
 

 

Since January 2020 Elsevier has created a COVID-19 resource centre with 

free information in English and Mandarin on the novel coronavirus COVID-

19. The COVID-19 resource centre is hosted on Elsevier Connect, the 

company's public news and information website. 

 

Elsevier hereby grants permission to make all its COVID-19-related 

research that is available on the COVID-19 resource centre - including this 

research content - immediately available in PubMed Central and other 

publicly funded repositories, such as the WHO COVID database with rights 

for unrestricted research re-use and analyses in any form or by any means 

with acknowledgement of the original source. These permissions are 

granted for free by Elsevier for as long as the COVID-19 resource centre 

remains active. 

 



l

ions of
s. Fur-
lated by

re often
mains
edicine

est that
e con-
a form

infor-
cated
ays of

are
eneral

3)
Journal of Applied Logic 1 (2003) 197–224

www.elsevier.com/locate/ja

Probability, logic and the cognitive
foundations of rational belief

John Fox

Cancer Research, UK

Abstract

Since Pascal introduced the idea of mathematical probability in the 17th century discuss
uncertainty and “rational” belief have been dogged by philosophical and technical dispute
thermore, the last quarter century has seen an explosion of new questions and ideas, stimu
developments in the computer and cognitive sciences. Competing ideas about probability a
driven by different intuitions about the nature of belief that arise from the needs of different do
(e.g., economics, management theory, engineering, medicine, the life sciences etc). Taking m
as our focus we develop three lines of argument (historical, practical and cognitive) that sugg
traditional views of probability cannot accommodate all the competing demands and divers
straints that arise in complex real-world domains. A model of uncertain reasoning based on
of logical argumentation appears to unify many diverse ideas. The model has precursors in
mal discussions of argumentation due to Toulmin, and the notion of logical probability advo
by Keynes, but recent developments in artificial intelligence and cognitive science suggest w
resolving epistemological and technical issues that they could not address.
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1. Introduction

“. . . uncertainty is an inevitable problem in the real world. . . . Unfortunately, there
clear gaps in our understanding of how to incorporate uncertain reasoning into a g
purpose agent. . . .”

Artificial Intelligence: a modern approach
Stuart Russell and Peter Norvig, 1995 [23] (p. 84
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How we should make decisions in the face of uncertainty and arrive at rational beliefs
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have been at the centre of intellectual and philosophical thought for millennia. The
for a formal solution to these problems has been recognised as a major scientific an
nical challenge for at least 400 years, and in the last 30 years discussions have been
stimulated by problems arising in the cognitive and computer sciences. Perhaps th
influential and admired work on these matters has been carried out by mathematicia
logicians, often informed by problems in some practical domain such as medicine o
nomics (e.g., [14]). This has led to a mathematical theory of probability having great p
and intellectual depth. Yet despite this the field of probability theory has been dogg
philosophical and technical disputes. As Kyburg [18] has observed “Many propone
many [different] views have argued that their interpretation of probability is the corre
the most useful, or the only useful) interpretation”.

Our goal is a scientific account of how autonomous “agents” (natural or artificial)
do and ought to accommodate uncertainty in their reasoning and decision-making
ing on insights from cognitive science as well as mathematics. This research prog
adopts a more eclectic methodology than is usual in theoretical discussions of prob
and logic. Among the methods used have been observation of naturally occurring beh
(e.g. the behaviour of doctors making clinical decisions); computer simulation of sof
agents carrying out complex tasks, and empirical testing of the performance of such
making decisions and plans in real medical settings. The paper concludes that our
uing failure to resolve well known issues about probability, and the new challenges
by the cognitive sciences, point to the need for a fresh approach, and develops a
that has intuitive appeal, theoretical coherence and considerable practical versatility

The paper is organised as follows. In Section 1.1 I put forward three independen
of argument that there are important shortcomings in conventional accounts of how
can accommodate uncertainty in achieving their objectives,viz: philosophical and tech
nical issues come up repeatedly in discussions of uncertainty and do not look like
resolved (the historical argument); standard methods and technologies provide insu
means for solving real-world decision problems (the practical argument), and chal
raised by the need for theories of autonomous functioning in artificial intelligence
psychology (the cognitive or “anthropic” argument). Section 1.2 presents a framewo
resolving these difficulties through an account of reasoning about uncertainty and
that explicates the role of “knowledge-based argument” in reasoning, decision-maki
other cognitive processes. Section 1.3 summarises the main conclusions.

1.1. Three arguments for extending current conceptions of probability

1.1.1. Historical arguments
The standard history of probability begins with an ancient, pre-mathematical p

which is poorly documented but about which historians are reasonably agreed on g
points. In Ian Hacking’s celebrated accountThe Emergence of Probability [12] we are told
that ideas about uncertainty existed by Roman times and became increasingly expl
diverse through the medieval period and the renaissance. But that they seem to ha
at best vague and conceptually rather muddled until the modern concept of prob
appeared in a correspondence between Pascal and Fermat, and the central ideas w
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notion of probability to develop, and whether particular technical and historical cir
stances were necessary for it to appear. He provides a wide-ranging discussion of th
concepts that were competing for this conceptual space, from chance to fate, de
to inductive reasoning, and from intuitive ideas about possibility to modern theori
probability.

Among the critical stimuli to a theory of probability may have been a growing prac
need to quantify what would now be called social trends, in order to address proble
civic policy and private business. The collection of disease and death rates and oth
(by de Witt, Wilkins, Petty, Graunt and others in the mid 1600s) stimulated quanti
ideas about uncertainty, risk and prediction. Once the basic idea of probability had
root many famous figures got involved in its development (including Leibniz, Berno
Laplace, Huygens, Poisson, to name just a few). In the period from the mid 19th c
through the 20th techniques developed rapidly, leading to modern statistics and muc
applied mathematics.

Along with the flowering of formal probability theory, however, philosophical dispu
about the nature of probability have also emerged. Although we have a deep techni
derstanding of mathematical probability it is now generally accepted that it is a su
with many subtleties, and many philosophical questions about its relationship with
about human belief and rationality have been raised and debated. Recent discussio
involved some of the leading intellects of the modern period, including Ramsay, Sa
Russell, Popper and, a name we will hear more of, the economist John Maynard K
Their attention was attracted because arguments about probability were not merely
cally challenging, they often directly impacted on fundamental human concerns of p
and economics, belief, and the nature of mind.

The Hacking space. Hacking’s contribution to these discussions is much more th
scholarly history of the subject in which he compares and contrasts the alternative
tions. This would be valuable in itself, but he also tries to stand back from the deta
the various disputes in order to understand the intellectual space in which the de
being conducted. Although on the surface there seem to be many contradictions b
the competing concepts and philosophies Hacking asserts that there is more historic
tinuity and coherence than is often recognised. Indeed he invites “. . . the reader to imagin
. . . that there is a space of possible theories about probability that has been rather const
from 1660 to the present” (p. 16).

Hacking does not seem to intend the term “space” in the formal sense of a mathem
space, but more as a related collection of ideas that recur in different contexts an
different vocabularies; a metaphorical space within which all the competing theories
understood as variants of some underlying idea. I am not sure whether he would app
an attempt to go further but it seems to me that we need to have something more for
we do not we cannot systematically compare theories of probability, to identify simila
and differences in their properties, to understand when different interpretations are h
and so on.

A possible structure for the “Hacking space” is shown in Fig. 1. My hypothesis is
this space has three main dimensions, based on two classical distinctions which
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Fig. 1. The Hacking space.

repeatedly in the history of discussions about uncertainty and belief, augmented by
dimension which has not been discussed much if at all, but reflects the observatio
the intuitive phenomenology of belief and formal ideas about probability are not stab
constantly changing through time.

In Fig. 1 time runs from left to right, from some ancient and murky past to the pre
day with our modern corpus of scientific and other knowledge and our formal theor
reasoning, decision-making, representation of knowledge and the rest. We take thPort
Royal Logic as the first point at which theprimary dimensions of Hacking’s space ar
identifiable. The first of these dimensions concerns a very old distinction between
that recur in random or apparently unlawful ways, and those that occur reliably, a
which there is some sort of developed theory. The fall of a fair die cannot be pred
while the position of a planet can. Writers speak of circumstances of the first kind
many words, such as “chance”, “fate”, “hazard” and so forth. These terms may in
subtle distinctions but they are generally grouped under the heading “aleatory”, me
“Dependent on chance, luck, or an uncertain outcome”.1 This is to be contrasted with a
understanding of events in the world through some kind of scientific discourse that
upon theories about the world, such as causal or geometrical theories and in wh
usual modes of reasoning are categorical, logical and deductive. Such terms can be
under the heading “epistemic”, meaning “Of, relating to, or involving knowledge”.

The second dimension of the Hacking space concerns the distinction between ob
probability and subjective probability. Hacking spends a considerable amount of2

getting to grips with a set of ideas that were around by the seventeenth century and p
earlier, which were concerned with “possibility” (as distinct from probability). These te
seem to have become a focus of dispute in the 18th century, with some scholars a
that possibility is different from probability (e.g., Leibniz and Laplace), and others arg
that it is identical. Hacking relates this discussion to an earlier scholarly debate aboude re
andde dicto modes of language, where the former refers to statements about aspect

1 http://www.dictionary.com.
2 Particularly in Chapter 14.

http://www.dictionary.com
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what can be said or known (e.g., “it is possible that Daniel is there now”). Hacking s
to come down on the side of those who regard possibility and probability as equiv
Indeed he links thede re mode with the aleatory aspect of probability (chance, and h
possibility, is a property of the world) and thede dicto mode with the epistemic aspe
(i.e., an aspect of ourknowledge of the world) though to my way of thinking the objectiv
subjective distinction remains intact.3

Despite the apparent simplicity of the two primary dimensions of the Hacking s
many believe that this is still too complicated and have argued for an even more pa
nious interpretation of probability since a simpler semantics and avoidance of psyc
ical issues should yield practical tools that are both more general and easier to use
most influential view probability is viewed as a universal measure that can represent
certainty and belief. The “Bayesian” probabilists have been particularly active in this
due to their wish to move away from a strictly frequentistic concept of probability b
on empirical observations.

The simplification is achieved in three moves. First, it is asserted that all uncer
about a proposition can be represented by a single number representing adegree of belief
in that proposition. This is conventionally a point in the[0,1] interval4 whose properties ar
defined by the probability axioms. Second, the aleatory-epistemic dimension is col
by treating all empirical chances as probabilities, and treating epistemic reasoning
reasoning based on deductive logics) as a special case of probabilistic reasoning in
only two degrees of belief are permitted, 1.0 and 0. These points are viewed as e
lent to “true” and “false” in classical logic. Third, the philosophical complications of
objective-subjective distinction are finessed by assuming that subjective probabiliti
technically no different from objective ones and therefore subject to the same theo
Claims that human judgement and decision-making may take place without use of e
probabilities is discounted by insisting that all decision makers have a personal prob
for all possible states of the world, which can be revealed by forcing the decision ma
gamble on alternative options.

The Bayesian unification is parsimonious and elegant, and it has provided an influ
account of the nature of uncertainty. It has also led to an impressive body of technic
practical work, and it provides an appealing framework within which to assess wh
reasoning and decision systems are fundamentallyrational or not by determining whethe
judgements comply with its prescriptions. Indeed it has been taken up as a foun
for discussion about rational cognition in many domains and its influence pervades
intellectual thought. “Bayesianism was involved in debates central to 20th centur
losophy: debates about the ontology of decision-making, belief-revision. . . the nature o

3 It has been pointed out to me that the aleatory-epistemic distinction is also often equated with the ob
subjective distinction though I treat them here as orthogonal. In the present discussion I am trying to dis
between aleatory or epistemicrepresentations (e.g., statistical versus deterministic representations) of the w
rather than whether or not our uncertainty is due to an inherent uncertaintyin the physical reality as distinct from
our personal ignoranceabout that reality.

4 Some systems permit beliefs to have associated confidence intervals, upper and lower probabilit
others allow of higher-order probabilities to express the idea that a degree of belief can itself be uncertain
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Credibility of an exclusively probabilistic position. Yet many theorists doubt the unive
sality of probability as an exclusive basis for assessing rationality. Doubts commonly
on the grounds that ideas about uncertainty and belief are far more varied than a
probability account permits. There are many differentformalisms and calculi for repre
senting uncertainty for example (e.g., [13,16,21]) and, more importantly, there m
differentkinds of uncertainty (e.g., [24]). From an everyday point of view many hum
claim a rich phenomenology of uncertainty, distinguishing between such notions as
and doubt; suspicion and conviction; possibility, probability, plausibility,. . . vagueness, ig
norance, . . . and so on.

If we follow those who reject the need for such distinctions then it seems to me th
get into deep water. From a psychological or linguistic perspective we should at th
least explain the remarkable fact that there is an enormous number of uncertainty
in our natural language. Hacking discussed the historical distinction between “possi
and “probability”, but these are just two of many. The best known set of linguistic term
the “p-modals”. P-modals are terms that can substitute for the variableP-ly in sentences o
the form:

“It is P-ly the case thatSentence is true”

whereSentence is also a variable, which might have values like “Daniel is in San Fran
co” or “this patient is seriously ill”. Among the most prominent p-modals are “possib
“plausibly”, “probably”, “potentially”, “provisionally”, “presumably” and “perhaps”.

Disregarding such linguistic distinctions is to ignore realities of human communic
and the complex phenomenology of belief.

The distinction between possibility and probability reflects, it seems to me, the
to distinguish whatcan happen in principle (given known constraints about the wor
from whatwill happen in practice (given the many competing influences on events)
has practical implications because a human or other agent will logically need to es
all the possible hypothetical events before establishing their relative probabilities. Fu
more agents may need to explain or discuss some hypothetical situation or eve
another agent, distinguishing probable situations (for which there is evidence) fro
mereplausible (whose existence may be theoretically consistent but for which there
direct evidence). English includes yet more terms, likepresumably (if there is no reason to
exclude a possibility it should be assumed to be true) andpotentially (it may or may not be
the case now but unless we act it could become so in the future) andperhaps (there is at
least one scenario in which the Sentence could be true).

Another collection of modalities iscognitive in nature, designed to capture a men
state, as in “it is {conceivable, imaginable, supposable, suspected} that . . . the patien
has contracted Severe Acute Respiratory Syndrome while travelling”. Furthermo
these modalities can be used in complex locutions involving lexical negation (e.g
conceivable) and affixal negation (e.g., inconceivable). The very existence of such
tions suggests a rich and functional diversity in the cognitive states that lie behind h
language and thought. Surely we possess this rich vocabulary for a reason? Amo
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our confidence in some proposition, and also a communicational role, succinctly in
ing something about the provenance of a proposition in terms of the logical and cog
justifications on which it depends. We develop these ideas in detail later. My only cla
this stage is that the heterogeneous language of uncertainty indicates a phenomen
aspect of belief that is not merely some degenerate form of mathematical probabilit

The Bayesian account ignores these different concepts of uncertainty it does no
them. A true unification would suggest some conceptual structure that explains th
nomenology of belief rather than imposing ana priori technical view of how an agen
ought to update some formal parameter. It is true that many Bayesians will argue tha
program is normative (prescribing how we ought to reason) rather than descriptiv
plaining the phenomenology of human reasoning). This is a perfectly valid restrictio
the objective of this paper is an account in which prescriptive and descriptive theori
be seen as species of some more general structure. We consider what this more
structure could be based on next.

“Warrants” and beliefs. Hacking gives an important hint about how we might appro
the development of a general framework that encompasses both the history of prob
and the modern mathematical account. His conjecture about the existence of a s
“possible theories of probability” continues with “This space resulted from a transfo
tion upon some quite different conceptual structure”, though he does not identify the
of structure that he has in mind, nor the specific transformation that took place th
history. However, the full Hacking space shown in Fig. 1 is taken to have a further d
sion, over and above the aleatory-epistemic and subjective-objective dimensions;
the timeline which connects ancient modes of thought to modern theories of reasoni
uncertainty.

There do not seem to be many ways that early peoples could arrive at new beliefs
their environments or other circumstances. Prior to the development of language5 these
must be limited to personally witnessing events or situations. With the development
cial groups and communication, however, a step-change could take place - an ind
could arrive at new beliefs based on the testimony of others. As human culture dev
it would quickly have become impossible for individuals to know everything about cu
affairs, the law or about good practice in agriculture, caring for the sick etc and d
dency on third parties must have been unavoidable once communities reached eve
hundreds of individuals. This would quickly raise the question of trust, and the claim
opinions of others would need to be “warranted” in some way if they are to be accep
pre-technological societies notions like individual status (kings and chieftains) and o
isational prestige (the church) would provide such warrants. Later people came to d
upon the opinions of specialists like doctors and lawyers whose judgement was wa
by their perceived (or claimed) knowledge and expertise. As the centuries passed
ciety’s collective knowledge base grew, more and more abstract kinds of warrant
have to be accepted, in the end becoming based on disembodied theories of math

5 A notional case of an “early people” unless one considers the possibility that other hominids, or eve
primates might have cognitive states comparable to human “beliefs”.
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Species of content and modes of reasoning in 20th century medicine

“Theories” within the knowledge
base of modern medicine

� Immunology
� Physiology
� Anatomy
� Biochemistry
� Genetics
� Morphology
� Epidemiology
� Mental health
� Social dysfunction

Some of the modes of reasoning used
routinely in modern medicine and other
knowledge-based disciplines

� Causal
� Statistical
� Functional
� Structural
� Spatial
� Temporal
� Deontic

navigation, politics, engineering, and science, and in the modern era, the new “cha
of television and Internet.

Over time the “content” of our collective and individual knowledge has differenti
into ever more detailed conceptual systems.6 By the time that Hacking’s two-dimension
space of probability ideas had emerged in the 17th century the repertoire of th
that could justify individual decisions and organisational policies had clearly g
enormously. European lawyers had a well-established jurisprudential theory, docto
apothecaries had theories of diseases and their proper treatments, and ecclesias
had reached a high level of refinement. (Other societies had different knowledge ba
course.)

The pace of differentiation continues to grow. Modern medicine, for example, d
upon many small theories, almost none of which were known 200 years ago. As the k
edge base grows new theories and modes of argument become articulated and
allowing us to make ever more diverse and subtle inferences. In Table 1 the com
tion of knowledge of these different types yields the potential to provide a vast ran
“warrants” for diagnosing, explaining and predicting clinical conditions.

Like Hacking, however, I suspect that although 21st century people are capable
mulating arguments with a degree of sophistication well beyond the capabilities o
forebears, our basic cognitive functioning is much the same. We just have a much
knowledge base on which to ground a greater repertoire of arguments for what w
lieve. Warrants are the ancient conceptual structures that Hacking alludes to. The
an important feature with modern argumentation in that they aregrounded in some body
of prior knowledge (e.g., medicine) and some accepted mode of reasoning (e.g., au
or testimony, causal or statistical modes of inference). This suggests that any unde
ing of ideas like uncertainty, belief, doubt and so forth is incomplete without an ac
of the reasons for an agent’s beliefs (or doubts); the “warrants” of earlier times and
“arguments” of today. We cannot understand how ancient or modern people may

6 “Knowledge is fractal” Alan Rector.
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knowledge and its role as warrant for beliefs and actions.
The position I shall take is that as a society’s knowledge base grows and diverge

time the opportunities to develop and apply more sophisticated argument schem
grow, though the basic format of the argument is more or less constant (Hacking).
suggest, in the terminology of computer science, that arguments should be viewed afirst-
class objects in any theory of uncertainty and belief, i.e. explicit objects of reason
If the grounds and arguments for an agent’s beliefs are not explicit it cannot do
things, including reflecting on its beliefs and their provenance and explaining the re
for particular propositions or claims to others. This idea is developed in more detail i
3, but first we look at some of its practical benefits of a warrant-based view of reas
and decision-making under uncertainty.

1.1.2. Practical argument
“As living and moving beings, we are forced to act . . . [even when] our existing kn
edge does not provide a sufficient basis for a calculated mathematical expectatio

John Maynard Keyne

Probability theory has provided a powerful foundation for many important mathe
cal techniques, from statistical methods in science and social policy to technologic
analysis and economic decision-theory. The practical success of probability concep
led many theoreticians to view it as much more than a useful mathematical techniq
for many it has been elevated to the level of a touchstone for those wishing to “bring h
judgement under the authority of mathematics” [14]. A notable example of this som
autocratic perspective is in the development of statistical decision theory:

“. . . there is essentially only one way to reach a decision sensibly. First, the uncerta
ties present in the situation must be quantified in terms of values called probab
Second, the consequences of the courses of actions must be similarly described
of utilities. Third, that decision must be taken which is expected on the basis o
calculated probabilities to give the greatest utility. The force of ‘must’ used in t
places there is simply that any deviation from the precepts is liable to lead the de
maker in procedures which are demonstrably absurd” . . . “The first task in any de
problem is to draw up a list of the possible actions that are available. Considerable
tion should be paid to the compilation of this list [though] we can provide no scien
advice as to how this should be done.”

Dennis Lindley, 1985, p. vi

Notwithstanding Lindley’s convictions expected utility models of decision-making h
substantial practical limitations. One that has been widely discussed is the difficulty
timating precise probabilities and utilities in real-world settings. In medicine for exa
epidemiological knowledge is surprisingly sparse; except in rare cases where there
son to carry out national or regional epidemiological studies the critical statistics (the
probabilities of diseases, and the conditional probabilities of symptoms given diseas
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Lindley’s unwillingness to give advice on how to determine the possible diagn

and associated relevant clinical data makes his recommendations even more unhe
everyday medicine—where the determination of these things is at the core of pr
clinical work. Not only do medical practitioners typically lack quantitative statistics
the decisions they are required to make they may even be undecided about the s
of the decision: the hypotheses that should be considered, the sources of evidence
relevant, and even the decision to take.

The point of these observations, as Keynes saw, is that probability (and hence d
theory) presupposes a well-defined problem and a tight set of constraints for its us
appropriate. In practical circumstances, problems and decisions are often ill-form
decision-maker may even know little about the logical structure of the task at han
action is still needed, perhaps urgently. Under these circumstances we need a the
reasoning under uncertainty that tolerates the absence of quantitative data, prov
account of how to structure the decisions and modify this as circumstances change
rest of this section we address the first problem and turn to the second in the next.7

Three examples of medical “decision support systems” are now outlined. These
trate some common decisions that doctors face and show how they can be address
a non-probabilistic approach (Fig. 2). The decisions do not depend upon the availab
precise probabilities and/or utilities but largely on qualitative or at most “semi-quantita
rules. In these systems the specific argumentation processes are mathematically ad
the applications have proved to be surprisingly successful and robust; in Section
shall describe a principled framework in which to build these and other argumen
systems.

Prescribing drugs for common conditions. CAPSULE8 was developed to assist gene
practitioners in routine prescribing decisions [27]. CAPSULE has a database of inf
tion about drugs, and a set of logicalif . . . then . . . rules for deducing potential benefits a
harms and other relevant attributes of candidate medications. The rules are forma
rules in first-order logic. When the system is invoked the rules are instantiated with
mation from the patient notes and with knowledge from the drug database. The syste
generates a list of candidate treatments based on its drug knowledge, and applies t
in order to construct arguments for and against each option. For example, if CAPSU
considering drug A and drug A is relatively cheap by comparison with the alternative
is an argument in favour of A. On the other hand if the patient is already taking drug
B is known to have an undesirable interaction with A then this is an argument agai
CAPSULEs rules cover 9 factors, including knowledge of drug efficacy, contra-indica
drug interactions, side effects and relative costs. Finally, CAPSULE simply counts u
arguments for and against each drug and presents the set of candidates in an ord
on the ratio of pros to cons (Fig. 2). A controlled study with practicing doctors showe

7 These subjects can only be dealt with briefly here: They are developed in more detail in (Fox and Gla
forthcoming).

8 Computer Aided Prescribing Using Logic Engineering.
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Fig. 2. Illustrations of CAPSULE (top) and RAGs (bottom).

CAPSULE produced a 70% increase in the number of times their decisions agree
those of experts considering the cases, and a 50% reduction in the number of tim
they missed a cheaper but equally effective medication.

Assessing genetic cancer risk. RAGs9 helps a healthy woman who has a family histo
of a disease, such as breast cancer, to systematically construct a family tree and
information about family members who are believed to have contracted the diseas
example, it will ask for information about the relationship between the woman an
affected relatives, what their approximate age was at diagnosis and so on. RAGs th
a logical decision procedure to assess the risk that the woman is a “gene carrier”
disease, assessing whether she is at population (“normal”) risk, moderately elevat
or high risk. RAGs does this by applyingif . . . then . . . rules such as “If the person ha

9 Risk Assessment in Genetics.
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diagnosed under the age of 40 then this is a risk factor for genetic predisposition
disease” (Fig. 2). Unlike CAPSULE RAGs rules are “weighted” to represent the re
importance of different risk factors. Each rule is weighted with an integer between 1
(low significance= 1, medium= 2, high= 3). The overall risk for the woman being
gene carrier is determined by establishing which rules are true in her specific ca
adding up the associated weights. The risk classifications generated by the RAGS s
was compared with that provided by the leading statistical risk assessment softw
50 families with known genetics; the two systems produced identical results for a
families [4].

Interpreting medical images. CADMIUM 10 combines process scheduling and decisi
making in order to assist medical radiographers carry out the tasks required in scr
women for the presence of asymptomatic breast cancer. CADMIUM schedules and
the acquisition of mammographic X-rays and the tasks required for reporting on
During image acquisition it automatically analyses image features and gives adv
whether any abnormalities are likely to be caused by cancer. As with CAPSULE and
the decision-making advice is generated by translating input information into logical
ments for and against identified abnormalities being malignant or benign. All argum
were treated as having equal weight. In an evaluation of this decision procedure m
radiographers were asked to review a set of mammograms to find any abnormaliti
make decisions about the diagnosis. CADMIUM demonstrated clear improvements i
ability to achieve this successfully [25].

Each of these three systems applies a body of medical knowledge to the de
making process. CAPSULE knows about drugs and their uses, RAGs is equippe
knowledge about genetics and rough statistics, while CAPSULE incorporates know
of disease processes and their effects on structural and morphological abnormalitie

In Fig. 2 the CAPSULE prescribing system takes patient information (problem, s
toms, current drugs), generates a set of possible medications (bottom left) and con
a set of arguments for and against each (inset box). It uses the arguments to lay
options in order of preference. RAGs takes in information about the patient (Karen
her family history and constructs a family tree. It then constructs a set of argumen
and against her having a genetic predisposition to breast cancer based on this info
(right).

Medicine has been an important area for developing decision support systems o
kinds, culminating most recently in the development of knowledge-based expert sy
that emphasise the use of logic and human-oriented representations of knowledge.11 CAP-
SULE, RAGs and CADMIUM lie in this tradition, but were developed with the objec
of investigating the practical strengths and weaknesses of decision-making procedu
can use qualitative and semi-quantitative inference procedures when traditional qu
tive methods are impractical or inappropriate. None of these systems makes use of c

10 Computer Aided Decision Making and Image Understanding in Medicine.
11 Seehttp://www.openclinical.orgwhich has a major repository of system descriptions and results.

http://www.openclinical.org
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Fig. 3. A general medical decision procedure.

decision-making techniques or probabilities but all demonstrate a good level of comp
on the medical tasks they are designed for.

This is not to say that it would not be possible to incorporate standard decision-m
methods in the applications. However, there is a practical price to be paid for using
titative techniques (e.g., the costs entailed in parameter estimation) which may
justified by the improvements in decision quality that are produced, if any [9]. The ge
conclusion from this is that probability based decision procedures are not necessar
exclusively the technique of choice for practical decision-making.

Studies of this kind have allowed us to develop a general model of the decisio
other processes that are carried out in complex medical domains (Fig. 3). The mod
been described in detail elsewhere (e.g., [7]) so suffice it to say here that accord
this account clinical thinking can be well described as a collection of logical proc
that reason over and update cognitive representations of general medical knowled
specific clinical situations.

In Fig. 3 given information about a patient the clinical goals are established (top
and then the options for each goal (bottom left). Arguments for and against each opt
constructed and used as the basis for a decision about what to believe (accept) ab
situation, or what to do (which plan to adopt). Plans decompose into collections of
which may yield new information and hence new goals in a cyclical process carrie
over time [7].

1.1.3. Cognitive or “anthropic” arguments
“Modelling the human is central to logic”
Dov Gabbay,de Morgan Workshop on Combining Probability and Logic, 2002.

Formal investigations of the nature of uncertainty have been carried out in many
from the higher realms of logic and statistics to the “low sciences” of medicine and
merce. In the last 40 years or so we have seen the rise of a new strand in western s
thought, that of “cognitive science”. Cognitive science is an umbrella term for a numb
disciplines, a number of which share the scientific objective of understanding intellig
as exemplified by the human mind or by robots and other artificial agents that impl
complex cognitive functions like reasoning, decision-making, natural language an
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possession of knowledge. Cognitive science has become a new driver for discussion of
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ideas about uncertainty and belief. Among the most prominent areas of cognitive s
where novel ideas are emerging, are psychology and AI.

In the ‘fifties and ‘sixties psychologists accepted orthodox ideas about logic and p
bility as the standard against which human judgement and rationality were to be as
in many respects. But it quickly became evident that orthodox frameworks had su
ingly little to say about how people actually make decisions and reason under unce
culminating in H.A. Simon’s concept of a bounded rationality which seems to con
poorly with conventional economic theories of “rational” decision-making. This w
which some claim led to a revolution in micro-economics, was awarded the Nobel pr
1978.

In the ‘eighties and ‘nineties a new research agenda began to emerge, largely
lated by Kahneman and Tversky’s programme of research into the “heuristics and b
that underpin human reasoning under uncertainty [29]. Few psychologists now acc
(exclusive) jurisdiction of normative probability and decision theory as the basis fo
derstanding human decision-making.12 Indeed, many doubt that they even represent a
standard against which judgementought to be assessed. It now seems likely that biolo
cal, environmental and other demands on mammalian cognitive function created a
range of needs and constraints than purely mathematical ones (e.g., [11]). Natural
like humans and animals, must operate in a world in which environments are unpred
and even capricious, time is of the essence, mental effort and computational resour
limited. Decision processes that can meet these difficulties must be optimised ove
parameters than those recognised in the axioms of probability theory.

Simon was also one of the founders of another vigorous branch of cognitive sc
Artificial Intelligence. AI is also driving new lines of thought in logic and probabi
for related, though different, reasons to the trends in psychology. Where psychologi
finding that human judgement and decision-making depart in significant ways from th
scriptions of logical and probabilistic notions of rationality, designers of software a
and robots have also encountered challenges that do not arise in conventional dis
of logic and mathematical probability and will demand new capabilities. Orthodox p
abilistic theories of uncertain reasoning do not provide enough representational pow
designing and constructing “intelligent agents” that can operate successfully in co
and unpredictable environments. Why is this?

There is no universally accepted definition of an “intelligent agent” but it is wid
accepted that the notion can be captured in terms of a small number of behaviou
cognitive characteristics. One influential summary is due to Wooldridge and Jenning
who suggested that agents are characteristically:

• Proactive—showing the ability to exhibit goal-directed behaviour.
• Reactive—having the ability to be able to respond to changes in the environm

including detecting that its goals are at risk.
• Social—interacting, cooperating and negotiating with other agents.

12 It may be interesting to note that the only Nobel prizes awarded to cognitive scientists to date were to
and Kahneman.
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• Autonomous—making decisions and taking actions independent of others.
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Agents with these features raise fundamentally new challenges to our ideas abou
ment, belief and similar matters.

Proactive. Reasoning and decision-making do not take place in a vacuum, bu
grounded in the agent’sgoals that arise in response to events in the context of its ong
needs and prior beliefs. Complex goals (e.g., finding food or a mate; planning an
cuting a successful medical procedure or business campaign) require extended pl
actions that often need to be synchronised to be successful. Goal-directed tasks m
need to address multiple objectives. A general theory of rational inference and de
making must be grounded in this setting, where beliefs, goals and intentions may in
in complex ways, and in which decisions may impact on any number of current goa
tasks.

Reactive. Despite the need to plan and execute behaviour in a coordinated way an
must be able to respond to unexpected circumstances that represent threats or oppo
as and when they happen. In familiar situations the agent may respond by simply
ing a pre-programmed response, but in unfamiliar situations it will need to adapt ex
strategies and plans to meet its goals. In some cases the agent may need to com
abandon a current strategy in response to changed beliefs.

Autonomous. When new goals are raised an agent must be able to solve problem
take decisions by itself. It cannot be dependent on an external programmer or “de
analyst” to set up the decision process. It must be able by itself to identify candidate
tions to achieving its goals, identify relevant knowledge and criteria for choosing bet
decision options and implement procedures to obtain required information. Indee
higher level it may need to reason about the decisions it needs to take, when they
be scheduled against other tasks and so forth. “Should I attempt a diagnosis? Or jus
a risk assessment? Is it sufficiently urgent that I should go straight for a treatment de
Or should I refer the patient to a colleague who is more experienced?”

Social. An agent may not have sufficient resources to permit it to solve problem
make decisions by itself, and for certain tasks it may need to be able to commu
and collaborate with other agents which have access to resources which are not
available. To do this it will need to be able to engage in dialogues with other agen
inform them of its beliefs, goals and intentions, and to explain its reasons for these “m
states” if these are questioned or challenged.

The ability to implement such capabilities requires cognitive capacities that are we
yond computing engines that execute simple logical rules or arithmetic functions. It e
adaptation to the unexpected and, particularly, a capability for the agent toreflect on its
beliefs and intentions. Since an agent’s environment will be undergoing constant c
past decisions and commitments may cease to be valid. It would therefore be desira
the agent to be able to reason about its commitments and their justifications, ques
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Fig. 4. The generalised “domino” agent.

assumptions, reverse previous decisions and abandon earlier goals or plans. If ag
to work together to achieve collective goals they will need to be able to communica
discuss their beliefs and the provenance of those beliefs. Such meta-cognitive capa
cannot be captured by simple rules or other conventional logical machines and requ
malisms with meta-logical expressiveness, such as specialised first- and higher-orde
(see the extensive collection of papers edited by Abramson and Rogers, [1]).

Traditional accounts of uncertain reasoning make no provision for the four “anthr
features summarised above, or the meta-logical capabilities they entail. This implies
text in which to investigate ideas about reasoning and rationality that is radically diff
from the context in which discussions of logic, probability and decision have traditio
been carried out.

In recent years AI research has set about developing practical architectures an
ciated theories of intelligent agents that have these anthropic characteristics and
cognitive capabilities. An important class of such agents are so-called Belief–D
Intention or BDI agents [10,20]. Fig. 4 is an example of an agent that falls within
general class but has been extended to support reasoning and decision-making un
certainty. It is a generalised version of the clinical process model in Fig. 3 earlier an
emerged from our efforts to build general-purpose anthropic agents based on this mo
Here, the ellipses can be thought of as data-structures; the arrows as inference syste
model has a formal semantics and is the basis of a practical development system [7

The theoretical pivot around which this agent system reasons and makes its deci
a generalised procedure based on the application of knowledge and logical argume
In the next section we explain how this serves the anthropic capabilities discussed a

1.2. Knowledge, argument and belief

“. . . whenever we pass to knowledge about one proposition by contemplation of it
relation to another proposition of which we have knowledge. . . , I call it anargument”

Maynard Keynes,A Treatise on Probability 1921 (p. 14).

To recap on the main points so far traditional ideas about rational judgement and
sion have putquantified degrees of belief or probability at the centre but in Section 1.1 w
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have argued that qualitative or semi-quantitative inference techniques are often more flex-
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ible and practical. Many theorists find it hard to accept that simple qualitative argum
could be adequate for practical applications that people find challenging, yet this
quently the case. In a domain like medicine, which is rich in different kinds of knowle
logical arguments are commonly all that is required for building useful decision sys
This frees the designer from the rigid constraints of the probability calculus and g
simplifies the technical problems of developing such applications.

An important exception to the usual position was J.M. Keynes who in hisTreatise on
Probability [15] tries to interpret the idea of probability from a logical as well as a quan
tive perspective, observing that “in its most fundamental sense [the termprobability] refers
to the logical relation between two sets of propositions” (p. 11) and “. . . whenever we pas
to knowledge about one proposition by contemplation of it in relation to another pro
tion of which we have knowledge . . . I call it anargument” (p. 14). This seems close to m
own position. Keynes saw some of his own limitations in developing these ideas, s
for example that he did not “wish to become involved in question of epistemology w
I do not know the answer”.13 Because of technical developments that have taken pla
the last eighty years, however, it is possible to go further than he could, particularly
veloping a formal account of argumentation and the “knowledge” that arguments ex
In order to make my proposals credible we need to provide a clearer description of e
what an argument is and its relationship to “knowledge”. I shall do this in two stages
to present an intuitive account of the processes of argumentation, and then to pro
more formal treatment.

1.2.1. Arguments and probabilities, the intuition
In a classical logic an argument is a sequence of sentences (the premises of

gument) from which we can derive another sentence, the conclusion, under some
inference rules (the logic). Normally, the conclusion of the argument is assigned the
“true” if it can be derived by mechanically applying the inference rules of the logic
a method of reasoning classical logics, such as the standard propositional and pr
logics, are powerful, but do not directly represent any uncertainty that may be encou
in practical domains. Classical logics do not representdegrees of truth or accommodat
changes of mind or relative truth (when a proposition is viewed as true from one poin
view but false from another). Our approach is based on a more familiar type of reas
than has traditionally been studied by logicians. Here arguments are not proofs brea-
sons to believe (in some statement) orreasons to act (in some way). Individual argumen
are not generally conclusive, so decision making may require us to assesscollections of
arguments, weighing up the “pros” and “cons” as in everyday decision making proce

The distinction between informal argument and formal theories of reasoning wa
recognized by the philosopher Stephen Toulmin. InThe Uses of Argument [26] he ex-
plored the question of why traditional theories of reasoning, notably classical ded
and probabilistic reasoning, have little apparent relevance to everyday dispute and
He concluded that informal argumentation is a reasoning procedure that is differen

13 J.K. Galbraith is said to have observed that there are two types of economists, those who do not kn
those who do not know they do not know.
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Fig. 5. Toulmin’s argument schema.

both mathematical traditions, and characterized it by means of the well-known sc
reproduced in Fig. 5.

Toulmin explains the schema with the following example:

“In support of the claim that Harry is a British subject, we appeal to the datum th
was born in Bermuda, and [the claim is warranted by a sentence such as] ‘a man
Bermuda may be taken to be a British subject’: since, however, questions of natio
are always subject to qualifications and conditions we shall have to insert a qua
‘presumably’ in front of the conclusion and note the possibility that our conclusion
be rebutted in case it turns out that both his parents were aliens or he has since be
naturalised American. Finally, in case the warrant itself is challenged, its backing c
put in: this will record the terms and the dates of enactment of the Acts of Parliame
other legal provisions governing the nationality of persons born in the British colo
[26, p. 104].

Two points stand out here: first the idea thatconclusions are not always certain (hence
the qualifier ‘presumably’) and thatpractical argumentation frequently entails contradic-
tions (the notion of rebuttal). When we look at decision-making in domains like med
we come across similar problems to those noticed by Toulmin. First, medical profess
have to make decisions in situations where they are not certain about information
evidential significance, but it is impractical to precisely state their degree of uncert
They may suspect that a patient is at risk but have little basis for quantifying the likel
of the hazard. Second, in many settings we must deal with apparent inconsistenc
when we are faced with a patient who is clearly ill but a routine lab-test shows no
abnormal, or in one clinician’s opinion the patient is suffering from one condition bu
a different diagnosis in the opinion of another.

Contradiction does not have a place in classical logic or probability theory; some
cannot be both true and false nor have a probability of 0 and 1. Toulmin’s approa
ticipated the current interest in symbolic representations of uncertainty in AI and
as well as the current interest in accepting and managing contradictions in commo
reasoning and paralogical systems. However, there are important aspects of argum
that are not dealt with by Toulmin. These are illustrated in Fig. 6.

The large ellipse at the top left of Fig. 6 represents the knowledge base of a hypot
agent. This knowledge base is partitioned into a number of different “theories”. Thes
be “commonsense” theories, capturing general assertions about the world (dealin
time, space, properties of physical objects and so forth) or specialist knowledge in
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Fig. 6. Visualisation of an argumentation process.

technical domain like medicine (e.g., knowledge of anatomy, biochemistry, physio
immunology, symptomatology as in Table 1).

Generally, I shall view an agent’s knowledge base as a collection of sentences in
formal language. Some sentences assert general facts about the world (e.g., “all can
diseases”) while others represent assertions about the agent’s specific situation (e.
patient may be suffering from breast cancer”). AI research has shown that knowled
be formalised in many ways, but we shall view it as a database of sentences in firs
logic.

Now suppose that an agent of this kind acquires some information about a par
situation, such as an abnormal medical condition, and the agent has a general goal
circumstances which is to find the most likely cause of such an abnormality. Let us
pose the agent is presented with a patient who has suddenly lost weight, so it wis
know why. The agent might formulate several candidate explanations for this (such
nations or hypotheses are called “claims” in Fig. 6), including the possibility that the lo
weight might be caused by a gastric ulcer, which can discourage normal eating and
tion (argument 1), or perhaps the patient is covertly dieting (argument 2). The proc
constructing such arguments can be viewed here as a conventional proof-procedur
“the patient has lost weight due to an ulcer” and “the patient has lost weight due to an
nervosa” are derived mechanically in the same way as a logical theorem can be d
from premises, but here the conclusion is uncertain. Another way of putting this is th
argument has theform but not theforce of a proof.

Once we have a set of candidates the agent can bring to bear any number of t
from its knowledge base. For example the agent could argue for the hypothesis of
ulcer on the grounds that the patient has pain after meals, usingcausal knowledge that
gastric acids irritate pain receptors in the lining of the stomach which are exposed
ulcer. On the other hand it may argue onstatistical grounds that peptic ulcer is unlike
because the patient is only 20, and a peptic ulcer in a patient under 50 is very rare.
we can develop any number of arguments for and against the alternative claims, d
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on different subsets of knowledge and applying different modes of reasoning such a
listed in Table 1.

We can also see from Fig. 6 that the construction of arguments is just the firs
in a process that results in new information being added to the knowledge base.
generalised agent model in Fig. 4 this step is tocommit to a new belief. For exampl
a medical decision agent may consider the various arguments about a patient w



J. Fox / Journal of Applied Logic 1 (2003) 197–224 217

lost weight and commit to a particular diagnosis. This is then added to its current set of
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Fig. 6 illustrates a circumstance where there are two claims and three argume

fact there can be any number of claims and any number of arguments for and again
claim so how may we select the most plausible claim? In standard probability theo
would resolve the competing claims by assessing the posterior probability of each
to decide which was correct once all the data are in. However, as we have noted ab
many decisions we do not know what the probability parameters are. Ordinary logic c
help because it does not have any way of representing uncertainty.

Argumentation provides an alternative. Unlike logic we can have any number of
ments with respect to a possible claim, and we can simultaneously entertain any n
of tentative conclusions. Furthermore we can compare the persuasiveness of our t
conclusions by comparing the arguments for and against the competing claims.

This leads to a simple decision procedure. If we have several independent argum
one claim, but only one argument for the other, then even if we cannot assign “stre
to the individual arguments it is reasonable to have more confidence in the first claim
in the second. This process of argument, “aggregation”, allows us arrive at a ration
sessment of the overall persuasiveness of the competing claims even if we cannot e
the absolute or relative strength of supporting arguments. An example of an argume
and aggregation process in medical decision-making is illustrated in Fig. 7.

1.2.2. A formal model of argumentation
In this section and the next we give a formal description of the processes of arg

construction and aggregation.
A basic schema for a “logic of argument” (LA) is summarised in (1):

(1)Knowledge base∪ Situation|–LA (Claim : Warrant : Qualifier)

We start with aknowledge base, a collection of propositions and rules about a dom
and a collection of propositions that describe a specific situation. The turn-style stan
a set of inference schemas that define valid argument constructions based on this in
tion. There are several options for these axioms here but, whatever the choice of a
theargument term is a triple of elements (on the right) consisting of

• theClaim which the argument deals with;
• the Warrant14 is a representation of the theories, facts and rules drawn from

knowledge base instantiated with information about the specific situation in w
the argument has been constructed;

• a Qualifier that represents the confidence in the claim as warranted by the argum

A set of inference schemas for LA is given in Table 2. The Greek charactersϕ, ψ ,
σ represent propositions (which can play the role of the assumptions or the claim
argument) and∧, ∨, ¬ are the usual logical connectives,and, or andnot. The schema

14 Elsewhere we have sometimes used the term “grounds” for this component of the argumentation ter
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A logic of argument

Introduction rules

(∧I) ϕ :Q ψ :Q′

ψ ∧ ϕ : min(Q,Q′)

(→I) ϕ : ++
.
.
.

ψ :Q

ψ → ϕ :Q

(∨I) ϕ :Q ψ :Q

ψ ∨ ϕ :Q ψ ∨ ϕ :Q

(¬I) ϕ : ++
.
.
.

⊥:Q

¬ϕ :Q

Elimination rules

(∧E) ψ ∧ ϕ :Q ψ ∧ ϕ :Q

ϕ :Q ψ :Q

(→E) ϕ :Q ϕ →ψ :Q′

ψ : min(Q,Q′)

(∨E) ϕ : ++ ψ : ++
.
.
.

.

.

.

ϕ ∨ψ :Q σ :Q′ σ :Q′′

σ : min(Q,Q′,Q′′)
(¬E) ϕ :Q ¬ϕ :Q′

⊥: min(Q,Q′)

Weakening ϕ : ++

ϕ : +

have theform of conventional premise-conclusion rules, but they may not have theforce
of a classical deductive rule in which the conclusion can be only true or false. Acco
to [1] an argument has three elements, the claim, the warrant and the qualifier. For
the warrant is omitted from the schemas in Table 2.

Arguments affect confidence in a claim but may not be categorical. It may not
be possible to say by how much an argument affects confidence, just perhaps th
increased or decreased. The representation for confidence is the qualifier. This c
many possible forms. For example, it can merely say that an argument “supports” a
or “opposes” it, meaning that the argument increases or decreases our confiden
claim but does not indicate by how much. In Table 2 we use two other qualifiers+”
and “++”, where + indicates the argument increases confidence while++ is the top
symbol, meaning the argument increases confidence in the claim to a maximum (
again without giving a quantitative interpretation for this maximum). Qualifiers can
be represented by variable symbols, Q, Q′, Q′′ etc.

The rules are presented in the Gentzen style with a set of introduction and elimi
schemas. In each schema the assumptions of the argument are above the horizo
and the conclusion (claim) below. For instance the and-introduction schema (∧I) can be
read as: if we have some level of confidence Q (say+) in a claimϕ and confidence Q′
(say++) in ψ , then confidence in the conjunction ofϕ andψ is theminimum of Q and
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Q′ (i.e.,+ as the “weakest link” in the argument). The or-elimination schema (∨E) should
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be read as: if by assumingϕ is the case in the current situation we can concludeσ is the
case with confidence Q′, and by assumingψ is the case thenσ is the case with confidenc
Q′′, and we know eitherϕ ∨ψ with confidence Q, then we can concludeσ with a level of
confidence that is the minimum of Q, Q′ and Q′′.15

The usual interpretation of classical logic includes the axiom of the “excluded mid
In probability theory we have an analogous constraint that if there is evidence that inc
the probability of hypothesis H then this necessarily implies a reduction in the proba
of ¬H. In the version of LA in Table 2 the not-introduction schema serves an analo
function. If we assume that some claimϕ is the case, but this leads to a contradict
with some confidence Q then this entails the existence of an argument with confi
Q in the complementary claim¬ϕ. In the clinical systems described above this axiom
not enforced. This is because when eliciting knowledge from clinicians there is a s
tendency to describe positive associations between symptoms and diseases, while s
absence is not interpreted. Such systems are therefore more similar in spirit to s
based on intuitionistic logic, which also excludes the EM axiom, than classical logic th
formalisations of LA like that above can have standard axioms and theorems.

Just as LA does not impose a unique set of axiom schemas the argumentation ap
does not commit us to a particular representation of confidence. The representation
ble 2 uses just the qualifiers{+,++}. However, in many real world applications it is natu
to extend this set of symbols, to include the symbols{−,−−} where – indicates that th
argument “opposes” a claim and – “rebuts” it [5].

Quantitative uncertainty representations are also possible. For example, qualifie
be integers, as in the RAGs genetics risk assessment system described above, wh
domain rule had an integer from {1,2,3} to represent low, medium and high confid
in the argument. Alternatively we may take a more orthodox approach, attaching a
from the[0,1] interval, which could be taken to represent a conditional probability o
truth of the claim conditioned on the “evidence” embodied in the premises of the argu
Simon Parsons and I have argued that under appropriate technical constraints an a
tation proof procedure can be constructed that is equivalent to a standard Bayesian d
procedure [6].

Another important observation is that there is no objection to the use of “lingu
qualifiers in an argumentation system if we can give a clear meaning to such
Toulmin’s example used the qualifier “presumably” though he relies on our intui
as English-speaking readers rather than providing us with a definition of its mea
Krause and Clark [16] discuss a range of more formal proposals for linguistic qua
and Elvang-Gøransson et al. [2,3] formalize a set of “linguistic” qualifiers based o
consistency relationships between arguments for and/or against a claim. We return
subject of linguistic qualifiers in a moment.

LA is a well-defined system on which to base a mechanical process for gene
arguments, using a knowledge base formalised as a theory in an appropriately ex

15 I am indebted to Paul Krause for providing this formulation of LA.
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first-order logic. Krause et al. [17] describe a theorem-prover that implements the logic in
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Table 2.

1.2.3. Argument aggregation and epistemic states
We saw from the informal presentation of argumentation (Fig. 6) that the produ

of arguments is only part of an argument-based reasoning system. Byaggregating over
collections of arguments we can induce an ordering over a competing set of claims.
situation where arguments have attached confidence coefficients, such asad hoc or prob-
abilistic weights, we can apply an appropriate aggregation function to yield quanti
degrees of confidence in the competing claims [16]. Bayes’ rule for revising probab
in the light of evidence for competing hypotheses is one such aggregation function, t
pected utility model advocated by Lindley is a further extension, and there are many
possible aggregation methods.

Other aggregation functions can be employed when there is no information abo
absolute or relative weights attached to arguments. Since we can construct argume
are purely symbolic under the rules of LA (e.g., arguments that increase confidenc
claim but do not indicate by how much) the aggregation process is less obvious. Ho
suppose we have three supporting (+) arguments for one claim, two supporting argume
for another, and just one argument for a third then there is an obvious natural order o
claimseven though we have provided no quantitative interpretation of the level of support
provided by each argument. This aggregation is justified by the “principle of insufficie
reason” introduced by Keynes, which says that if an agent has no reason to assign d
levels of confidence to competing hypotheses it may reasonably assign equal le
confidence. A minor variant of this principle warrants assigning equal levels of confid
to all arguments if there is no reason to do otherwise.

A general model for aggregation is

(2)
{
(Claim : Warrant : Qualifier)

} → (Claim : Commitment)

Which defines a mapping from the set of arguments for/against a claim into a “
mitment” about the claim. In this model arguments are tentative and revisable,
commitments are states of knowledge that areentrenched, which is to say the agent ma
be unwilling to give them up in the face of counter-arguments. Such entrenchment
irrational but may in fact be quite understandable in real-world settings. For exam
agent may deny or argue against counter-evidence for its claim in preference to ac
it which could incur a risk of being held liable for consequences of the “error” or expo
to charges of incompetence.

1.2.4. Annotation of arguments and the concept of belief
Aggregation is not the only function that can map from collections of arguments

epistemic states. Another is called “annotation” because it enhances an agent’s ab
describe its current view or representation of its beliefs.

As natural language users we routinely use annotations. We do not just say “I’m s
the flu” but also “it is {conceivable, possible, likely, pretty certain, . . . } that I’m starting
flu”. Your doctor does not just say “you have got athlete’s foot” s/he will just as often
“I {assume, suspect, doubt, believe, am certain/uncertain} that you {have, may have,



J. Fox / Journal of Applied Logic 1 (2003) 197–224 221

have} the flu“ and so on. This vocabulary is augmented by lexical and affixal negation (e.g.
tions
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not possible, impossible), hedges (e.g., {quite, very, highly} plausible . . . ), elabora
(e.g., “it appears to be the case that . . . ”, “there are persuasive reasons to think . .
many other everyday constructions.

The existence of this large sub-language of English and other natural languag
long puzzled linguists, psychologists, philosophers and others. Logicians view some
terms asmodal operators, while others see them as mere stylistic decorations, of no fo
significance. Social scientists may explain them in terms of conversational conven
signalling a particular emphasis or serving an auxiliary social or pragmatic function.

I would add a further possible function for the many linguistic terms that we use to
about our beliefs. If I say “its possible that (I’m starting a cold)” I intend to communi
something like “I have grounds to think I may be getting a cold (such as a sore t
sneezing etc.) but there is also at least some reason to believe that I may not (e
I already had a cold just last week; (2) I had the same symptoms yesterday but n
happened, (3) my throat is onlyslightly sore)”. In everyday communication we have n
the time to go into detail so if our language allows us to communicate our epistemic
with a built in summary of the reasons for that state so much the better. In short, I s
(sic!) that our large lexicon of uncertainty terms has a direct communicative function

We see exactly this kind of phenomenon in medical and other guidelines. For e
ple a guideline published by the International Agency for Research on Cancer set
standard terminology for talking about categories of risk associated with chemical
pounds: a carcinogen isconfirmed if there is epidemiological data and/or an establis
causal relationship between cancer and the compound;possible if a potential hazard ha
been recognised;probable if there is better evidence than merely recognition of poss
carcinogenic activity;improbable if there is possible carcinogenic activity, but strong e
dence against), and the risk isequivocal if a hazard recognised and there is evidence b
for and evidence against.

This might be nothing more than a minor linguistic observation, with no forma
terest except that it is possible to develop a logical system based on this idea. E
Gøransson et al. [3] define a set of logical “acceptability classes” for talking about
in some proposition P based solely on the logical properties of the set of argume
and against P. These acceptability classes define a completely ordered set of predic
expressing confidence in P from low to high:

P is open

if it is any well-formed formula in the language of the logic

P is supported

if an argument, possibly using inconsistent data, can be constructed

P is plausible

if a consistent argument can be constructed (we may also be able to construct a co
argument against)

P is probable
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if a consistent argument can be constructed for it, and no consistent argument can be con-
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P is confirmed

if it satisfies the conditions of being probable and, in addition, no consistent argumen
be constructed against any of the premises used in its supporting argument

P is certain

if it is a tautology of the logic (meaning that its validity is not contingent on any data in
knowledge base).

In the foregoing we have explored a wide range of phenomena concerned with
about uncertainty and belief, and suggested that these and other notions like prob
possibility can be derived by analysing patterns of argument. A common view of
terms in logic is to treat them as modals, basing their semantics on a possible-wor
mulation. This is a well-developed position but expensive in the sense that modal
have well known difficulties compared with standard predicate logic, and proving suc
ics as mathematically sound and complete is time-consuming and demanding. This
an important thing to do if you are a logician, but not if you are trying to understan
use of modals in natural language or trying to build an agent that can use modal te
its reasoning and user interface

My position is that these so-called modal terms are “epistemic states”, predicate
evaluate properties ofcollections of arguments about claims. The use of epistemic sta
may be mathematicallyad hoc yet they provide a useful vocabulary for an agent toreflect
upon its beliefs and their justification, andcommunicate succinctly with other agents abo
the confidence to be attached to its claims. In this respect we follow John McCarthy
article “Modality, Si! Modal logic, No!” where he remarks “Human practice introduc
new modalities on anad hoc basis. . . . Introducing new modalities should involve no mo
fuss than introducing a new predicate. In particular, human-level AI requires that pro
be able to introduce modalities when this is appropriate” [19].

Mathematicians and logicians are rightly suspicious of anything that isad hoc, by
which they mean unprincipled, particularly where there is already some well estab
alternative like modal logic. An implication of Elvang-Gørannson’s work is that des
appearances we can construct a sound and useful set of logical predicates for talkin
beliefs and other cognitive states whose semantics can be put on a sound footing.

1.3. Summary and conclusions

The modern concept of mathematical probability is widely taken to be the norm
standard for reasoning under uncertainty and the formulation of rational beliefs. Ho
this position has often been questioned on a variety of grounds and the issues nev
to be quite settled. The rise of the cognitive sciences in the last quarter century has
an explosion of new questions about the sufficiency of probability theory for dealing
problems in artificial intelligence, psychology, linguistics and other areas concerne
the nature of cognitive agents. Three lines of argument (historical, practical and anth
have been presented which support the view that traditional formalisations of prob
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leave important questions about uncertainty and belief unresolved. An account of knowl-
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edge and decision-making based on logicalargumentation has been presented that appe
to unify diverse intuitions about the nature of probability and belief. These discussio
substantiated by examples from clinical medicine. However, there are few truly new
in this field and previous discussions by Keynes, Hacking, Toulmin, Simon and other
gest that the problems and proposals discussed here are not specific to the medical
The central claim is that some general form of argumentation underpins all the co
ing ideas about probability, and developments in artificial intelligence and non-cla
logics suggest ways of formalising this class of system in order to resolve some
epistemological and technical issues that they were not in a position to address.
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