S

ELS

Since January 2020 Elsevier has created a COVID-19 resource centre with
free information in English and Mandarin on the novel coronavirus COVID-
19. The COVID-19 resource centre is hosted on Elsevier Connect, the

company's public news and information website.

Elsevier hereby grants permission to make all its COVID-19-related
research that is available on the COVID-19 resource centre - including this
research content - immediately available in PubMed Central and other
publicly funded repositories, such as the WHO COVID database with rights
for unrestricted research re-use and analyses in any form or by any means
with acknowledgement of the original source. These permissions are
granted for free by Elsevier for as long as the COVID-19 resource centre

remains active.



Available at

www.ElsevierComputerScience.com JOURNAL OF
o _ POWERED BY SCIENCE @DIRECT° APPLIED LOGIC
ELSEVIER Journal of Applied Logic 1 (2003) 197-224

www.elsevier.com/locate/jal

Probability, logic and the cognitive
foundations of rational belief
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Abstract

Since Pascal introduced the idea of mathematical probability in the 17th century discussions of
uncertainty and “rational” belief have been dogged by philosophical and technical disputes. Fur-
thermore, the last quarter century has seen an explosion of new questions and ideas, stimulated by
developments in the computer and cognitive sciences. Competing ideas about probability are often
driven by different intuitions about the nature of belief that arise from the needs of different domains
(e.g., economics, management theory, engineering, medicine, the life sciences etc). Taking medicine
as our focus we develop three lines of argument (historical, practical and cognitive) that suggest that
traditional views of probability cannot accommodate all the competing demands and diverse con-
straints that arise in complex real-world domains. A model of uncertain reasoning based on a form
of logical argumentation appears to unify many diverse ideas. The model has precursors in infor-
mal discussions of argumentation due to Toulmin, and the notion of logical probability advocated
by Keynes, but recent developments in artificial intelligence and cognitive science suggest ways of
resolving epistemological and technical issues that they could not address.
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1. Introduction

“...uncertainty is an inevitable problem in the real world. ... Unfortunately, there are
clear gaps in our understanding of how to incorporate uncertain reasoning into a general
purpose agent....”
Artificial Intelligence: a modern approach
Stuart Russell and Peter Norvig, 1995 [23] (p. 843)
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How we should make decisions in the face of uncertainty and arrive at rational beliefs
have been at the centre of intellectual and philosophical thought for millennia. The need
for a formal solution to these problems has been recognised as a major scientific and tech-
nical challenge for at least 400 years, and in the last 30 years discussions have been further
stimulated by problems arising in the cognitive and computer sciences. Perhaps the most
influential and admired work on these matters has been carried out by mathematicians and
logicians, often informed by problems in some practical domain such as medicine or eco-
nomics (e.g., [14]). This has led to a mathematical theory of probability having great power
and intellectual depth. Yet despite this the field of probability theory has been dogged by
philosophical and technical disputes. As Kyburg [18] has observed “Many proponents of
many [different] views have argued that their interpretation of probability is the correct (or
the most useful, or the only useful) interpretation”.

Our goal is a scientific account of how autonomous “agents” (natural or artificial) can,
do and ought to accommodate uncertainty in their reasoning and decision-making, draw-
ing on insights from cognitive science as well as mathematics. This research programme
adopts a more eclectic methodology than is usual in theoretical discussions of probability
and logic. Among the methods used have been observation of naturally occurring behaviour
(e.g. the behaviour of doctors making clinical decisions); computer simulation of software
agents carrying out complex tasks, and empirical testing of the performance of such agents
making decisions and plans in real medical settings. The paper concludes that our contin-
uing failure to resolve well known issues about probability, and the new challenges raised
by the cognitive sciences, point to the need for a fresh approach, and develops a system
that has intuitive appeal, theoretical coherence and considerable practical versatility.

The paper is organised as follows. In Section 1.1 | put forward three independent lines
of argument that there are important shortcomings in conventional accounts of how agents
can accommodate uncertainty in achieving their objectivies philosophical and tech-
nical issues come up repeatedly in discussions of uncertainty and do not look like being
resolved (the historical argument); standard methods and technologies provide insufficient
means for solving real-world decision problems (the practical argument), and challenges
raised by the need for theories of autonomous functioning in artificial intelligence and
psychology (the cognitive or “anthropic” argument). Section 1.2 presents a framework for
resolving these difficulties through an account of reasoning about uncertainty and belief
that explicates the role of “knowledge-based argument” in reasoning, decision-making and
other cognitive processes. Section 1.3 summarises the main conclusions.

1.1. Three arguments for extending current conceptions of probability

1.1.1. Historical arguments

The standard history of probability begins with an ancient, pre-mathematical period
which is poorly documented but about which historians are reasonably agreed on general
points. In lan Hacking's celebrated accoiihe Emergence of Probability [12] we are told
that ideas about uncertainty existed by Roman times and became increasingly explicit and
diverse through the medieval period and the renaissance. But that they seem to have been
at best vague and conceptually rather muddled until the modern concept of probability
appeared in a correspondence between Pascal and Fermat, and the central ideas were pub-
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lished in thePort Royal Logic in 1660. Hacking asks why it took so long for the modern
notion of probability to develop, and whether particular technical and historical circum-
stances were necessary for it to appear. He provides a wide-ranging discussion of the many
concepts that were competing for this conceptual space, from chance to fate, deductive
to inductive reasoning, and from intuitive ideas about possibility to modern theories of
probability.

Among the critical stimuli to a theory of probability may have been a growing practical
need to quantify what would now be called social trends, in order to address problems in
civic policy and private business. The collection of disease and death rates and other data
(by de Witt, Wilkins, Petty, Graunt and others in the mid 1600s) stimulated quantitative
ideas about uncertainty, risk and prediction. Once the basic idea of probability had taken
root many famous figures got involved in its development (including Leibniz, Bernoulli,
Laplace, Huygens, Poisson, to name just a few). In the period from the mid 19th century
through the 20th techniques developed rapidly, leading to modern statistics and much other
applied mathematics.

Along with the flowering of formal probability theory, however, philosophical disputes
about the nature of probability have also emerged. Although we have a deep technical un-
derstanding of mathematical probability it is now generally accepted that it is a subject
with many subtleties, and many philosophical questions about its relationship with ideas
about human belief and rationality have been raised and debated. Recent discussions have
involved some of the leading intellects of the modern period, including Ramsay, Savage,
Russell, Popper and, a name we will hear more of, the economist John Maynard Keynes.
Their attention was attracted because arguments about probability were not merely techni-
cally challenging, they often directly impacted on fundamental human concerns of politics
and economics, belief, and the nature of mind.

The Hacking space. Hacking’s contribution to these discussions is much more than a
scholarly history of the subject in which he compares and contrasts the alternative posi-
tions. This would be valuable in itself, but he also tries to stand back from the details of
the various disputes in order to understand the intellectual space in which the debate is
being conducted. Although on the surface there seem to be many contradictions between
the competing concepts and philosophies Hacking asserts that there is more historical con-
tinuity and coherence than is often recognised. Indeed he invitethé reader to imagine
...that there is a space of possible theoriesa probability that has been rather constant
from 1660 to the present” (p. 16).

Hacking does not seem to intend the term “space” in the formal sense of a mathematical
space, but more as a related collection of ideas that recur in different contexts and with
different vocabularies; a metaphorical space within which all the competing theories can be
understood as variants of some underlying idea. | am not sure whether he would approve of
an attempt to go further but it seems to me that we need to have something more formal. If
we do not we cannot systematically compare theories of probability, to identify similarities
and differences in their properties, to understand when different interpretations are helpful
and so on.

A possible structure for the “Hacking space” is shown in Fig. 1. My hypothesis is that
this space has three main dimensions, based on two classical distinctions which appear
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Fig. 1. The Hacking space.

repeatedly in the history of discussions about uncertainty and belief, augmented by a third
dimension which has not been discussed much if at all, but reflects the observation that
the intuitive phenomenology of belief and formal ideas about probability are not stable but
constantly changing through time.

In Fig. 1 time runs from left to right, from some ancient and murky past to the present
day with our modern corpus of scientific and other knowledge and our formal theories of
reasoning, decision-making, representation of knowledge and the rest. We tdRertthe
Royal Logic as the first point at which thprimary dimensions of Hacking's space are
identifiable. The first of these dimensions concerns a very old distinction between events
that recur in random or apparently unlawful ways, and those that occur reliably, and for
which there is some sort of developed theory. The fall of a fair die cannot be predicted
while the position of a planet can. Writers speak of circumstances of the first kind with
many words, such as “chance”, “fate”, “hazard” and so forth. These terms may involve
subtle distinctions but they are generally grouped under the heading “aleatory”, meaning
“Dependent on chance, luck, or an uncertain outcohiBfiis is to be contrasted with an
understanding of events in the world through some kind of scientific discourse that draws
upon theories about the world, such as causal or geometrical theories and in which the
usual modes of reasoning are categorical, logical and deductive. Such terms can be grouped
under the heading “epistemic”, meaning “Of, relating to, or involving knowledge”.

The second dimension of the Hacking space concerns the distinction between objective
probability and subjective probability. Hacking spends a considerable amount &f time
getting to grips with a set of ideas that were around by the seventeenth century and perhaps
earlier, which were concerned with “possibility” (as distinct from probability). These terms
seem to have become a focus of dispute in the 18th century, with some scholars arguing
that possibility is different from probability (e.g., Leibniz and Laplace), and others arguing
that it is identical. Hacking relates this discussion to an earlier scholarly debatedalveut
andde dicto modes of language, where the former refers to statements about aspects of the

1 http://www.dictionary.com
2 Particularly in Chapter 14.


http://www.dictionary.com

J. Fox/ Journal of Applied Logic 1 (2003) 197-224 201

world (e.g., “itis possible for Daniel to get to San Francisco by noon”) and the latter about
what can be said or known (e.qg., “it is possible that Daniel is there now”). Hacking seems
to come down on the side of those who regard possibility and probability as equivalent.
Indeed he links thele re mode with the aleatory aspect of probability (chance, and hence
possibility, is a property of the world) and thie dicto mode with the epistemic aspect
(i.e., an aspect of oknowledge of the world) though to my way of thinking the objective-
subjective distinction remains intatt.

Despite the apparent simplicity of the two primary dimensions of the Hacking space
many believe that this is still too complicated and have argued for an even more parsimo-
nious interpretation of probability since a simpler semantics and avoidance of psycholog-
ical issues should yield practical tools that are both more general and easier to use. In the
most influential view probability is viewed as a universal measure that can represent all un-
certainty and belief. The “Bayesian” probabilists have been particularly active in this area
due to their wish to move away from a strictly frequentistic concept of probability based
on empirical observations.

The simplification is achieved in three moves. First, it is asserted that all uncertainty
about a proposition can be represented by a single number represedéyrgeof belief
in that proposition. This is conventionally a pointin fi§e1] interval* whose properties are
defined by the probability axioms. Second, the aleatory-epistemic dimension is collapsed
by treating all empirical chances as probabilities, and treating epistemic reasoning (e.g.,
reasoning based on deductive logics) as a special case of probabilistic reasoning in which
only two degrees of belief are permitted, 1.0 and 0. These points are viewed as equiva-
lent to “true” and “false” in classical logic. Third, the philosophical complications of the
objective-subjective distinction are finessed by assuming that subjective probabilities are
technically no different from objective ones and therefore subject to the same theorems.
Claims that human judgement and decision-making may take place without use of explicit
probabilities is discounted by insisting that all decision makers have a personal probability
for all possible states of the world, which can be revealed by forcing the decision maker to
gamble on alternative options.

The Bayesian unification is parsimonious and elegant, and it has provided an influential
account of the nature of uncertainty. It has also led to an impressive body of technical and
practical work, and it provides an appealing framework within which to assess whether
reasoning and decision systems are fundamemiailgnal or not by determining whether
judgements comply with its prescriptions. Indeed it has been taken up as a foundation
for discussion about rational cognition in many domains and its influence pervades much
intellectual thought. “Bayesianism was involved in debates central to 20th century phi-
losophy: debates about the ontology of decision-making, belief-revisidhe nature of

3 It has been pointed out to me that the aleatory-epistemic distinction is also often equated with the objective-
subjective distinction though | treat them here as orthogonal. In the present discussion | am trying to distinguish
between aleatory or epistemiepresentations (e.g., statistical versus deterministic representations) of the world
rather than whether or not our uncertainty is due to an inherent unceriaithty physical reality as distinct from
our personal ignorancabout that reality.

4 Some systems permit beliefs to have associated confidence intervals, upper and lower probabilities, and
others allow of higher-order probabilities to express the idea that a degree of belief can itself be uncertain.
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explanation, scientific progress, nature of belief and knowledge, rationality and practical
reasoning” [22].

Credibility of an exclusively probabilistic position.  Yet many theorists doubt the univer-
sality of probability as an exclusive basis for assessing rationality. Doubts commonly arise
on the grounds that ideas about uncertainty and belief are far more varied than a simple
probability account permits. There are many differiamtmalisms and calculi for repre-
senting uncertainty for example (e.g., [13,16,21]) and, more importantly, there may be
differentkinds of uncertainty (e.qg., [24]). From an everyday point of view many humans
claim a rich phenomenology of uncertainty, distinguishing between such notions as belief
and doubt; suspicion and conviction; possibility, probability, plausibilityyagueness, ig-
norance, ...and so on.

If we follow those who reject the need for such distinctions then it seems to me that we
get into deep water. From a psychological or linguistic perspective we should at the very
least explain the remarkable fact that there is an enormous number of uncertainty terms
in our natural language. Hacking discussed the historical distinction between “possibility”
and “probability”, but these are just two of many. The best known set of linguistic terms are
the “p-modals”. P-modals are terms that can substitute for the vafalyien sentences of
the form:

“Itis P-ly the case tha®entenceis true”

whereSentence is also a variable, which might have values like “Daniel is in San Francis-
co” or “this patient is seriously ill”. Among the most prominent p-modals are “possibly”,
“plausibly”, “probably”, “potentially”, “provisionally”, “presumably” and “perhaps”.

Disregarding such linguistic distinctions is to ignore realities of human communication
and the complex phenomenology of belief.

The distinction between possibility and probability reflects, it seems to me, the need
to distinguish whatan happen in principle (given known constraints about the world),
from whatwill happen in practice (given the many competing influences on events). This
has practical implications because a human or other agent will logically need to establish
all the possible hypothetical events before establishing their relative probabilities. Further-
more agents may need to explain or discuss some hypothetical situation or event with
another agent, distinguishing probable situations (for which there is evidence) from the
mereplausible (whose existence may be theoretically consistent but for which there is no
direct evidence). English includes yet more terms, fikesumably (if there is no reason to
exclude a possibility it should be assumed to be true)mmtehtially (it may or may not be
the case now but unless we act it could become so in the futurepeihdps (there is at
least one scenario in which the Sentence could be true).

Another collection of modalities isognitive in nature, designed to capture a mental
state, as in “it is §onceivable, imaginable, supposable, suspected} that ...the patient
has contracted Severe Acute Respiratory Syndrome while travelling”. Furthermore all
these modalities can be used in complex locutions involving lexical negation (e.g., not
conceivable) and affixal negation (e.g., inconceivable). The very existence of such locu-
tions suggests a rich and functional diversity in the cognitive states that lie behind human
language and thought. Surely we possess this rich vocabulary for a reason? Among the
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possible benefits of such terms are that they have both a representational role, capturing
our confidence in some proposition, and also a communicational role, succinctly indicat-
ing something about the provenance of a proposition in terms of the logical and cognitive
justifications on which it depends. We develop these ideas in detail later. My only claim at
this stage is that the heterogeneous language of uncertainty indicates a phenomenological
aspect of belief that is not merely some degenerate form of mathematical probability.

The Bayesian account ignores these different concepts of uncertainty it does not unify
them. A true unification would suggest some conceptual structure that explains the phe-
nomenology of belief rather than imposing arpriori technical view of how an agent
ought to update some formal parameter. It is true that many Bayesians will argue that their
program is normative (prescribing how we ought to reason) rather than descriptive (ex-
plaining the phenomenology of human reasoning). This is a perfectly valid restriction, but
the objective of this paper is an account in which prescriptive and descriptive theories can
be seen as species of some more general structure. We consider what this more general
structure could be based on next.

“Warrants’ and beliefs. Hacking gives an important hint about how we might approach
the development of a general framework that encompasses both the history of probability
and the modern mathematical account. His conjecture about the existence of a space of
“possible theories of probability” continues with “This space resulted from a transforma-
tion upon some quite different conceptual structure”, though he does not identify the kind
of structure that he has in mind, nor the specific transformation that took place through
history. However, the full Hacking space shown in Fig. 1 is taken to have a further dimen-
sion, over and above the aleatory-epistemic and subjective-objective dimensions; this is
the timeline which connects ancient modes of thought to modern theories of reasoning and
uncertainty.

There do not seem to be many ways that early peoples could arrive at new beliefs about
their environments or other circumstances. Prior to the development of largirege
must be limited to personally witnessing events or situations. With the development of so-
cial groups and communication, however, a step-change could take place - an individual
could arrive at new beliefs based on the testimony of others. As human culture developed
it would quickly have become impossible for individuals to know everything about current
affairs, the law or about good practice in agriculture, caring for the sick etc and depen-
dency on third parties must have been unavoidable once communities reached even a few
hundreds of individuals. This would quickly raise the question of trust, and the claims and
opinions of others would need to be “warranted” in some way if they are to be accepted. In
pre-technological societies notions like individual status (kings and chieftains) and organ-
isational prestige (the church) would provide such warrants. Later people came to depend
upon the opinions of specialists like doctors and lawyers whose judgement was warranted
by their perceived (or claimed) knowledge and expertise. As the centuries passed and so-
ciety’s collective knowledge base grew, more and more abstract kinds of warrant would
have to be accepted, in the end becoming based on disembodied theories of mathematics,

5 A notional case of an “early people” unless one considers the possibility that other hominids, or even other
primates might have cognitive states comparable to human “beliefs”.
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Table 1

Species of content and modes of reasoning in 20th century medicine
“Theories” within the knowledge| Some of the modes of reasoning used
base of modern medicine routinely in modern medicine and other

knowledge-based disciplines

O Immunology O Causal

O Physiology [ Statistical

O Anatomy O Functional
[ Biochemistry O Structural

O Genetics O Spatial

0 Morphology O Temporal

O Epidemiology O Deontic

0 Mental health
[J Social dysfunction

navigation, politics, engineering, and science, and in the modern era, the new “channels”
of television and Internet.

Over time the “content” of our collective and individual knowledge has differentiated
into ever more detailed conceptual systéhBy the time that Hacking’s two-dimensional
space of probability ideas had emerged in the 17th century the repertoire of theories
that could justify individual decisions and organisational policies had clearly grown
enormously. European lawyers had a well-established jurisprudential theory, doctors and
apothecaries had theories of diseases and their proper treatments, and ecclesiastical law
had reached a high level of refinement. (Other societies had different knowledge bases of
course.)

The pace of differentiation continues to grow. Modern medicine, for example, draws
upon many small theories, almost none of which were known 200 years ago. As the knowl-
edge base grows new theories and modes of argument become articulated and refined
allowing us to make ever more diverse and subtle inferences. In Table 1 the combina-
tion of knowledge of these different types yields the potential to provide a vast range of
“warrants” for diagnosing, explaining and predicting clinical conditions.

Like Hacking, however, | suspect that although 21st century people are capable of for-
mulating arguments with a degree of sophistication well beyond the capabilities of our
forebears, our basic cognitive functioning is much the same. We just have a much larger
knowledge base on which to ground a greater repertoire of arguments for what we be-
lieve. Warrants are the ancient conceptual structures that Hacking alludes to. They share
an important feature with modern argumentation in that theygesended in some body
of prior knowledge (e.g., medicine) and some accepted mode of reasoning (e.g., authority
or testimony, causal or statistical modes of inference). This suggests that any understand-
ing of ideas like uncertainty, belief, doubt and so forth is incomplete without an account
of the reasons for an agent’s beliefs (or doubts); the “warrants” of earlier times and the
“arguments” of today. We cannot understand how ancient or modern people may reason

6 “Knowledge is fractal” Alan Rector.
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under uncertainty (or how artificial agents ought to) without understanding the nature of
knowledge and its role as warrant for beliefs and actions.

The position | shall take is that as a society’s knowledge base grows and diverges over

time the opportunities to develop and apply more sophisticated argument schemas also
grow, though the basic format of the argument is more or less constant (Hacking). | shall
suggest, in the terminology of computer science, that arguments should be viefived as
class objects in any theory of uncertainty and belief, i.e. explicit objects of reasoning.
If the grounds and arguments for an agent’s beliefs are not explicit it cannot do many
things, including reflecting on its beliefs and their provenance and explaining the reasons
for particular propositions or claims to others. This idea is developed in more detail in part
3, but first we look at some of its practical benefits of a warrant-based view of reasoning
and decision-making under uncertainty.

1.1.2. Practical argument
“As living and moving beings, we are forced to act ... [even when] our existing knowl-
edge does not provide a sufficient basis for a calculated mathematical expectation.”
John Maynard Keynes

Probability theory has provided a powerful foundation for many important mathemati-
cal techniques, from statistical methods in science and social policy to technological risk
analysis and economic decision-theory. The practical success of probability concepts have
led many theoreticians to view it as much more than a useful mathematical technique and
for many it has been elevated to the level of a touchstone for those wishing to “bring human
judgement under the authority of mathematics” [14]. A notable example of this somewhat
autocratic perspective is in the development of statistical decision theory:

“...there is essentially only one way teach a decision sensibly. First, the uncertain-
ties present in the situation must be quantified in terms of values called probabilities.
Second, the consequences of the courses of actions must be similarly described in terms
of utilities. Third, that decision must be taken which is expected on the basis of the
calculated probabilities to give the greatest utility. The force of ‘must’ used in three
places there is simply that any deviation from the precepts is liable to lead the decision
maker in procedures which are demonstrably absurd” ... “The first task in any decision
problemis to draw up a list of the possible actions that are available. Considerable atten-
tion should be paid to the compilation of this list [though] we can provide no scientific
advice as to how this should be done.”

Dennis Lindley, 1985, p. vii

Notwithstanding Lindley’s convictions expected utility models of decision-making have
substantial practical limitations. One that has been widely discussed is the difficulty of es-
timating precise probabilities and utilities in real-world settings. In medicine for example
epidemiological knowledge is surprisingly sparse; except in rare cases where there is rea-
son to carry out national or regional epidemiological studies the critical statistics (the prior
probabilities of diseases, and the conditional probabilities of symptoms given diseases) are
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not known with any precision. Doctors often do not even have a basis for estimating these
things for the community in which they live.

Lindley’s unwillingness to give advice on how to determine the possible diagnoses
and associated relevant clinical data makes his recommendations even more unhelpful for
everyday medicine—where the determination of these things is at the core of practical
clinical work. Not only do medical practitioners typically lack quantitative statistics for
the decisions they are required to make they may even be undecided about the structure
of the decision: the hypotheses that should be considered, the sources of evidence that are
relevant, and even the decision to take.

The point of these observations, as Keynes saw, is that probability (and hence decision
theory) presupposes a well-defined problem and a tight set of constraints for its use to be
appropriate. In practical circumstances, problems and decisions are often ill-formed—a
decision-maker may even know little about the logical structure of the task at hand yet
action is still needed, perhaps urgently. Under these circumstances we need a theory of
reasoning under uncertainty that tolerates the absence of quantitative data, provides an
account of how to structure the decisions and modify this as circumstances change. In the
rest of this section we address the first problem and turn to the second in thfe next.

Three examples of medical “decision support systems” are now outlined. These illus-
trate some common decisions that doctors face and show how they can be addressed with
a non-probabilistic approach (Fig. 2). The decisions do not depend upon the availability of
precise probabilities and/or utilities but largely on qualitative or at most “semi-quantitative”
rules. In these systems the specific argumentation processes are mathematically ad hoc yet
the applications have proved to be surprisingly successful and robust; in Section 1.2 we
shall describe a principled framework in which to build these and other argumentation
systems.

Prescribing drugs for common conditions. CAPSULE? was developed to assist general
practitioners in routine prescribing decisions [27]. CAPSULE has a database of informa-
tion about drugs, and a set of logi¢gl. .then ... rules for deducing potential benefits and
harms and other relevant attributes of candidate medications. The rules are formalised as
rules in first-order logic. When the system is invoked the rules are instantiated with infor-
mation from the patient notes and with knowledge from the drug database. The system then
generates a list of candidate treatments based on its drug knowledge, and applies the rules
in order to construct arguments for and against each option. For example, if CAPSULE is
considering drug A and drug A is relatively cheap by comparison with the alternatives this

is an argument in favour of A. On the other hand if the patient is already taking drug B and

B is known to have an undesirable interaction with A then this is an argument against A.
CAPSULEs rules cover 9 factors, including knowledge of drug efficacy, contra-indications,
drug interactions, side effects and relative costs. Finally, CAPSULE simply counts up the
arguments for and against each drug and presents the set of candidates in an order based
on the ratio of pros to cons (Fig. 2). A controlled study with practicing doctors showed that

7 These subjects can only be dealt with briefly here: They are developed in more detail in (Fox and Glasspool,
forthcoming).
8 Computer Aided Prescribing Using Logic Engineering.
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Fig. 2. lllustrations of CAPSULE (top) and RAGs (bottom).

CAPSULE produced a 70% increase in the number of times their decisions agreed with
those of experts considering the cases, and a 50% reduction in the number of times that
they missed a cheaper but equally effective medication.

Assessing genetic cancer risk. RAGS’ helps a healthy woman who has a family history

of a disease, such as breast cancer, to systematically construct a family tree and record
information about family members who are believed to have contracted the disease. For
example, it will ask for information about the relationship between the woman and her
affected relatives, what their approximate age was at diagnosis and so on. RAGs then uses
a logical decision procedure to assess the risk that the woman is a “gene carrier” for the
disease, assessing whether she is at population (“normal”) risk, moderately elevated risk
or high risk. RAGs does this by applying...then ... rules such as “If the person has

9 Risk Assessment in Genetics.
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two or more first-degree relatives diagnosed with breast cancer and both relatives were
diagnosed under the age of 40 then this is a risk factor for genetic predisposition to the
disease” (Fig. 2). Unlike CAPSULE RAGs rules are “weighted” to represent the relative
importance of different risk factors. Each rule is weighted with an integer between 1 and 3
(low significance= 1, medium= 2, high= 3). The overall risk for the woman being a
gene carrier is determined by establishing which rules are true in her specific case and
adding up the associated weights. The risk classifications generated by the RAGS software
was compared with that provided by the leading statistical risk assessment software for
50 families with known genetics; the two systems produced identical results for all the
families [4].

Interpreting medical images. CADMIUM 10 combines process scheduling and decision-
making in order to assist medical radiographers carry out the tasks required in screening
women for the presence of asymptomatic breast cancer. CADMIUM schedules and enacts
the acquisition of mammographic X-rays and the tasks required for reporting on them.
During image acquisition it automatically analyses image features and gives advice on
whether any abnormalities are likely to be caused by cancer. As with CAPSULE and RAGs
the decision-making advice is generated by translating input information into logical argu-
ments for and against identified abnormalities being malignant or benign. All arguments
were treated as having equal weight. In an evaluation of this decision procedure medical
radiographers were asked to review a set of mammograms to find any abnormalities and
make decisions about the diagnosis. CADMIUM demonstrated clear improvements in their
ability to achieve this successfully [25].

Each of these three systems applies a body of medical knowledge to the decision-
making process. CAPSULE knows about drugs and their uses, RAGs is equipped with
knowledge about genetics and rough statistics, while CAPSULE incorporates knowledge
of disease processes and their effects on structural and morphological abnormalities.

In Fig. 2 the CAPSULE prescribing system takes patient information (problem, symp-
toms, current drugs), generates a set of possible medications (bottom left) and constructs
a set of arguments for and against each (inset box). It uses the arguments to lay out the
options in order of preference. RAGs takes in information about the patient (Karen) and
her family history and constructs a family tree. It then constructs a set of arguments for
and against her having a genetic predisposition to breast cancer based on this information
(right).

Medicine has been an important area for developing decision support systems of many
kinds, culminating most recently in the development of knowledge-based expert systems
that emphasise the use of logic and human-oriented representations of knoWledge-

SULE, RAGs and CADMIUM lie in this tradition, but were developed with the objective

of investigating the practical strengths and weaknesses of decision-making procedures that
can use qualitative and semi-quantitative inference procedures when traditional quantita-
tive methods are impractical or inappropriate. None of these systems makes use of classical

10 Computer Aided Decision Making and Image Understanding in Medicine.
11 seenttp://www.openclinical.orgvhich has a major repository of system descriptions and results.
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Fig. 3. A general medical decision procedure.

decision-making techniques or probabilities but all demonstrate a good level of competence
on the medical tasks they are designed for.

This is not to say that it would not be possible to incorporate standard decision-making
methods in the applications. However, there is a practical price to be paid for using quan-
titative techniques (e.g., the costs entailed in parameter estimation) which may not be
justified by the improvements in decision quality that are produced, if any [9]. The general
conclusion from this is that probability based decision procedures are not necessarily and
exclusively the technique of choice for practical decision-making.

Studies of this kind have allowed us to develop a general model of the decision and
other processes that are carried out in complex medical domains (Fig. 3). The model has
been described in detail elsewhere (e.g., [7]) so suffice it to say here that according to
this account clinical thinking can be well described as a collection of logical processes
that reason over and update cognitive representations of general medical knowledge and
specific clinical situations.

In Fig. 3 given information about a patient the clinical goals are established (top left)
and then the options for each goal (bottom left). Arguments for and against each option are
constructed and used as the basis for a decision about what to believe (accept) about the
situation, or what to do (which plan to adopt). Plans decompose into collections of tasks
which may yield new information and hence new goals in a cyclical process carried out
over time [7].

1.1.3. Cognitive or “ anthropic” arguments
“Modelling the human is central to logic”
Dov Gabbayde Morgan Workshop on Combining Probability and Logic, 2002.

Formal investigations of the nature of uncertainty have been carried out in many fields,
from the higher realms of logic and statistics to the “low sciences” of medicine and com-
merce. In the last 40 years or so we have seen the rise of a new strand in western scientific
thought, that of “cognitive science”. Cognitive science is an umbrella term for a number of
disciplines, a number of which share the scientific objective of understanding intelligence,
as exemplified by the human mind or by robots and other artificial agents that implement
complex cognitive functions like reasoning, decision-making, natural language and the
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possession of knowledge. Cognitive science has become a new driver for discussion of
ideas about uncertainty and belief. Among the most prominent areas of cognitive science
where novel ideas are emerging, are psychology and Al.

In the ‘fifties and ‘sixties psychologists accepted orthodox ideas about logic and proba-
bility as the standard against which human judgement and rationality were to be assessed
in many respects. But it quickly became evident that orthodox frameworks had surpris-
ingly little to say about how people actually make decisions and reason under uncertainty,
culminating in H.A. Simon’s concept of a bounded rationality which seems to conform
poorly with conventional economic theories of “rational” decision-making. This work,
which some claim led to a revolution in micro-economics, was awarded the Nobel prize in
1978.

In the ‘eighties and ‘nineties a new research agenda began to emerge, largely stimu-
lated by Kahneman and Tversky’s programme of research into the “heuristics and biases”
that underpin human reasoning under uncertainty [29]. Few psychologists now accept the
(exclusive) jurisdiction of normative probability and decision theory as the basis for un-
derstanding human decision-makitindeed, many doubt that they even represent a gold
standard against which judgemenght to be assessed. It now seems likely that biologi-
cal, environmental and other demands on mammalian cognitive function created a wider
range of needs and constraints than purely mathematical ones (e.g., [11]). Natural agents,
like humans and animals, must operate in a world in which environments are unpredictable
and even capricious, time is of the essence, mental effort and computational resources are
limited. Decision processes that can meet these difficulties must be optimised over more
parameters than those recognised in the axioms of probability theory.

Simon was also one of the founders of another vigorous branch of cognitive science:
Artificial Intelligence. Al is also driving new lines of thought in logic and probability
for related, though different, reasons to the trends in psychology. Where psychologists are
finding that human judgement and decision-making depart in significant ways from the pre-
scriptions of logical and probabilistic notions of rationality, designers of software agents
and robots have also encountered challenges that do not arise in conventional discussion
of logic and mathematical probability and will demand new capabilities. Orthodox prob-
abilistic theories of uncertain reasoning do not provide enough representational power for
designing and constructing “intelligent agents” that can operate successfully in complex
and unpredictable environments. Why is this?

There is no universally accepted definition of an “intelligent agent” but it is widely
accepted that the notion can be captured in terms of a small number of behavioural and
cognitive characteristics. One influential summary is due to Wooldridge and Jennings [28]
who suggested that agents are characteristically:

e Proactive—showing the ability to exhibit goal-directed behaviour.

e Reactive—having the ability to be able to respond to changes in the environment,
including detecting that its goals are at risk.

e Social—interacting, cooperating and negotiating with other agents.

12 1t may be interesting to note that the only Nobel prizes awarded to cognitive scientists to date were to Simon
and Kahneman.
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e Autonomous—making decisions and taking actions independent of others.

Agents with these features raise fundamentally new challenges to our ideas about judg-
ment, belief and similar matters.

Proactive. Reasoning and decision-making do not take place in a vacuum, but are
grounded in the agentigoalsthat arise in response to events in the context of its ongoing
needs and prior beliefs. Complex goals (e.g., finding food or a mate; planning and exe-
cuting a successful medical procedure or business campaign) require extended plans and
actions that often need to be synchronised to be successful. Goal-directed tasks may also
need to address multiple objectives. A general theory of rational inference and decision-
making must be grounded in this setting, where beliefs, goals and intentions may interact
in complex ways, and in which decisions may impact on any number of current goals and
tasks.

Reactive. Despite the need to plan and execute behaviour in a coordinated way an agent
must be able to respond to unexpected circumstances that represent threats or opportunities,
as and when they happen. In familiar situations the agent may respond by simply apply-
ing a pre-programmed response, but in unfamiliar situations it will need to adapt existing
strategies and plans to meet its goals. In some cases the agent may need to completely
abandon a current strategy in response to changed beliefs.

Autonomous. When new goals are raised an agent must be able to solve problems and
take decisions by itself. It cannot be dependent on an external programmer or “decision
analyst” to set up the decision process. It must be able by itself to identify candidate solu-
tions to achieving its goals, identify relevant knowledge and criteria for choosing between
decision options and implement procedures to obtain required information. Indeed, at a
higher level it may need to reason about the decisions it needs to take, when they need to
be scheduled against other tasks and so forth. “Should | attempt a diagnosis? Or just make
arisk assessment? Is it sufficiently urgent that | should go straight for a treatment decision?
Or should | refer the patient to a colleague who is more experienced?”

Social. An agent may not have sufficient resources to permit it to solve problems or
make decisions by itself, and for certain tasks it may need to be able to communicate
and collaborate with other agents which have access to resources which are not directly
available. To do this it will need to be able to engage in dialogues with other agents, to
inform them of its beliefs, goals and intentions, and to explain its reasons for these “mental
states” if these are questioned or challenged.

The ability to implement such capabilities requires cognitive capacities that are well be-
yond computing engines that execute simple logical rules or arithmetic functions. It entails
adaptation to the unexpected and, particularly, a capability for the ageeftact on its
beliefs and intentions. Since an agent’s environment will be undergoing constant change
past decisions and commitments may cease to be valid. It would therefore be desirable for
the agent to be able to reason about its commitments and their justifications, question its



212 J. Fox/ Journal of Applied Logic 1 (2003) 197224

Problem Situation Actions and
goals beliefs locutions
Commit/accept
. Argument Commit/adopt
Candidate Decisions Plans
solutions

Fig. 4. The generalised “domino” agent.

assumptions, reverse previous decisions and abandon earlier goals or plans. If agents are
to work together to achieve collective goals they will need to be able to communicate and
discuss their beliefs and the provenance of those beliefs. Such meta-cognitive capabilities
cannot be captured by simple rules or other conventional logical machines and require for-
malisms with meta-logical expressiveness, such as specialised first- and higher-order logics
(see the extensive collection of papers edited by Abramson and Rogers, [1]).

Traditional accounts of uncertain reasoning make no provision for the four “anthropic”
features summarised above, or the meta-logical capabilities they entail. This implies a con-
text in which to investigate ideas about reasoning and rationality that is radically different
from the context in which discussions of logic, probability and decision have traditionally
been carried out.

In recent years Al research has set about developing practical architectures and asso-
ciated theories of intelligent agents that have these anthropic characteristics and meta-
cognitive capabilities. An important class of such agents are so-called Belief-Desire-
Intention or BDI agents [10,20]. Fig. 4 is an example of an agent that falls within this
general class but has been extended to support reasoning and decision-making under un-
certainty. It is a generalised version of the clinical process model in Fig. 3 earlier and has
emerged from our efforts to build general-purpose anthropic agents based on this model [8].
Here, the ellipses can be thought of as data-structures; the arrows as inference systems. The
model has a formal semantics and is the basis of a practical development system [7].

The theoretical pivot around which this agent system reasons and makes its decisions is
a generalised procedure based on the application of knowledge and logical argumentation.
In the next section we explain how this serves the anthropic capabilities discussed above.

1.2. Knowledge, argument and belief

“...whenever we pass to knowledgbaat one proposition by contemplation of it in
relation to another proposition of which we have knowledge | call it anargument”
Maynard KeynesA Treatise on Probability 1921 (p. 14).

To recap on the main points so far traditional ideas about rational judgement and deci-
sion have putuantified degrees of belief or probability at the centre but in Section 1.1 we
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have argued that qualitative or semi-quantitative inference techniques are often more flex-
ible and practical. Many theorists find it hard to accept that simple qualitative arguments
could be adequate for practical applications that people find challenging, yet this is fre-
quently the case. In a domain like medicine, which is rich in different kinds of knowledge,
logical arguments are commonly all that is required for building useful decision systems.
This frees the designer from the rigid constraints of the probability calculus and greatly
simplifies the technical problems of developing such applications.

An important exception to the usual position was J.M. Keynes who ifesise on
Probability [15] tries to interpret the idea of probability from a logical as well as a quantita-
tive perspective, observing that “in its most fundamental sense [theprebability] refers
to the logical relation between two sets of propositions” (p. 11) andvhenever we pass
to knowledge about one proposition by contemplation of it in relation to another proposi-
tion of which we have knowledge ... call it @ngument” (p. 14). This seems close to my
own position. Keynes saw some of his own limitations in developing these ideas, saying
for example that he did not “wish to become involved in question of epistemology which
| do not know the answer*® Because of technical developments that have taken place in
the last eighty years, however, it is possible to go further than he could, particularly in de-
veloping a formal account of argumentation and the “knowledge” that arguments exploit.
In order to make my proposals credible we need to provide a clearer description of exactly
what an argument is and its relationship to “knowledge”. | shall do this in two stages: first
to present an intuitive account of the processes of argumentation, and then to provide a
more formal treatment.

1.2.1. Arguments and probabilities, the intuition
In a classical logic an argument is a sequence of sentences (the premises of the ar-
gument) from which we can derive another sentence, the conclusion, under some set of
inference rules (the logic). Normally, the conclusion of the argument is assigned the value
“true” if it can be derived by mechanically applying the inference rules of the logic. As
a method of reasoning classical logics, such as the standard propositional and predicate
logics, are powerful, but do not directly represent any uncertainty that may be encountered
in practical domains. Classical logics do not represiegtees of truth or accommodate
changes of mind or relative truth (when a proposition is viewed as true from one point of
view but false from another). Our approach is based on a more familiar type of reasoning
than has traditionally been studied by logicians. Here arguments are not prooés-but
sons to believe (in some statement) oeasonsto act (in some way). Individual arguments
are not generally conclusive, so decision making may require us to asbkssons of
arguments, weighing up the “pros” and “cons” as in everyday decision making processes.
The distinction between informal argument and formal theories of reasoning was also
recognized by the philosopher Stephen ToulminThe Uses of Argument [26] he ex-
plored the question of why traditional theories of reasoning, notably classical deduction
and probabilistic reasoning, have little apparent relevance to everyday dispute and debate.
He concluded that informal argumentation is a reasoning procedure that is different from

13 J.K. Galbraith is said to have observed that there are two types of economists, those who do not know; and
those who do not know they do not know.
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Fig. 5. Toulmin's argument schema.

both mathematical traditions, and characterized it by means of the well-known schema
reproduced in Fig. 5.
Toulmin explains the schema with the following example:

“In support of the claim that Harry is a British subject, we appeal to the datum that he
was born in Bermuda, and [the claim is warranted by a sentence such as] ‘a man born in
Bermuda may be taken to be a British subject’: since, however, questions of nationality
are always subject to qualifications and conditions we shall have to insert a qualifying
‘presumably’ in front of the conclusion and note the possibility that our conclusion may

be rebutted in case it turns out that both his parents were aliens or he has since become a
naturalised American. Finally, in case the warrant itself is challenged, its backing can be
putin: this will record the terms and the dates of enactment of the Acts of Parliamentand
other legal provisions governing the nationality of persons born in the British colonies”
[26, p. 104].

Two points stand out here: first the idea thanclusions are not always certain (hence
the qualifier ‘presumably’) and thatactical argumentation frequently entails contradic-
tions (the notion of rebuttal). When we look at decision-making in domains like medicine
we come across similar problems to those noticed by Toulmin. First, medical professionals
have to make decisions in situations where they are not certain about information and its
evidential significance, but it is impractical to precisely state their degree of uncertainty.
They may suspect that a patient is at risk but have little basis for quantifying the likelihood
of the hazard. Second, in many settings we must deal with apparent inconsistencies, as
when we are faced with a patient who is clearly ill but a routine lab-test shows nothing
abnormal, or in one clinician’s opinion the patient is suffering from one condition but has
a different diagnosis in the opinion of another.

Contradiction does not have a place in classical logic or probability theory; something
cannot be both true and false nor have a probability of 0 and 1. Toulmin’s approach an-
ticipated the current interest in symbolic representations of uncertainty in Al and logic,
as well as the current interest in accepting and managing contradictions in commonsense
reasoning and paralogical systems. However, there are important aspects of argumentation
that are not dealt with by Toulmin. These are illustrated in Fig. 6.

The large ellipse at the top left of Fig. 6 represents the knowledge base of a hypothetical
agent. This knowledge base is partitioned into a number of different “theories”. These may
be “commonsense” theories, capturing general assertions about the world (dealing with
time, space, properties of physical objects and so forth) or specialist knowledge in some
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Knowledge base

Fig. 6. Visualisation of an argumentation process.

technical domain like medicine (e.g., knowledge of anatomy, biochemistry, physiology,
immunology, symptomatology as in Table 1).

Generally, | shall view an agent’s knowledge base as a collection of sentences in some
formal language. Some sentences assert general facts about the world (e.qg., “all cancers are
diseases”) while others represent assertions about the agent’s specific situation (e.g., “this
patient may be suffering from breast cancer”). Al research has shown that knowledge can
be formalised in many ways, but we shall view it as a database of sentences in first-order
logic.

Now suppose that an agent of this kind acquires some information about a particular
situation, such as an abnormal medical condition, and the agent has a general goal in such
circumstances which is to find the most likely cause of such an abnormality. Let us sup-
pose the agent is presented with a patient who has suddenly lost weight, so it wishes to
know why. The agent might formulate several candidate explanations for this (such expla-
nations or hypotheses are called “claims” in Fig. 6), including the possibility that the loss of
weight might be caused by a gastric ulcer, which can discourage normal eating and diges-
tion (argument 1), or perhaps the patient is covertly dieting (argument 2). The process of
constructing such arguments can be viewed here as a conventional proof-procedure where
“the patient has lost weight due to an ulcer” and “the patient has lost weight due to anorexia
nervosa” are derived mechanically in the same way as a logical theorem can be deduced
from premises, but here the conclusion is uncertain. Another way of putting this is that an
argument has thiorm but not theforce of a proof.

Once we have a set of candidates the agent can bring to bear any number of theories
from its knowledge base. For example the agent could argue for the hypothesis of gastric
ulcer on the grounds that the patient has pain after meals, wairsggl knowledge that
gastric acids irritate pain receptors in the lining of the stomach which are exposed by the
ulcer. On the other hand it may argue siatistical grounds that peptic ulcer is unlikely
because the patient is only 20, and a peptic ulcer in a patient under 50 is very rare. In fact
we can develop any number of arguments for and against the alternative claims, drawing
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Fig. 7. The use of argumentation in medical decision-making. Clinical Evidence is a standard reference text that
doctors and others use to review the potential benefits and harms of possible clinical interventions for their patients
(top). This version of the publication has a decision support process embedded in it, which accepts patient data
(second panel), and then constructs arguments for and against the options in order to arrive at recommendations
for action (large panel). Each option is a “claim” and each argument has a “backing” which can be followed up
by finding the relevant paper in the Pubmed database (bottom).

on different subsets of knowledge and applying different modes of reasoning such as those
listed in Table 1.

We can also see from Fig. 6 that the construction of arguments is just the first step
in a process that results in new information being added to the knowledge base. In the
generalised agent model in Fig. 4 this step iscoomit to a new belief. For example
a medical decision agent may consider the various arguments about a patient who has
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lost weight and commit to a particular diagnosis. This is then added to its current set of
situational beliefs.

Fig. 6 illustrates a circumstance where there are two claims and three arguments. In
fact there can be any number of claims and any number of arguments for and against each
claim so how may we select the most plausible claim? In standard probability theory we
would resolve the competing claims by assessing the posterior probability of each claim
to decide which was correct once all the data are in. However, as we have noted above, in
many decisions we do not know what the probability parameters are. Ordinary logic cannot
help because it does not have any way of representing uncertainty.

Argumentation provides an alternative. Unlike logic we can have any number of argu-
ments with respect to a possible claim, and we can simultaneously entertain any number
of tentative conclusions. Furthermore we can compare the persuasiveness of our tentative
conclusions by comparing the arguments for and against the competing claims.

This leads to a simple decision procedure. If we have several independent arguments for
one claim, but only one argument for the other, then even if we cannot assign “strengths”
to the individual arguments it is reasonable to have more confidence in the first claim than
in the second. This process of argument, “aggregation”, allows us arrive at a rational as-
sessment of the overall persuasiveness of the competing claims even if we cannot establish
the absolute or relative strength of supporting arguments. An example of an argumentation
and aggregation process in medical decision-making is illustrated in Fig. 7.

1.2.2. Aformal model of argumentation

In this section and the next we give a formal description of the processes of argument
construction and aggregation.

A basic schema for a “logic of argument” (LA) is summarised in (1):

Knowledge base Situationf_a (Claim : Warrant : Qualifier (1)

We start with e&knowledge base, a collection of propositions and rules about a domain,
and a collection of propositions that describe a specific situation. The turn-style stands for
a set of inference schemas that define valid argument constructions based on this informa-
tion. There are several options for these axioms here but, whatever the choice of axioms,
theargument termis a triple of elements (on the right) consisting of

o theClaimwhich the argument deals with;

o the Warrant!* is a representation of the theories, facts and rules drawn from the
knowledge base instantiated with information about the specific situation in which
the argument has been constructed;

e aQualifier that represents the confidence in the claim as warranted by the argument.

A set of inference schemas for LA is given in Table 2. The Greek charagteys

o represent propositions (which can play the role of the assumptions or the claim of an
argument) and\, v, — are the usual logical connectives)d, or andnot. The schemas

14 Elsewhere we have sometimes used the term “grounds” for this component of the argumentation term.
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have theform of conventional premise-conclusion rules, but they may not havéothe

of a classical deductive rule in which the conclusion can be only true or false. According
to [1] an argument has three elements, the claim, the warrant and the qualifier. For clarity
the warrant is omitted from the schemas in Table 2.

Arguments affect confidence in a claim but may not be categorical. It may not even
be possible to say by how much an argument affects confidence, just perhaps that it is
increased or decreased. The representation for confidence is the qualifier. This can take
many possible forms. For example, it can merely say that an argument “supports” a claim
or “opposes” it, meaning that the argument increases or decreases our confidence in a
claim but does not indicate by how much. In Table 2 we use two other qualifigfs, “
and “++", where + indicates the argument increases confidence while is the top
symbol, meaning the argument increases confidence in the claim to a maximum (though
again without giving a quantitative interpretation for this maximum). Qualifiers can also
be represented by variable symbols, Q, Q' etc.

The rules are presented in the Gentzen style with a set of introduction and elimination
schemas. In each schema the assumptions of the argument are above the horizontal bar
and the conclusion (claim) below. For instance the and-introduction schethagn be
read as: if we have some level of confidence Q ($3yin a claimg and confidence Q
(say++) in ¢, then confidence in the conjunction @fand+ is the minimum of Q and
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Q' (i.e.,+ as the “weakest link” in the argument). The or-elimination schewts) Ghould
be read as: if by assumingis the case in the current situation we can concluds the
case with confidence’Qand by assuming is the case thea is the case with confidence
Q’, and we know eithep Vv v with confidence Q, then we can conclugevith a level of
confidence that is the minimum of Q/ @nd @' .1°

The usual interpretation of classical logic includes the axiom of the “excluded middle”.

In probability theory we have an analogous constraint that if there is evidence that increases
the probability of hypothesis H then this necessarily implies a reduction in the probability
of —H. In the version of LA in Table 2 the not-introduction schema serves an analogous
function. If we assume that some claimis the case, but this leads to a contradiction
with some confidence Q then this entails the existence of an argument with confidence
Q in the complementary claimg. In the clinical systems described above this axiom is
not enforced. This is because when eliciting knowledge from clinicians there is a strong
tendency to describe positive associations between symptoms and diseases, while symptom
absence is not interpreted. Such systems are therefore more similar in spirit to systems
based on intuitionistic logic, which also excludes the EM axiom, than classical logic though
formalisations of LA like that above can have standard axioms and theorems.

Just as LA does not impose a unique set of axiom schemas the argumentation approach
does not commit us to a particular representation of confidence. The representation in Ta-
ble 2 uses just the qualifiefs-, ++}. However, in many real world applications it is natural
to extend this set of symbols, to include the symHels——} where — indicates that the
argument “opposes” a claim and — “rebuts” it [5].

Quantitative uncertainty representations are also possible. For example, qualifiers can
be integers, as in the RAGs genetics risk assessment system described above, where each
domain rule had an integer from {1,2,3} to represent low, medium and high confidence
in the argument. Alternatively we may take a more orthodox approach, attaching a value
from the[O, 1] interval, which could be taken to represent a conditional probability of the
truth of the claim conditioned on the “evidence” embodied in the premises of the argument.
Simon Parsons and | have argued that under appropriate technical constraints an argumen-
tation proof procedure can be constructed that is equivalent to a standard Bayesian decision
procedure [6].

Another important observation is that there is no objection to the use of “linguistic”
qualifiers in an argumentation system if we can give a clear meaning to such terms.
Toulmin’s example used the qualifier “presumably” though he relies on our intuitions
as English-speaking readers rather than providing us with a definition of its meaning.
Krause and Clark [16] discuss a range of more formal proposals for linguistic qualifiers
and Elvang-Ggransson et al. [2,3] formalize a set of “linguistic” qualifiers based on the
consistency relationships between arguments for and/or against a claim. We return to the
subject of linguistic qualifiers in a moment.

LA is a well-defined system on which to base a mechanical process for generating
arguments, using a knowledge base formalised as a theory in an appropriately extended

15 | am indebted to Paul Krause for providing this formulation of LA.
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first-order logic. Krause et al. [17] describe a theorem-prover that implements the logic in
Table 2.

1.2.3. Argument aggregation and epistemic states

We saw from the informal presentation of argumentation (Fig. 6) that the production
of arguments is only part of an argument-based reasoning system@gdBggating over
collections of arguments we can induce an ordering over a competing set of claims. In the
situation where arguments have attached confidence coefficients, saghasor prob-
abilistic weights, we can apply an appropriate aggregation function to yield quantitative
degrees of confidence in the competing claims [16]. Bayes’ rule for revising probabilities
in the light of evidence for competing hypotheses is one such aggregation function, the ex-
pected utility model advocated by Lindley is a further extension, and there are many other
possible aggregation methods.

Other aggregation functions can be employed when there is no information about the
absolute or relative weights attached to arguments. Since we can construct arguments that
are purely symbolic under the rules of LA (e.g., arguments that increase confidence in a
claim but do not indicate by how much) the aggregation process is less obvious. However,
suppose we have three supportirg @rguments for one claim, two supporting arguments
for another, and just one argument for a third then there is an obvious natural order over the
claimseven though we have provided no quantitative interpretation of the level of support
provided by each argument. This aggregation is justified by the “principle of insufficient
reason” introduced by Keynes, which says that if an agent has no reason to assign different
levels of confidence to competing hypotheses it may reasonably assign equal levels of
confidence. A minor variant of this principle warrants assigning equal levels of confidence
to all arguments if there is no reason to do otherwise.

A general model for aggregation is

{(Claim : Warrant : Qualifie)r} — (Claim : Commitment (2)

Which defines a mapping from the set of arguments for/against a claim into a “com-
mitment” about the claim. In this model arguments are tentative and revisable, while
commitments are states of knowledge thatenteenched, which is to say the agent may
be unwilling to give them up in the face of counter-arguments. Such entrenchment seems
irrational but may in fact be quite understandable in real-world settings. For example an
agent may deny or argue against counter-evidence for its claim in preference to accepting
it which could incur a risk of being held liable for consequences of the “error” or exposure
to charges of incompetence.

1.2.4. Annotation of arguments and the concept of belief

Aggregation is not the only function that can map from collections of arguments onto
epistemic states. Another is called “annotation” because it enhances an agent’s ability to
describe its current view or representation of its beliefs.

As natural language users we routinely use annotations. We do not just say “I'm starting
the flu” but also “itis {conceivable, possible, likely, pretty certain, ...} that I'm starting the
flu”. Your doctor does not just say “you have got athlete’s foot” s/he will just as often say
“I {fassume, suspect, doubt, believe, am certain/uncertain} that you {have, may have, could
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have} the flu“ and so on. This vocabulary is augmented by lexical and affixal negation (e.g.
not possible, impossible), hedges (e.g., {quite, very, highly} plausible ...), elaborations
(e.g., “it appears to be the case that ...”, “there are persuasive reasons to think ...”) and
many other everyday constructions.

The existence of this large sub-language of English and other natural languages has
long puzzled linguists, psychologists, philosophers and others. Logicians view some of the
terms asnodal operators, while others see them as mere stylistic decorations, of no formal
significance. Social scientists may explain them in terms of conversational conventions,
signalling a particular emphasis or serving an auxiliary social or pragmatic function.

| would add a further possible function for the many linguistic terms that we use to talk
about our beliefs. If | say “its possible that (I'm starting a cold)” | intend to communicate
something like “I have grounds to think | may be getting a cold (such as a sore throat,
sneezing etc.) but there is also at least some reason to believe that | may not (e.g., (1)
| already had a cold just last week; (2) | had the same symptoms yesterday but nothing
happened, (3) my throat is onfightly sore)”. In everyday communication we have not
the time to go into detail so if our language allows us to communicate our epistemic state
with a built in summary of the reasons for that state so much the better. In short, | suspect
(sic!) that our large lexicon of uncertainty terms has a direct communicative function.

We see exactly this kind of phenomenon in medical and other guidelines. For exam-
ple a guideline published by the International Agency for Research on Cancer sets out a
standard terminology for talking about categories of risk associated with chemical com-
pounds: a carcinogen nfirmed if there is epidemiological data and/or an established
causal relationship between cancer and the compquosdible if a potential hazard has
been recognisedirobable if there is better evidence than merely recognition of possible
carcinogenic activityimprobable if there is possible carcinogenic activity, but strong evi-
dence against), and the riskaguivocal if a hazard recognised and there is evidence both
for and evidence against.

This might be nothing more than a minor linguistic observation, with no formal in-
terest except that it is possible to develop a logical system based on this idea. Elvang-
Ggransson et al. [3] define a set of logical “acceptability classes” for talking about belief
in some proposition P based solely on the logical properties of the set of arguments for
and against P. These acceptability classes define a completely ordered set of predicates for
expressing confidence in P from low to high:

P isopen

if it is any well-formed formula in the language of the logic
P issupported

if an argument, possibly using inconsistent data, can be constructed
P isplausible

if a consistent argument can be constructed (we may also be able to construct a consistent
argument against)

P isprobable
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if a consistent argument can be constructed for it, and no consistent argument can be con-
structed against it.

P isconfirmed

if it satisfies the conditions of being probable and, in addition, no consistent arguments can
be constructed against any of the premises used in its supporting argument

P iscertain

if it is a tautology of the logic (meaning that its validity is not contingent on any data in the
knowledge base).

In the foregoing we have explored a wide range of phenomena concerned with ideas
about uncertainty and belief, and suggested that these and other notions like probability,
possibility can be derived by analysing patterns of argument. A common view of such
terms in logic is to treat them as modals, basing their semantics on a possible-world for-
mulation. This is a well-developed position but expensive in the sense that modal logics
have well known difficulties compared with standard predicate logic, and proving such log-
ics as mathematically sound and complete is time-consuming and demanding. This may be
an important thing to do if you are a logician, but not if you are trying to understand the
use of modals in natural language or trying to build an agent that can use modal terms in
its reasoning and user interface

My position is that these so-called modal terms are “epistemic states”, predicates that
evaluate properties allections of arguments about claims. The use of epistemic states
may be mathematicallgd hoc yet they provide a useful vocabulary for an agemnteftect
upon its beliefs and their justification, anommunicate succinctly with other agents about
the confidence to be attached to its claims. In this respect we follow John McCarthy in his
article “ Modality, S! Modal logic, No!” where he remarks “Human practice introduces
new modalities on aed hoc basis. . . . Intoducing new modalities should involve no more
fuss than introducing a new predicate. In particular, human-level Al requires that programs
be able to introduce modalities when this is appropriate” [19].

Mathematicians and logicians are rightly suspicious of anything that ikoc, by
which they mean unprincipled, particularly where there is already some well established
alternative like modal logic. An implication of Elvang-Ggrannson’s work is that despite
appearances we can construct a sound and useful set of logical predicates for talking about
beliefs and other cognitive states whose semantics can be put on a sound footing.

1.3. Summary and conclusions

The modern concept of mathematical probability is widely taken to be the normative
standard for reasoning under uncertainty and the formulation of rational beliefs. However
this position has often been questioned on a variety of grounds and the issues never seem
to be quite settled. The rise of the cognitive sciences in the last quarter century has led to
an explosion of new questions about the sufficiency of probability theory for dealing with
problems in artificial intelligence, psychology, linguistics and other areas concerned with
the nature of cognitive agents. Three lines of argument (historical, practical and anthropic)
have been presented which support the view that traditional formalisations of probability
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leave important questions about uncertainty and belief unresolved. An account of knowl-
edge and decision-making based on log&gumentation has been presented that appears

to unify diverse intuitions about the nature of probability and belief. These discussions are
substantiated by examples from clinical medicine. However, there are few truly new ideas
in this field and previous discussions by Keynes, Hacking, Toulmin, Simon and others sug-
gest that the problems and proposals discussed here are not specific to the medical domain.
The central claim is that some general form of argumentation underpins all the compet-
ing ideas about probability, and developments in artificial intelligence and non-classical
logics suggest ways of formalising this class of system in order to resolve some of the
epistemological and technical issues that they were not in a position to address.
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