseases, liver transplanta-
tion, and virus induced hepatitis (Ducci and Katz, 1952;
Czaja et al., 1984; Fujiwara et al., 2010). Recent study by
Varga et al. (Varga et al., 2008) suggested that the GC
treatment might induce an activated, anti-inflammatory
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Figure 1. ConA induced mouse acute hepatitis. (A) Photomicrographs of representative mouse liver from mice treated with ConA

(20 mg/kg) for 0, 3, 6, 12, 24, and 48 h (H&E staining, original magnification 200× and 400×). (B) Serum ALTand AST levels at various

time point post-ConA injection. (C) Circulating TNF-α, IL-6, IFN-γ, and IL-12p70 levels at various time point post-ConA injection.

(D) ConA-mediated activation of mouse CD4+ T cells. At various time point post-ConA injection, hepatic MNC were isolated and

CD4+CD69+ Tcells were analyzed. Representative scatter plots are presented (left) and the histogram (right) represents the statistical

analysis of the percentages of CD69-positive CD4+ T cells. All the values are shown as mean ± SEM. *P < 0.05, **P < 0.01, and

***P < 0.005 (n = 5–8).
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monocyte subset in mice that resembles myeloid-derived
suppressor cells. In the present study, we treated mice with
synthetic GC such as dexamethasone (DEX) after the pro-
cess of ConA-induced experimental hepatitis. The results
showed that DEX treatment strongly increased the fre-

quency of CD11b+Gr-1+ MDSCs in mice spleen and liver
(Fig. 4A). Accordingly, the populations of CD4+ CD69+ Tcells
in mouse spleen and liver were strongly down regulated by
DEX treatment (Fig. 4C). MDSCs isolated from liver of mice
treated with DEX also have the ability to inhibit T cell prolif-
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Figure 2. Mouse MDSCs were expanded and activated following ConA treatment. (A) Analysis of CD11b+ cells, CD11b+ Gr-1-

cells, and CD11b+ Gr-1+ MDSCs in ConA-treated mouse liver and spleen. Representative scatter plots (left) are presented and the

histogram (right) represents the statistical analysis of the percentages of CD11b+ cells, CD11b+ Gr-1- cells, and CD11b+ Gr-1+

MDSCs. (B) Inhibition of mouse liver MDSCs on T cell proliferation. MDSCs were isolated from ConA-treated mice and the inhibition

assay was performed at various MDSC vs. T cell ratio. The histogram (lower panel) represented the statistical analysis of CD4+ Tcell

proliferation. (C) Analysis of CD11b+Ly6G-Ly6Chigh monocytic MDSCs and CD11b+Ly6G+Ly6Clow granulocytic MDSCs from the

ConA-treated mouse liver. Normal mice were used as control (CTL). (D) Protein level of Arginase-1 were detected in MDSCs of

ConA-induced mice liver. (E) Inhibition of T cell proliferation by MDSCs isolated from the liver of ConA-treated mice at the ratio of 1:2

(MDSC vs. T cell) with or without DPI. All the values are shown as mean ± SEM. *P < 0.05, **P < 0.01, and ***P < 0.005 (n = 5–8).
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eration in vitro (Fig. 4D). Importantly, there is no significantly
difference of macrophages between the group of vehicle,
ConA, ConA and DEX (Fig. 4B), suggesting that CD11b+Gr-1+

MDSCs are the main functional cells induced by DEX.
Next, we compared the ConA-induced mouse hepatitis

with or without DEX treatment. As shown in Fig. 4E–G, DEX
treatment strongly attenuated the ConA-induced hepatitis in
mice, accompanied with fewer necrotic liver cells (Fig. 4E),
lower activities of ALT and AST (Fig. 4F). Compared to mice
treated with ConA alone, mice treated with ConA and DEX
also displayed a significant lower level of serum TNF-α, IL-6,
IL-12p70, and IFN-γ (Fig. 4G). These results implicate that

the protection of DEX against ConA-induced hepatitis may
be dependent on the induction of MDSCs.

MDSCs protect ConA-induced mice hepatitis
independent of Tregs

Tregs have been reported as one of the cells targeted by
MDSCs (Pan et al., 2008). To investigate the relationship
between MDSCs and Tregs in our model, we transiently
depleted Tregs by injecting rat anti-mouse CD25 antibody
(Yu et al., 2010). As shown in Fig. 5A, Tregs in mouse spleen
were effectively depleted by CD25 antibody. Constructing
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ConA-induced hepatitis model on Treg-depleted mice, we
found that depletion of Tregs upregulated CD4+CD69+ T
cells in the liver and spleen (Fig. 5B). Furthermore, after
transferring the BM-MDSCs into Treg-depleted mice which
were also treated with ConA, we found that exogenous BM-
MDSCs significantly down regulated the CD4+CD69+ T cells
in the liver and spleen. Examination of mouse liver tissues
showed severer necrosis in Treg-depleted mice than mice
without depletion of Tregs. As shown in Fig. 5C, transfer of
BM-MDSCs could alleviate liver injury significantly. As
expected, the levels of ASTand ALT (Fig. 5D) or TNF-α, IL-6,
IL-12p70, and IFN-γ (Fig. 5E) were dramatically decreased
in the serum of mice with BM-MDSCs transfer compared to
those of mice without BM-MDSCs transfer. These results

implicate that MDSC can protect mouse liver from ConA-
mediated injury in a Treg-independent manner.

DISCUSSION

Tcell activation in HCV, HBV, drug intoxication, and alcoholic
liver diseases mediated hepatitis has been shown to play a
central role in hepatocellular injury. For example, in chronic
HBVand HCV infection, although the viruses themselves are
not cytopathogenic, activated CD8+ T cells kill viral infected
hepatocytes, while activation of CD4+ T cells produces
inflammatory cytokines and intern controls CD8+ T cell
cytotoxicity contributing to the progression of liver disease
(Rehermann, 2000; Rosen et al., 2002; Chang, 2003). It has
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been well documented that the T cell-mediated hepatitis is
controlled by the interactions between cytokines and multiple
cells (Tiegs, 2007). Previous studies have shown that
MDSCs may be involved in down regulation of immune
responses through inhibiting Tcell not only in tumor situation,
but also in a variety of allogeneic transplant models,

autoimmune diseases, and other inflammatory diseases
(Garcia et al., 2010; Yin et al., 2010). Chou and co-workers
(Chou et al., 2011) discovered that hepatic stellate cells can
promote the generation of MDSCs with significant immune
inhibitory activity in vitro and in vivo, suggesting a great
clinical application potential of MDSC.
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The immune suppressor activity of MDSC has been
associated with high Arginase-1 and iNOS activity (Greten
et al., 2011). Both Arginase-1 and iNOS are highly expres-
sed in MDSCs of tumor bearing mice. iNOS generates nitric
oxide (NO) to suppress Tcell function via utilizing L-arginine,
while Arginase-1 leads to CD3 ζ-chain downregulation and
cell cylce arrest through upregulating the expression of
cyclin D3 and cdk4 (Rodriguez et al., 2007; Gabrilovich and
Nagaraj, 2009). It is reported that novel mechanism of T cell
tolerance is associated with reactive oxygen species (ROS)
and peroxynitrite (Nagaraj et al., 2007). Tacke and co-
workers (Tacke et al., 2012) reported that hepatitis C virus
could induce myeloid suppressor cells to suppress T-Cell
responses through the production of ROS. Cai et al. (Cai
et al., 2013) revealed that a significant correlation between
MDSC levels and HCV disease progression, and MDSCs
could suppress T cell function in an Arginase-1-dependent
manner. Ilkovitch et al. (Ilkovitch and Lopez, 2009) first
confirmed that splenic MDSCs isolated from tumor bearing
mice can migrate to and accumulate in the liver, suggesting
that tumor induced MDSCs may play an immunosuppressive
role in the liver. In the present study, using an established
model of ConA-induced hepatitis, we demonstrate that the
MDSCs are involved in T cell-mediated liver injury and that
MDSC-mediated suppression of early CD4+CD69+ T cells
proliferation can protect mice from ConA-induced hepatitis
through ROS pathway.

Glucocorticoids have been the most common immuno-
suppressants used in the treatment of T cell-mediated liver
disease (Suda et al., 2003). The role of these agents in liver
diseases and liver transplantation has been well docu-
mented. Previous studies have reported that the use of
glucocorticoids in the early period of severe hepatitis may
prevent the necrosis of liver cells and provide a possibility of
liver regeneration (Czaja et al., 1984). Recently, the use of
glucocorticoids to treat HBV-related liver failure has become
much safer because of the new generation of nucleoside
analogs, proton pump inhibitors, and effective infection
control measures. Although glucocorticoids have long been
used to treat the patients with liver dysfunction, the mecha-
nism underlying the profound effect of glucocorticoids on
inflammation remains incompletely understood. Previous
studies suggested that the glucocorticoids served in multiple
capacities by decreasing inflammation and suppressing
immune function by interfering with the function of T lym-
phocytes, reducing the recruitment of monocytes and mac-
rophages, inhibiting the function of immune competent cells,
and inhibiting the release of inflammatory cytokines (Elenkov
and Chrousos, 1999; Franchimont et al., 2000; Schleimer
et al., 2009). By studying the subpopulation of steroid-
resistant CD4+ T cells, Lee et al. (Lee et al., 2007) showed
that the steroid resistance of T cells was associated with
CD25 expression and CD4+CD25int cells, which were highly
resistance to DEX treatment. In the present study, we

demonstrated that the DEX could directly promote the gen-
eration of MDSCs from bone marrow cells. Increasing the
frequency of MDSCs by glucocorticoids might serve as a
novel mechanism underlying the suppressive effect of glu-
cocorticoids on various chronic inflammatory and autoim-
mune diseases.

In summary, our study demonstrates for the first time that
MDSCs, derived from adoptively transfer or directly induction
by glucocorticoids treatment, can effectively protect mice
from ConA-induced hepatitis through downregulating early T
cell proliferation and inflammatory responses. Our finding
also provides a novel MDSC-based therapeutic strategy in
controlling T cell-mediated hepatitis.

MATERIALS AND METHODS

Reagents

Concanavalin A (ConA), dexamethasone, and DPI were purchased

from Sigma-Aldrich (St. Louis, MO). Murine IL-6 and GM-CSF

cytokines were from PEPROTECH (Rocky Hill, NJ). PerCP/Cy5.5-

conjugated anti-mouse (Gr-1), APC-conjugated anti-mouse CD3,

and PE-conjugated anti-mouse CD11b were purchased from Bio-

legend (San Diego, CA). FITC-conjugated rat anti-mouse CD4,

APC-conjugated anti-mouse CD69, and mouse regulatory T cell

Staining Kit were purchased from eBioscience (San Diego, CA).

Purified NA/LE rat anti-mouse CD25 was purchased from BD

Pharmingen. Collagenase Type II and DNase I were purchased from

Gibco by life technologies (Carlsbad, CA). Rabbit polyclonal anti-

body to Arginase-1 was purchased from Cell Signaling Technology

(Danvers, MA) and mouse monoclonal antibody to alpha tubulin was

purchased from Abcam (Cambridge, MA).

Animals

Eight-week-old male C57BL/6 mice were obtained from the Nanjing

University Animal Center (Nanjing, China). Green fluorescent protein

(GFP) transgenic mice were purchased from the Jackson Laboratory

(Bar Harbor, ME). All Animal maintenance and experimental pro-

cedures were carried out in accordance with the US National Insti-

tute of Health Guidelines for Use of Experimental Animals and

approved by the Animal Care Committee of the Nanjing University.

Adoptive transfer of BM-MDSC and dexamethasone treatment

The BM-derived MDSCs were obtained as described previously

(Bronte and Zanovello, 2005). Briefly, the cells were planted into the

dishes using RPMI 1640 medium supplemented with 2 mmol/L

L-glutamine, 10 mmol/L HEPES, 20 µmol/L 2-mercaptoethanol,

150 U/mL streptomycin, 200 U/mL penicillin, 10% FBS and stimu-

lated with combinations of GM-CSF (40 ng/mL) and IL-6 (40 ng/mL).

Cells were cultured at 37°C in 5% CO2-humidified atmosphere for

4 days. 5 × 106 BM-MDSCs were injected intravenously accompa-

nied ConA injection. In separate experiment, dexamethasone (1 mg

per kg bodyweight) was injected intraperitoneally accompanied

ConA injection.
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Depletion of Tregs

To deplete Tregs, mice were injected intraperitoneally 0.5 mg puri-

fied rat anti-mouse CD25 or isotype control, according to the method

of Yu et al. (Yu et al., 2010).

Isolation of liver MNC and spleen cell preparation

Liver mononuclear cells (MNC) were isolated and purified by the

method of Richman et al. (Richman et al., 1979), combined with

Percoll density separation (Li et al., 2009). Briefly, livers were

mechanically disrupted into 1 mm3 pieces and digested for 45 min at

37°C with 0.05% collagenase Type II and 0.001% DNase I in RPMI

1640 medium. After filtered with 70 μm nylon cell strainer (BD Fal-

con) and centrifuged for 5 min at 50× g. Supernatants were centri-

fuged for 5 min at 400× g, pellet was washed with HBSS without Ca2+

and Mg2+. MNC resuspended in 40% Percoll, were gently over-

layed onto 70% Percoll and centrifuged for 20 min at 750× g. Puri-

fied MNC were collected from the interface for further analysis of

hepatic MDSCs and T cells. Spleens were collected in sterile

HBSS without Ca2+ and Mg2+, grinded, and filtered. After erythrocytes

were depleted, purified splenic cells were collected for further flow

analysis.

Flow cytometric analysis

Flow cytometry was conducted using BD FACScalibur device and

analyzed with FCS express V3. After washing with Hank’s buffer

devoid of Ca2+ and Mg2+ (HBSS), 5 × 105 cells from liver and spleen

were blocked using 1% BSA at 4°C for 30 min. CD4, CD69, CD11b,

and Gr-1 antibodies were added for incubation in another 30 min at

4°C. Tregs were analyzed by using mouse regulatory T cell Staining

Kit (eBioscience).

T cell proliferation

In order to obtain high purity MDSCs from liver, cell isolation kit

(Miltenyi Biotec., Bergisch Gladbach, Germany) was used

according to manufacturer’s instructions. For T cell proliferation

assay, the splenocytes were firstly separated with lymphocyte

separation medium. Lymphocytes were labeled with CFSE

according to manufacturer’s instructions (Invitrogen). CFSE-

labeled lymphocytes were stimulated with ConA, and lymphocytes

were co-cultured at 2:1, 4:1, 10:1, or 100:1 ratio with induced liver

MDSCs in 96-well flat bottom plates. For MDSC inhibition assay,

an inhibitor of NADPH oxidase, diphenyliodonium chloride

(DPI, Sigma-Aldrich) was used as previously reported (Cheng

et al., 2013). In brief, 10 μmol/L DPI was used in co-cultured

MDSC and lymphocytes. After 4 days, cells were stained with

CD3 antibody, and CFSE signal of gated lymphocytes was ana-

lyzed. The extent of cell proliferation was quantified by the FCS

expressing V3.

Western blot analysis

MDSCs derived from mice livers were lysed in lysis buffer containing

100 mmol/L Tris (pH 7.5), 150 mmol/L NaCl, 1% Triton X-100, pro-

tease inhibitor cocktail of PI and PMSF. The antigens were

visualized using the ECL plus detection system (Amersham Phar-

macia Biotech). Normalization was performed by blotting the same

samples with the anti-alpha tubulin antibody.

Assay for serum aminotransferase activity

Mice were sacrificed after ConA injection for different time and blood

samples were collected in 1.5 mL tubes. After centrifugation at 2,500

rpm for 15 min, serum was recovered and immediately frozen at

-70°C. Serum alanine aminotransferase (ALT and AST) activities

were determined by using the serum aminotransferase test kit

(Nanjing Jiancheng Bioengineering Institute, China) according to the

manufacturer’s instructions.

Measurement of serum cytokine levels

Whole blood was collected without anticoagulant and the serum was

isolated by centrifugation. Serum levels of TNF-α, IFN-γ, IL-6, and

IL-12p70 were determined using ELISA kits (R&D) according to the

manufacturer’s instruction. The absorbance was measured with a

wavelength correction (A450 nm) with a microplate reader (Bio-

Rad).

Histopathology

Livers from individual mice were cut into 2 × 4 × 4 mm3 sections,

fixed in 4% paraformldehyde and embedded in paraffin. 5 μm slices

were then cut at various depths in the tissue sections, stained with

hematoxylin-eosin (H&E) and examined under light microscopy to

determine the level of inflammation.

Tracing of BM-derived MDSCs in mice induced with ConA

Fluorescent BM-MDSCs were obtained from GFP transgenic mice

following GM-CSF and IL-6 induction and injected intravenously

(5 × 106/per mouse) 1 h before ConA injection. For tracing the

location of fluorescently labeled BM-MDSCs, mice were sacrificed

3 h after injection. The fluorescence of blood was analyzed by

fluorescence microscope directly. The spleens and livers were

removed for frozen section. Then, fluorescent BM-MDSCs were

analyzed by fluorescence microscope.

Statistical analysis

Data shown are presented as mean ± SEM of at least three inde-

pendent experiments; differences are considered statistically sig-

nificant at P < 0.05 by Student’s t-test.
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ABBREVIATIONS

ARG1, Arginase 1; ConA, concanavalin A; DPI, diphenyliodonium

chloride; iNOS, inducible nitric oxide synthase; MDSCs, myeloid

derived suppressor cells; MNC, liver mononuclear cells; ROS,

reactive oxygen species; Treg, regulatory T cell.
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