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Abstract: Epoxy resin (EP) is one of the most famous thermoset materials. In general, because EP has
a three-dimensional random network, it possesses thermal properties similar to those of a typical
heat insulator. Recently, there has been substantial interest in controlling the network structure
of EP to create new functionalities. Indeed, the modified EP, represented as liquid crystalline
epoxy (LCE), is considered promising for producing novel functionalities, which cannot be obtained
from conventional EPs, by replacing the random network structure with an oriented one. In this
paper, we review the current progress in the field of LCEs and their application to highly thermally
conductive composite materials.

Keywords: thermal conductivity; epoxy; liquid crystal; composite; epoxy mold compound

1. Introduction

Epoxy resin (EP) based thermosetting polymers are used in various industries be-
cause of their excellent adhesion, thermal resistance, chemical resistance, and mechanical
strength owing to formation of a three-dimensional network structure with curing agents
such as acid-free amine phenol [1–4]. Recently, the demand for materials that efficiently
dissipate heat owing to their high thermal conductivities has been increasing, driven by the
development of high-power next-generation electronics that are lighter, smaller, and thin-
ner [5]. Therefore, good thermal conductivity is required for EP to be applicable as a
high-performance heat-dissipating material.

Heat transfer of cured EP is facilitated by the transfer of phonon oscillations in the
crystalline and non-crystalline regions. It is expressed by the Debye equation.

λ =

(
1
3

)
× Cv × u× l (1)

Debye Equation (1) has several variables: l is the mean free pathway of a phonon,
u is the sound velocity, Cv is the volumetric heat capacity that determines the polymer
properties, and λ is the thermal conductivity of the polymer. Although Cv is determined
by the properties of the resin, l is determined by the crystallinity and orientation of the
cured EP [6–10]. To achieve high thermal conductivity, the variable l needs to be increased.
This makes it necessary to minimize static scattering in the crystalline region of phonons
and dynamic scattering related to orientation.

To this end, we can improve the thermal conductivity of polymers by enhancing
the crystallinity of polymeric materials. For example, high thermal conductivity and
crystallinity were obtained through polyethylene chain orientation [10], improved π−π
stacking of conjugated polymers [11], and by means of hydrogen bonds of non-crystalline
polyvinyl alcohol [12].

However, EP lacks crystallinity and molecular orientation due to the formation of
a three-dimensional network structure, which results in thermal insulation [13]. In this
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review, we provide an overview of studies aimed at improving the thermal conductivity of
EP by introducing liquid crystallinity into the molecular structure in order to complement
the many studies that have attempted to ascertain the thermal properties of EP arising
from the three-dimensional network structure. In addition, the molecular design of liquid
crystal epoxy, stable liquid crystal temperature expression, curing of liquid crystal epoxy,
and analysis of thermal properties are also introduced.

Liquid crystalline epoxy (LCE) molecules have self-assembling capabilities, which impart
self-orientation properties and a distinctive orientation in the micro-areas. Therefore, the mean
free pathway of a phonon is increased, thus improving the thermal conductivity [14–23].
Figure 1 shows the basic molecular structure and concept of LCE. The three-dimensional net-
work of the existing EP is a structure that causes a considerable amount of scattering while
restricting easy transfer of phonons, which is essential for heat transfer. However, LCE has
a molecular structure that can reduce phonon scattering and increase crystallinity in micro-
scopic regions due to the domain structure formed by the self-assembly of liquid crystal
molecules. As a result, it is possible to improve the thermal conductivity, and rod-shaped
LCE exhibits a thermal conductivity higher than 0.4 W/mK, which is twice as large as the
thermal conductivity observed for diglycidyl ether of bisphenol A EP [18].

Figure 1. Schematic explanation of correlation between liquid crystal structure and thermal conductivity.

2. Molecular Design of Liquid Crystalline Epoxies

The molecular structure of a typical rod-shaped LCE consists of a mesogenic core rep-
resented by a rigid molecular structure controlling assembly between molecules through
π−π interaction and a flexible sp3 hybridized spacer that prevents crystallization by apply-
ing steric hindrance between the assembled molecules. In addition to the basic molecular
structure of liquid crystal formation, LCE has a molecular structure that introduces two or
more epoxide groups, which are responsible for curing the EP. Figure 2 shows the basic
molecular structure of LCEs. Typical LCE resins are rod-shaped, low-molecular-weight
monomers that are different from conventional EP molecules. Mesogenic groups and
flexible chains exist between epoxy groups [19]. In addition, the twin mesogenic epoxy
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monomer has a structure in which a flexible chain exists between the mesogenic groups [24].
The properties of LCE tend to depend on the flexibility of the mesogenic group and spacer
attached to the epoxy group; therefore, the structure and properties of the mesogenic group
are important factors affecting the thermal conductivity of LCE [25,26].

Figure 2. Typical molecular structure of liquid crystalline epoxy resin.

Figure 3 shows a representative LCE mesogenic group. In addition, it is possible
to form a three-dimensional network structure through the curing reaction of LCE and
amine-based curing agents [26]. The molecular structure of the mesogenic core features
a large aromatic ring structure with high planarity to generate strong π–π interactions.
It provides the fundamental driving force for self-assembly in LCE and simultaneously has
a key role in increasing the length of the mean free pathway of the phonon, which is the
most important factor affecting thermal conductivity. As the size of the aromatic group
increases, the length of the mean free pathway increases; therefore, several studies have
been conducted to increase the number of aromatic rings in the mesogenic core.

Figure 3. Typical molecular structure of mesogenic groups.

Figure 4 shows some representative amine-curing agents used. Not all amine-based
curing agent react with epoxy groups. However, if a reaction occurs, curing can be observed
directly through a polarization microscope, and the mesophase of the liquid crystal can
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also be observed using a polarization microscope. The structure of the epoxy during curing
can be controlled by regulating the temperature at which curing is performed. If the liquid
epoxy is cured in the temperature range for liquid crystallinity, the liquid epoxy is cured in
the oriented state; therefore, it remains oriented at the end of the curing process.

Figure 4. Typical molecular structure of amine-based curing agents.

Some studies have shown that two phenyl benzoates are used as the mesogen group;
an LCE (TMEn, n = 4, 6, 8) was synthesized wherein epoxy groups exist at both ends,
and the aliphatic chains between the mesogen and epoxy groups were used as spacers [7].
The thermal conductivity of the LCE, which was cured using diaminodiphenylmethane
(DDM) as a curing agent, was measured. In addition, 4,4′-biphenol diglycidyl epoxy (BPE)
was cured with DDM to compare its thermal conductivity. Figure 5 shows the structures of
BPE, 3,3′,5,5′-tetramethyl-4,4′4bisphenyl diglycidyl ether (TMEn)(n = 4, 6, 8), and DDM.

Figure 5. Molecular structures of (a) 4,4′-biphenol diglycidyl epoxy (BPE), (b) 3,3′,5,5′-tetramethyl-
4,4′4bisphenyl diglycidyl ether (TMEn) (n = 4, 6, 8), and (c) diaminodiphenylmethane (DDM).

The epoxy monomer was mixed with a curing agent. The mixture was heated for
hours in an oven at 175 ◦C, and the thermal conductivity was calculated using the heat-
diffusion coefficient and heat capacity. The highest thermal conductivity of TME4 is found
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to be 0.96 W/Mk and approximately three times higher than BPE. TME6 and TME8 also
showed higher thermal conductivities compared to BPE. Figure 6 summarizes the thermal
conductivities of TMEn (n = 4, 6, 8) and BPE.

Figure 6. Thermal conductivities of TMEn (n = 4, 6, 8) and BPE.

Comparing the thermal conductivities of the TMEn epoxy composites, the length
of the spacer between the mesogenic groups is found to have a significant effect on the
thermal conductivity. In other words, the closer the distance between the mesogenic
groups, the closer the structure becomes to a crystalline one, which leads to a higher
thermal conductivity. In TME4, the concentration of the phenyl benzoate group forming the
domain was higher than that of the other epoxy, resulting in a higher thermal conductivity.
We also confirmed that using LCE resulted in a significantly higher thermal conductivity
than using a commonly used commercial EP (0.17 to 0.21 W/mK). When we compared
materials mixed with bisphenol A and TME8 with DDM, TME8/DDM was observed to
have a lattice structure, and bisphenol A/DDM was found to have an amorphous structure.

This anisotropy also tends to be better when magnetic or electric fields are applied.
If such fields are applied to the liquid epoxy during the curing time, the molecules are
aligned along the direction of the applied fields. Therefore, orientation of the state is
improved under magnetic or electric fields [18,27,28].

3. Liquid Crystalline Epoxies Bearing Diglycidyl Moieties at the Side Positions

LCE resin induces spontaneous molecular orientation through π–π interactions between
the mesogenic structures, thereby improving the crystallinity of the resin. Molecular orienta-
tion enables efficient heat transfer through phonon vibration; thus, it is a critical factor for
determining the thermal conductivity of both amorphous and crystalline matter. For exam-
ple, the thermal conductivity of the cured LCE with the biphenyl mesogenic group could
be improved by 30% compared to that of a non-crystalline EP, which is ascribed to the LC
orientation [29]. However, typical LCEs bear epoxies as end groups. Consequently, the LC
orientation could be destroyed by curing the LCEs using a typical linear diamine curing
agent. Therefore, new molecular designs are required to produce thermally conductive
LCEs with a maintained LC orientation upon curing them with existing curing agents.
In addition, the exothermic epoxy curing process may generate sufficient heat to perturb
the oriented LC phase. To maintain the LC phase through the exothermic curing process,
stronger intermolecular attractive forces than π–π interactions between LC molecules are
required. To this end, a new series of LCEs possessing epoxies at the molecular side
positions and cyanobiphenyl mesogenic end groups with intermolecular dipole–dipole
and π–π interactions were designed and synthesized [30,31]. Figure 7 shows a schematic
explanation of the correlation of LCE bearing diglycidyl moieties at the side positions with
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thermal conductivity. Even after the curing reaction, the stable π–π interaction of the liquid
crystal group is possible, forming a molecular structure that forms a heat transfer pathway.

Figure 7. Schematic explanation of the correlation of liquid crystalline epoxy (LCE) bearing diglycidyl moieties at the side
positions with thermal conductivity.

Synthesized diglycidyl diphenylcyclohexyl (PCH30n) phthalate (DGP30n) represents
a new liquid crystal epoxy [31], where PCH30n indicates the number of methyl groups at-
tached to 4-(trans-4-n-propylcyclohexyl) phenol (PCH300). Figure 8 shows the structures of
diglycidyl ether of bisphenol A (DGEBA), diglycidyl ether of terephthalyidene (DGETAM),
and DGP30n.

Figure 8. Molecular structure of (a) diglycidyl ether of bisphenol A (DGEBA), (b) diglycidyl ether of
terephthalyidene (DGETAM), and (c) diglycidyl diphenylcyclohexyl (PCH30n) phthalate (DGP30n).
Reproduced from Ref. [31] with permission from The Royal Society of Chemistry.

The phase transition temperatures of DGP304, DGP306, and DGP308 were deter-
mined via DSC measurements. The parameters K, Sx, and I represent the crystalline,
smectic, and isotropic phases, respectively. The enthalpy changes associated with the phase
transition temperature are shown in Figure 9. Fan-shaped textures were observed in all
polarization microscopy (POM) photographs of DGP30n, which show that all DGP30n
structures appear as highly regularized smectic structures during heating and cooling.
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Figure 9. (a) The transition temperature of DGP30n (n = 4, 6, 8) and (b) DGP308′s polarization microscopy (POM) images.
Reproduced from Ref. [31] with permission from The Royal Society of Chemistry.

To obtain a high thermal conductivity from LCE, it is necessary to obtain cured EP that
maintains the orientation of the liquid crystal. While LCE is being cured, it is necessary to
cure it in the liquid crystal section to maintain its orientation [19]. However, existing ther-
mosetting LCEs have the disadvantage that the phase transition temperature range of the
liquid crystal is narrow, making it easier to phase in isotropic form on the liquid crystal
due to the exothermic curing reaction.

In other words, the available temperature range has always been a problem owing to
its narrowness. In this study, each of the synthesized DGP30n epoxies exhibited a stable
smectic phase; however, the liquid crystal phase existed at a temperature less than 10 ◦C,
i.e., a very narrow temperature range. This narrow temperature range is not suitable
for curing EPs because the emitted heat can destroy liquid crystals during curing and
convert them to an isotropic form. Therefore, the liquid crystal temperature range of the
liquid crystal epoxy should be widened to maintain the liquid crystalline phase during
heat curing.

Figure 10 shows that the phase transition temperature can be modulated by using
different DGP30n ratios, and it is shown that the liquid crystal form appeared in a very
wide temperature range in the second system. Therefore, in systems suitable for maintain-
ing the liquid phase during heat curing, the wide temperature range of liquid crystal is
important for finding the optimal curing conditions, selecting the optimal curing agent,
and investigating the curing temperature [32]. Figure 11 shows the thermal conductivity of
DGEBA, crystalline epoxy resin, and System 2 that DGP304 and DGP308 is mixed in 1:1
mol ratio. The liquid-crystalline epoxy developed in this study was found to exhibit higher
thermal conductivity than conventional non-liquid epoxy resin. Table 1 summarizes the
thermal conductivities of each epoxy matrix with p-phenylenediamine (PDA).

Table 1. Thermal conductivities of DGEBA, crystalline epoxy resin, and System 2 cured with
p-phenylenediamine (PDA). Reproduced from Ref. [31] with permission from The Royal Society
of Chemistry.

Epoxy Matrix Curing Agent Thermal Conductivity
(W/mK)

DGEBA PDA 0.20
Crystalline PDA 0.33
System 2 PDA 0.40
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Figure 10. (a) Several systems that are mixed in the same ratio as that of DGP30n. (b) Transition
temperatures of these systems. Reproduced from Ref. [31] with permission from The Royal Society
of Chemistry.

Figure 11. Thermal conductivities of DGEBA, crystalline epoxy resin, and System 2.

4. Thermally Conductive Composites Using Liquid Crystalline Epoxies

Since LCE exhibits a solid state at room temperature, the manufacturing process of a
thermally conductive composite includes a powder mixing process employing a high-heat-
dissipation ceramic powder (see Figure 12). After mixing the powder, the mixture was put
into a mold, and curing was carried out under a specific heat and pressure.



Polymers 2021, 13, 1302 9 of 13

Figure 12. Manufacturing process for thermally conductive composites using liquid crystalline epoxies.

The production of a high-heat-dissipation composite material using an LCE resin
and hexagonal boron nitride (BN) is a good example [21]. The BN used in the complex
is a highly thermally conductive filler with a platelet shape and a thermal conductivity
of 60 W/mK. Filler content amounting to 0–35 vol% was added to compare the thermal
conductivity of the cured material in the isotropic and liquid phases of the DGEBA epoxy
and the DGEBA epoxy mixed with DGETAM (see the molecular structure in Figure 8)
under the same conditions. The thermal conductivity of all the epoxy samples tended
to increase with the addition of BN. The thermal conductivity in the liquid phase of the
DGETAM/liquid mixture was 0.38 W/mK, which increased to 2.5 W/m K at 35 vol%
filler content. Curing of the isotropic phase increased from 0.35 to 1.5 W/m K at 35 vol%.
In addition, DGEBA epoxy also showed an increase in thermal conductivity to 1.8 W/m K
as the BN content increased to 35 vol%. The thermal conductivities of the cured material in
the liquid and isotropic phases show that the thermal conductivity of the cured material
in the liquid phase is greater than that in the anisotropic phase when increasing BN
content. The aggregation of h-BN with an anisotropically oriented liquid crystal structure
in the liquid phase shows a higher increase in thermal conductivity than in the isotropic
phase [21]. Figure 13 and Table 2 summarize the thermal conductivities of Epoxy/m-PDA
and Epoxy/m-PDA/BN filler at 35 vol%.

Figure 13. Thermal conductivities of epoxy/m-PDA and epoxy/m-PDA/BN filler 35 vol%.
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Table 2. Thermal conductivity of epoxy/m-PDA and epoxy/m-PDA/BN filler at 35 vol%.

Epoxy/m-PDA Thermal Conductivity(W/mK)

DGEBA 0.20
DGETAM(LC) 0.38
DGETAM(I) 0.35

DGEBA/BN 35 vol% 1.8
DGETAM(LC)/BN 35 vol% 2.5
DGETAM(I)/BN 35 vol% 1.5

Prior studies have shown that the use of LCE results in higher thermal conductivity
than that obtained when using typical EPs, and when a complex is manufactured by adding
a high-thermal-conductivity filler, the overall thermal conductivity becomes higher than
that of the cured epoxy in the DGEBA system.

5. Orientation Effect on Thermal Conductivity of Liquid Crystalline Epoxies

In Figure 1, the relationship between the alignment of the liquid crystal and the im-
provement in the thermal conductivity is explained. In the curing process of the LCE,
a magnetic field was applied to evaluate the thermal conductivity of the oriented LCE.
Miyouki et al. synthesized an LCE with a thermal conductivity of 0.38 W/mK when
cured with m-PDA [21]. Furthermore, the liquid crystal epoxy diglycidyl ether of tereph-
thalyidene (DGETAM) was mixed with the curing agent, 4,4′-diaminodiphenylethane
(DDE), directed along the magnetic field, and then, the cured epoxy was manufactured [33].
Figure 14 shows the structures of DGETAM and DDE. Since LCE exhibits a nematic phase
at 169–202 ◦C, a magnetic field of 0–10 T was applied after mixing with a curing agent
in this temperature range to cure at 170 ◦C for 15 min. The heat-diffusion coefficient was
measured using the laser flash technique.

Figure 14. Distribution of thermal conductivity with 10 types of cured epoxy compounds.
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When the DGETAM/DDE was cured without applying a magnetic field, the thermal
conductivity was 0.43 W/mK. However, when a 10 T magnetic field was applied in parallel
with the direction of the liquid crystal’s orientation, the thermal conductivity almost
doubled to a value of 0.89 W/mK. However, if the applied magnetic field was vertical
to the orientation of the liquid crystal, a lower thermal conductivity of 0.35 W/mK was
observed, as opposed to when the magnetic field did not exist.

The thermal conductivity when the LCE is directed along the magnetic field and
cured is much higher than the thermal conductivity of the general bisphenol A epoxy
(0.2 W/mK). In fact, the thermal conductivity of a polymer is affected by phonon scattering.
When the polymer is cured, the magnetic field is strongly oriented and has a better aligned
structure, making it easier to transmit phonons in the aligned direction and minimizing
phonon scattering. The relationship between the alignment of epoxy and thermal conduc-
tivity according to the strength of the magnetic fields was also studied, which indicated
that as the alignment of the liquid crystalline epoxy improves, the thermal conductivity
increases accordingly.

However, above a certain magnetic field strength, the alignment of the liquid crystal
epoxy does not increase. The orientation principle of a liquid crystal compound in a magnetic
field is derived from the magnetic susceptibility (χ) of the benzene rings in the mesogen
group in the vertical and horizontal directions of the magnetic field. Therefore, the number
of benzene molecules in the liquid crystal compound and the orientation of benzene
change the strength of the magnetic field required to orient the liquid crystal. In the
case of compounds on a normal nematic liquid crystal, it has been reported that they
can be oriented by magnetic fields greater than 1 T. It can be confirmed that a higher
thermal conductivity is obtained through orientation using magnetic fields for liquid
crystal compounds [18,34].

6. Conclusions

Recently, the thermal conductivity of polymers has become important owing to the
popularity of miniaturization of electronic devices. Therefore, LCE is considered to be a
polymer with high thermal conductivity. Since general EP forms a three-dimensional net-
work structure after curing, resulting in phonon scattering, liquid epoxy can be arranged
using anisotropy and cured to obtain higher thermal conductivity than general epoxy.
In addition, if a strong magnetic field is applied to the liquid crystal in the aligned direction,
it can have a strong network structure oriented in one direction and a high thermal con-
ductivity [21]. It can be seen that LCE complexes have attracted attention and have been
studied for future high-performance heat dissipation materials. Furthermore, research on
the fabrication of highly heat-dissipating compounds using liquid-crystalline epoxy and
highly thermally conductive fillers such as carbon nanotubes (CNTs) [35], alumina [36],
BN [21,37], graphite [38], and graphene [39] is usually conducted.

If various types of LCEs are synthesized under magnetic fields and mixed with
conductors having higher heat conductivity, such as BN and alumina, we expect the
development of polymer composites with higher thermal conductivities in the future.

In the future, the heat dissipation problem is expected to emerge as a core problem
that must be solved in electronic devices that are becoming smaller, thinner, and lighter.
In terms of solving these problems, the liquid crystal epoxy resin introduced in this review
is expected to provide a great solution to the design of polymer composite materials in
terms of weight reduction and effective heat dissipation.
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