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Abstract Prostate cancer (PCa) accounted for over 300 000 deaths world-wide in 2018. Most
of the PCa deaths occurred due to the aggressive castration-resistant PCa (CRPC). Since the
androgen receptor (AR) and its ligands contribute to the continued growth of androgen-
dependent PCa (ADPCa) and CRPC, AR has become a well-characterized and pivotal
therapeutic-target. Although AR signaling was identified as therapeutic-target in PCa over
five-decades ago, there remains several practical issues such as lack of antagonist-bound AR
crystal structure, stabilization of the AR in the presence of agonists due to N-terminus and
C-terminus interaction, unfavorable large-molecule accommodation of the ligand-binding
domain (LBD), and generation of AR splice variants that lack the LBD that impede the discovery
of highly potent fail-safe drugs. This review summarizes the AR-signaling pathway targeted
therapeutics currently used in PCa and the approaches that could be used in future AR-
targeted drug development of potent next-generation molecules. The review also outlines
the discovery of molecules that bind to domains other than the LBD and those that inhibit both
the full length and splice variant of ARs.
ª 2020 Editorial Office of Asian Journal of Urology. Production and hosting by Elsevier B.V. This
is an open access article under the CC BY-NC-ND license (http://creativecommons.org/
licenses/by-nc-nd/4.0/).
1. Introduction

The number of men living with prostate cancer (PCa) is
increasing around the world with over 20 million men ex-
pected to live with PCa in 2024. Global statistics on cancer
(GLOBOCAN 2018) indicate that 1 276 106 new PCa cases
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were diagnosed and 358 989 deaths due to PCa were re-
ported in 2018 [1]. This accounts for 7.1% of the total
cancer incidence and 3.8% of the total cancer-related
deaths in the world [1]. Patients with PCa that receive an
early diagnosis and are without metastases have a 100%
ity.
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five-year survival rate, while those with PCa that has
metastasized have a lower five-year survival rate [2]. The
majority of patients are diagnosed at an early stage,
attributed thanks to population-based screening with
prostate-specific antigen (PSA) testing and digital-rectal
examination, and only about 10%e30% of the patients
present with high risk disease [3]. These high-risk disease
patients have PCa with Gleason scores of greater than 7 and
have higher proliferative indices. Surveillance and Epide-
miology and End Results (SEER) database indicates that
more than 80% of the PCa detected at the time of diagnosis
are localized, while 12% are regional metastases, and only
about 4%e5% are distant metastases [2]. PCa has several
risk factors, which include age, race, genetics, and obesity.
An increased risk in African American population compared
to Caucasian American population, and in monozygotic
twins compared to dizygotic twins has been frequently
observed [2].

2. Androgens and androgen receptor (AR) in
PCa

Huggins and Hodges [4] in 1941 discovered that the growth
of the prostate and PCa is androgen-dependent and that
PCa responds to a decrease in circulating testosterone by
castration. This seminal finding has provided the indication
to target the AR pathway to treat PCa for over 70 years.
Although PCa is classified based on the Gleason score (the
higher the score, the more aggressive the disease), it is also
classified based on the expression of AR, the therapeutic
target [5,6]. At the time of presentation, almost all cases of
PCa are AR-positive [7,8]. However, persistent inhibition of
the AR signaling pathway alters the course of the disease to
an AR-negative phenotype in 10%e20% of the cases; these
cases are referred to as more stem-like disease or neuro-
endocrine PCa [9]. One of the common features of the
neuroendocrine disease is an absent or low expression of
the AR [9]. Neuroendocrine PCa is an aggressive form of PCa
with no targeted-therapeutics [10e12]. The readers are
referred to other reviews for more information on the
neuroendocrine PCa [11,13].

The fact that androgens increase the incidence of PCa
has been established, and a prospective analysis of twenty
studies was performed, where the risk of PCa was
compared to levels of serum testosterone. Since serum
testosterone has a broad-range (200e800 ng/dL), the pa-
tients were stratified into top and bottom deciles [14]. Men
who had the lowest 10th percentile of serum testosterone
had the lowest risk of developing PCa, while men who were
at the highest 10th percentile of serum testosterone had
the highest PCa risk. These and other clinical trials clearly
suggested that androgens and AR are the drivers of PCa
development. In addition, serum PSA, which is an AR
target-gene, has been used as a PCa biomarker. Despite
controversies surrounding serum PSA screening [15], it still
remains to be the only available serum marker for detec-
tion of PCa and for determining therapeutic responses.

Before 2010, advanced castration-resistant prostate
cancer (CRPC) was managed with docetaxel [16], however
since then a few treatment options that target the AR
signaling pathways have been approved, in the form of
either androgen-synthesizing enzyme inhibitors or direct AR
antagonist [17e23]. Persistent inhibition of the AR
signaling-pathway to inhibit the growth of PCa results in a
more aggressive disease, known as CRPC, which is respon-
sible for majority of PCa-related deaths [24]. PCa is clas-
sified as CRPC when serum PSA levels rise despite low
castrate-level serum testosterone (less than 50 ng/dL)
[24,25]. Earlier, CRPC was considered to be androgen-
independent PCa (AIPC) due to the evidence that the can-
cer grows in the absence of testosterone (castrate-level
testosterone is considered in the range of extremely low to
absent). However, recent evidence suggests that the AR
adapts itself to the new environment and is still the driver
of CRPC, despite castrate-level of serum testosterone.

3. AR dependence of CRPC

The majority of the approximately 360 000 deaths each
year from PCa occur due to metastatic CRPC (mCRPC).
CRPC is still dependent on androgen-signaling, and almost
all the pathways that promote CRPC growth converge into
the AR. Various mechanisms that contribute to continued
CRPC growth include: AR over-expression where the AR
becomes hypersensitive to the extremely low levels of an-
drogens; AR promiscuity, where the AR is activated by a
broad-spectrum of hormones such as progesterone and
glucocorticoids; AR activation by non-canonical pathways
such as growth factors and intracellular signaling pathways;
AR variants (AR-Vs); intra-tumoral androgen-synthesis from
adrenal-precursors; and AR coactivators that augment the
function of the AR [26e29]. CRPC has a tendency to escape
by one or the other alternate route and hence inhibiting the
final convergence point, AR is efficient to address the
continued progression of the CRPC. Several advanced
therapeutics provide an efficient blockade of AR signaling,
but still the therapeutic response in CRPC is short-lived and
the disease escapes the treatment paradigm, resulting in
the patient’s death.

4. Treatments targeting the AR signaling
pathway for androgen-dependent PCa and
CRPC

Several approaches have been developed to target the AR
signaling pathways and reduce the growth of CRPC. The
targets that are altered with drugs or molecules are sum-
marized in Fig. 1. The approaches used thus far include
blocking the ability of gonadotropins to induce the syn-
thesis of testosterone in the testes, inhibiting the androgen
synthesis in the testes by blocking one of the upstream
enzymes, inhibiting the conversion of testosterone to
dihydrotestosterone (DHT) by 5-a-reductase (5aR) in-
hibitors, or inhibition of the AR itself. Unfortunately, irre-
spective of the strategy used, a brief response is obtained
followed by a cancer relapse.

4.1. Estrogens

Interestingly, Dr. Huggins’ Nobel-prize winning work
demonstrated that PCa growth can be controlled either by



Figure 1 Hormone-synthesis pathway and various targets that are currently used or considered to inhibit prostate cancer growth.
Clinically cyp-17 enzymes, 5-a reductase, and AR are validated as therapeutic targets and drugs targeting them are available.
Preclinically HSDs have been validated, but yet to be extensively tested in the clinic. AR, androgen receptor; DHEA, dihy-
droepiandrosterone; DHEAS, dehydroepiandrosterone sulfate; DHT, dihydrotestosterone; HSD, hydroxysteroid dehydrogenase.
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androgen-deprivation therapy (ADT) or by using a high-dose
of estrogen-therapy [4,30]. Based on this work, diethylstil-
bestrol (DES) became a standard of care for patients with
PCa. DES and other estrogens function by two mechanisms,
one by inhibiting the hypothalamus-pituitary-hypogonadal
(HPG) axis, and the other by increasing sex-hormone bind-
ing globulin (SHBG) [31,32]. More than 90% of the serum
testosterone is SHBG-bound with only a fraction being free
testosterone and this free testosterone is the functional AR
ligand [33,34]. Conversely, androgens inhibit the SHBG
expression so that abundant free testosterone is available,
while estrogens increase the SHBG expression. Taking
advantage of this biology, estrogens were administered to
increase the SHBG levels, resulting in more testosterone
bound to SHBG and limited free testosterone left in circu-
lation to be effective. Based on this hypothesis and historical
results with estrogens, GTx, Inc. (Memphis, TN, USA) con-
ducted a phase II clinical trial in 2012 with a non-steroidal
estrogen receptor (ER) agonist, Capesaris (GTx-758).
Administration of Capesaris to CRPC patients caused a dose-
dependent increase in SHBG levels and a decrease in free-
testosterone [35]. Despite the advantage of ER-targeted
therapy for PCa, major adverse-effects such as venous
thromboembolism and estrogenic proliferative actions on
PCa cells contributed to the discontinuation of estrogen-
based therapy for advanced PCa [31].
4.2. 5aR inhibitors

Although testosterone is the predominantly circulating hor-
mone, it is converted to DHT in local tissues such as prostate
and skin by the enzyme 5aR [36]. DHT is more potent than
testosterone by at least ten-fold and it stably binds to and
activates the AR LBD at lower concentrations than testos-
terone [37,38]. It was hypothesized that blocking the con-
version of testosterone to DHT by inhibiting 5aR might inhibit
the local conversion of testosterone to highly potent DHTand
thereby reduce PCa growth. Preclinical studies to evaluate
the role of 5aR in PCa were initiated in the 1970s. Several
early compounds such as 6-methyl progesterone [39], 4-
methyl-4-azasteroid [40,41], 4MA [42] were synthesized and
evaluated. Administration of these compounds to Dunning
and Noble rats and other PCa preclinical models resulted in a
significant inhibition of tumor growth. These studies resulted
in the conclusion that DHT, but not testosterone, is the pri-
mary promoter of PCa growth.

Encouraged by the preclinical results, finasteride, a 5aR
inhibitor that inhibits two out of the three isoforms (iso-
forms 2 and 3), was advanced to the clinic. However, it was
advanced to treat benign prostate hyperplasia (BPH), but
not to treat PCa. In a BPH trial, it reduced the serum DHT
levels by 70% and was approved by the Food and Drug
Administration (FDA) for the treatment of BPH in 1992
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[43,44]. Subsequently, dutasteride, another 5aR inhibitor
that inhibits all three isoforms of 5aR, was approved in 2001
for the treatment of BPH [45,46].

The 5aR inhibitors were also evaluated to potentially
prevent PCa, and in PCa prevention trial (PCPT), the fi-
nasteride arm exhibited a 25% reduction in PCa incidence
[47,48]. Comparable results were obtained with dutas-
teride in the reduction by dutasteride of PCa events
(REDUCE) trial [49]. Despite these reasonably impressive
results, and limited adverse effects in both the trials, 5aR
inhibitors prevented only low grade PCa, i.e., PCa that had
Gleason score <6. Peculiarly, the incidence of high grade
tumors was higher in the 5aR inhibitors arms in both trials.
Although the mechanism for these confounding results was
unclear, it was hypothesized that due to shrinkage in the
prostate, the proportion of high-grade cells in the remain-
ing prostate became easily detectable. Currently, there are
no 5aR inhibitors that are approved for the treatment of
PCa or CRPC.

4.3. Androgen-synthesizing enzyme inhibitors

Considering that several enzymes can catalyze the con-
version of precursors to testosterone, it is difficult to inhibit
a single downstream androgen-synthesizing enzyme [50].
One of the most prominent among the androgen-
synthesizing enzymes that could be therapeutically tar-
geted is the cyp17 class that contains lyase and hydroxylase
[17]. In addition to their role in androgen synthesis, cyp17
enzymes have also been shown to be increased in tumor
specimens compared to benign tissues, indicating their
potential role in continued tumor growth [51].

The earliest compound that was shown to have an
inhibitory effect on the cyp-17 enzymes and downstream
testosterone levels was ketoconazole. Administration of
ketoconazole, an anti-fungal drug, resulted in a dose-
dependent inhibition of the serum testosterone and long-
term administration resulted in a sustained inhibition of
serum testosterone levels [52]. Experiments in rat testes
determined that ketoconazole inhibited the steroidogene-
sis by inhibiting cyp17 enzymes (17-a hydroxylase and
17,20-desmolase), but not 17-b hydroxysteroid dehydroge-
nase (17-b HSD) activity [53]. Due to poor metabolic and
pharmacokinetic (PK) properties, as well as unwanted side-
effects, ketoconazole was not pursued as a treatment for
PCa. However, these early studies were a good proof-of-
concept, demonstrating that cyp17 class of enzymes was
a promising therapeutic target to treat PCa and CRPC.

The ketoconazole results were a catalyst to screen for
molecules that bind to and inhibit the cyp-17 enzyme class.
In the 1990s, a Cancer Research UK team discovered a se-
ries of steroidal cyp-17 (17-a hydroxylase-C17,20-lyase)
inhibitors that had nanomolar potency in binding and
inhibiting the enzyme action [54]. The lead-molecule
(abinraterone acetate) was patented and the initial phase
I and II clinical trials were conducted by Cancer Research
UK team with the support of Cougar pharmaceuticals. Late-
stage phase III clinical trials, which were conducted by
Johnson & Johnson pharmaceuticals, showed that mCRPC
patients treated with abiraterone acetate lived about 4.5
months longer than those who were treated with placebo
(15.8 months vs. 11.2 months). The LATITUDE (patients
previously treated with chemotherapy) and STAMPEDE
(patients not previously treated with hormonal therapy)
trials treated over 3 000 mCRPC patients with 1 000 mg
abiraterone acetate (after overnight fasting) and predni-
sone combined with the standard ADT. Since abiraterone
acetate inhibited the entire steroidogenesis, the patients
had to be co-administered with prednisone to reduce the
corticosteroid excess due to the lack of negative feedback
regulation of the hypothalamus-pituitary-adrenal (HPA)
axis. The drug was approved in 2011 for use in men with
mCRPC [18,55]. In addition to the patients previously
treated with chemotherapy, abiraterone was evaluated in
patients who were not previously treated with chemo-
therapy. In this trial, abiraterone arm did not reach the
median survival, while prednisone group had a 27.2 months
median survival [56].

Subsequently, abiraterone was evaluated in high-risk
non-metastatic CRPC (nmCRPC) patients who have higher
or rising PSA without any evidence of bone or visceral
metastasis (IMAAGEN trial) [57]. Patients who received
abiraterone acetate and prednisone demonstrated a
greater than 50% reduction in serum PSA in a study that was
recently completed in 2018.

4.4. HPG axis modulators

Another approach to inhibit androgen synthesis and subse-
quently PCa growth is to inhibit the HPG axis [58]. The
hypothalamus synthesizes gonadotropin-releasing hor-
mones (luteinizing-hormone releasing hormone [LHRH] and
follicle-stimulating hormone releasing hormone [FSHRH]),
which in turn stimulates the pituitary gland to release go-
nadotropins, leutinizing and follicle-stimulating hormones
(LH and FSH) [59]. These gonadotropins stimulate the testes
to synthesize testosterone. When abundant testosterone is
synthesized, the testosterone through negative-feedback
inhibits further release of gonadotropins. This concept
was used to inhibit testosterone synthesis and reduce PCa
growth and there are currently two drugs in the market that
are being used as ADT. Leuprolide and Degarelix are
gonadotropin-releasing hormone (GnRH) analogs that are
approved to be used as ADT in androgen-sensitive PCa
[60,61]. Although GnRH analogs are recommended as ADT in
advanced androgen-dependent PCa they are still used in
combination with other AR- and enzyme-targeting agents in
advanced CRPC. Analysis of clinical evidences with the
GnRH analog, leuprolide, indicates that greater than 90% of
the patients achieved nadir levels of serum testosterone
[62]. Despite the suppression in the testosterone synthesis,
PCa escapes GnRH treatment and becomes CRPC at which
point this line of treatment is ineffective.

4.5. Other experimental androgen-synthesizing
targets and agents

One of the promising therapeutic targets in the androgen-
synthesizing machinery is aldoketo reductase 1C3 (AKR1C3)
or also known as 17-b HSD5 [63]. AKR1C3 catalyzes the
conversion of androstenedione (4’dione) to testosterone in
extragonadal tissues such as the prostate. Elegant work by
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Dr. Fernand Labrie [64] demonstrated that despite a com-
plete reduction in serum testosterone levels after castra-
tion by over 90%, the total androgen pool was reduced by
only 60%, indicating that adrenals continued to synthesize
androgens. Adrenals synthesize dihydroepiandrosterone
(DHEA) and DHEA sulfate (DHEAS), which are converted to
testosterone in the prostate by AKR1C3 and then to DHT by
5aR. In addition to this canonical pathway, AKR1C3 also
uses a non-canonical pathway to synthesize DHT from 17b-
diol. AKR1C3 has been shown to be highly expressed in both
PCa cell lines and in aggressive forms of CRPC, which is
considered to be an adaptive response to low levels of
androgens, and to intra-tumorally promote active androgen
synthesis from precursors. In addition, AKR1C3 might also
have an AR coactivator function, which would make it one
of the first pharmacologically-targetable coactivators [50].
Several AKR1C3 inhibitors have been developed, all of
which show promising results in preclinical CRPC models
[50,65,66]. However, a clinical trial with one of the in-
hibitors failed to demonstrate any efficacy [67]. There
could be several reasons for this lack of efficacy, one of
which could be the use of bypass pathways by the cancer
cells to synthesize DHT from precursors.

5. AR

Other than the cyp17 enzymes, the only reliable target in
the androgen signaling pathway is the AR itself. AR is a
member of the nuclear hormone receptor family of ligand-
activated transcription factors. AR has been the most reli-
able therapeutic target in treating PCa and CRPC, which is
not surprising considering that almost all cases of PCa at
origin and most cases of the CRPCs are androgen-
dependent.

5.1. AR ligand binding domain (LBD)

The AR consists of an N-terminus domain (NTD) that is
comprised of the activation function-1 (AF-1) domain that
mediates the majority of the AR transcriptional activity, a
DNA binding domain (DBD) that is responsible for binding to
the DNA, a hinge region important for nuclear localization,
and lastly a LBD to which all natural and synthetic ligands
bind. The AR-LBD consists of AF-2 and 11 helices that are
important for the conformation of the LBD and for the
binding of various cofactor proteins [68,69].

In order to discover molecules that target the AR or any
other protein, the crystal structure of the protein needs to
be resolved so that chemical structures can be modeled in
the relevant binding pocket for appropriate fit. The AR-LBD
has been crystalized in the presence of agonists and a non-
steroidal tissue-selective AR modulator (agonist) [70,71].
The crystal structures of AR-LBD bound to antagonists
namely bicalutamide-bound AR-LBD and cyproterone-
bound AR-LBD have been resolved with W741L or T877A
AR-LBD, respectively wherein bicalutamide and cyprot-
erone are agonists and not antagonists [72,73]. Unfortu-
nately, the AR-LBD crystal structure in the presence of an
antagonist has not yet been resolved [69].

The AR protein is atypical compared to other steroid
receptors as it gets stabilized in the presence of its
agonists, while other receptors such as estrogen receptor
(ER) and progesterone receptor (PR) get ubiquitinated and
proteasomally-degraded in the presence of their agonists
[37,74e76]. Also, unlike ER or other hormone receptors,
full-length AR protein or the AR-LBD forms tight complexes
with chaperones in the absence of agonists, making it
difficult to purify. Lack of purified unliganded AR-LBD hin-
ders the development of reliable competitive AR binding
assays for ligand screening. While ER-LBD has been crys-
talized with both agonists (estradiol) and antagonists (4-
[OH]-tamoxifen and fulvestrant), AR-LBD has been crys-
talized only with agonists such as testosterone, DHT, and
R1881 (synthetic steroidal androgen) and with non-steroidal
tissue-selective AR agonists [77,78]. The reason why the
AR-LBD crystal structure could not be resolved and what is
unique about the AR-LBD that prevents its structural
elucidation, remains important unanswered questions. The
only information that is currently available comes from
limited trypsinization studies and cofactor-interaction
profiling that indicate that the AR conformation in the
presence of agonists and antagonists is distinct [79,80].

Similar to the other hormone receptor LBD domains, AR-
LBD is also comprised of an a-helical structure. While other
steroid receptor LBDs contain twelve a-helices, AR-LBD has
only eleven a-helices as it lacks helix 2 [69]. They are
stacked as a sandwich with helix 12 forming the core of the
ligand-binding pocket (LBP). From the crystal structures of
ER-LBD, it has been determined that the helix 12 functions
as a lid which tightly closes in the presence of agonists to
hold the ligand tightly in its pocket, facilitating coac-
tivators to bind, while it opens up in the presence of an-
tagonists due to bulky side-chains. From the agonist-bound
AR crystal structures, it was determined that the steroidal
ligands interact with four key amino acids, R752, Q711,
N705, and T877 [69]. Interestingly, the agonists, both nat-
ural and synthetic non-steroidal, bind to the AR in pico-
molar to nanomolar range similar to other hormone
receptor agonists, while the antagonists bind and modulate
the activity of the AR in the sub-micromolar range, a range
that is higher than that of the other hormone receptor
antagonists. Discovering more potent antagonists requires a
knowledge of the structural information of the AR-LBD,
resolving which seems to be an arduous task with the
currently available technologies. Collective observations
from previous studies suggest that the AR-LBD is structur-
ally unique compared to other hormone receptor LBDs.

5.2. Outline of techniques used in the discovery of
AR antagonists

With the absence of an antagonist-bound AR-LBD structure,
targeting the AR needs to go through a systematic discovery
paradigm to identify next-generation AR antagonists to
treat CRPC (Fig. 2). Structures of the currently known AR
antagonists are provided in Fig. 3. Currently, improve-
ments in existing molecules’ backbones are the more
logical approaches as starting points. The molecules syn-
thesized by the chemists undergo a series of tests starting
with the competitive LBD-binding assay; this assay is con-
ducted using either purified protein from constructs grown
in E. coli or baculovirus or in cell-based system using one of
the 3H androgens (mibolerone or R881). After the discovery
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of EPI-001 and other molecules that bind to domains
different from the LBD [81e83], the competitive LBD-
binding assay has become less relevant and the AR func-
tional assay has become more critical. Whether a molecules
binds to the AR-LBD or not, an AR transactivation assay in
an antagonist mode in the presence of 0.1 or 1 nmol/L
androgen (R1881 or DHT) will determine whether the syn-
thesized molecule(s) is/are antagonist(s). While conducting
these studies, it is important to compare against standard
AR antagonists such as enzalutamide or EPI-001 or others
that could differ between laboratories according to their
internal practices. If a molecule is an AR antagonist, further
studies in PCa cells such as gene expression and cell pro-
liferation will provide additional information on the po-
tency and efficacy of the compounds. In addition, after the
recent discovery of PROTACs (proteolysis targeting chi-
Figure 2 AR antagonists screening paradigm. AR, androgen recep
LBD, ligand binding domain; MLM, mouse liver microsome; PCa, pro
receptor.
meras) and other degraders (selective androgen receptor
degraders [SARDs]) [82,84], performing Western blots using
protein extracts from PCa cells treated with the compounds
might provide information on whether a particular mole-
cule is a degrader.

After the in vitro screening, the optimum molecules
would be evaluated for metabolism properties in liver mi-
crosomes obtained from mice (MLM), rat (RLM), and humans
(HLM). Molecules with a long half-life and less clearance are
appropriate for in vivo screening. The Hershberger assay is
a quick in vivo screening assay used to screen AR antago-
nists, where rats or mice will be administered with AR an-
tagonists for 14 days and the effect of the compounds on
AR-target tissues (such as prostate and seminal vesicles)
will be determined. Molecules that are effective in Hersh-
berger assay can be further tested in xenograft studies in
tor; GR, glucocorticoid receptor; HLM, human liver microsome;
state cancer; MR, mineralocorticoid receptor; PR, progesterone



Figure 3 Structures of known AR antagonists that are in the clinical and preclinical stages. AR, androgen receptor.
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immunocompromised mice using standard PCa cell lines or
patient-derived tissues (PDXs). Molecules that demonstrate
significant inhibition in a xenograft model can further be
tested for pharmacokinetic (PK) properties, additional
xenograft efficacy, and safety before a decision is made to
proceed with clinical evaluation.

5.3. First-generation AR antagonists

Flutamide was one of the first-generation AR antagonists
discovered by Schering Plough Corporation (New Jersey,
USA) in the 1960s. It entered the clinic in the 1970s and
became available to the patients around 1985 [85,86]. It
was approved for the treatment of metastatic PCa in
combination with GnRH analogs. Flutamide is metabolized
into hydroxyflutamide, which is the active metabolite of
flutamide with over 10-fold higher affinity to the AR than
the parent compound, flutamide [87]. Flutamide has
moderately inferior PK properties compared to other AR
antagonists such as bicalutamide or enzalutamide. The
recommended flutamide dose for PCa is 250 mg thrice daily
that equals to 750 mg/day. Despite this high dose, fluta-
mide does not completely inhibit the serum PSA levels,
unlike other AR antagonists. In a controlled trial in PCa
patients with metastatic disease, the GnRH analog leupro-
lide alone was compared to patients who received leupro-
lide in combination with flutamide. The combination
treatment increased the progression-free survival (PFS) and
overall survival (although the p values were not impressive
[w0.035]), indicating that the combination treatment may
be more effective than using GnRH alone. Due to the dis-
covery of next-generation AR antagonists, flutamide is not
currently widely used. Even in preclinical comparative
studies, flutamide is not used as a standard comparator.

Bicalutamide (Casodex) is another first-generation
competitive AR antagonist that was approved for the
treatment of advanced PCa in combination with GnRH an-
alogs in 1995. Bicalutamide was discovered by the Imperial
Chemical Institute (ICI), which later became Astra Zeneca.
Although bicalutamide was derived from flutamide, it pos-
sesses a diaryl propionamide structure. Bicalutamide has a
chiral center and it is sold as a racemic mixture, and R-
bicalutamide is more potent than S-bicalutamide. Bicalu-
tamide antagonizes the AR in transient transactivation as-
says at about 4e5-fold lower the half maximal inhibitory
concentration (IC50) than flutamide (stronger) and 8e10
times higher IC50 than enzalutamide (weaker), the second-
generation AR antagonist [88,89]. While flutamide inhibits
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AR both peripherally and centrally causing an increase in
the LH and testosterone levels, bicalutamide inhibits the AR
only peripherally, inhibiting the AR function only in target
tissues, without causing any increase in serum LH or
testosterone [88]. Bicalutamide is orally bioavailable and is
well absorbed. Bicalutamide (50 mg/day) was compared to
flutamide (750 mg/day) in a head-to-head study conducted
in patients with metastatic PCa. Both drugs were adminis-
tered in combination with GnRH analogs [90]. Bicalutamide
combined with a GnRH analog was significantly superior to
flutamide combined with a GnRH analog (p < 0.001). Also,
the study suggested that men with metastatic PCa treated
with flutamide were more likely to relapse compared to
bicalutamide. Despite these advantages in favor of bicalu-
tamide over flutamide, persistent exposure to bicalutamide
causes a mutation in the LBD at W741 that converts bica-
lutamide into an agonist. Crystal structure of bicalutamide
in W741L mutated AR suggests that the B-ring of bicaluta-
mide interaction with the AR was comparable to that of the
DHT-bound AR [73].

Two other competitive first-generation antagonists, nilu-
tamide and cyproterone acetate (steroidal) were discovered
and developed. However, they were not extensively used,
due to either the steroidal structure of the cyproterone or
weaker properties of both the compounds.

5.4. Second-generation AR antagonists

Dr. Charles Sawyers at Memorial Sloan Kettering and Dr.
Michael Jung at University of California Los Angeles co-
discovered a potent competitive AR antagonist, enzaluta-
mide (MDV-3100 or Xtandi) in 2006, which binds to the AR at
least 8e10 folds better than bicalutamide and inhibits AR
by blocking the AR nuclear translocation [89]. Mechanisti-
cally, enzalutamide was superior to the first-generation
antagonists due to its ability to prevent nuclear localiza-
tion. The clinical trials that were conducted with enzalu-
tamide were pivotal as they proved that patients who were
thought to be androgen-independent because their relapse
from AR-targeted agents were after all castration-resistant
and continue to depend on the AR signaling axis. As AR is a
transcription factor, it translocates into the nucleus to bind
to the DNA and alters the expression of target genes. The
hypothesis behind the discovery of enzalutamide was that if
the AR is prevented from translocating into the nucleus,
then it cannot be activated by either androgens or by
growth factors. Although enzalutamide was not potent
in vitro when compared to picomolar or nanomolar antag-
onists of other nuclear receptors such as ER, PR, or GR,
in vivo performance was excellent due to its superior PK
properties. Enzalutamide belongs to the hydantoin struc-
tural series that is distinct from the diarylpropionamide
backbone of bicalutamide and the anilide backbone of
hydroxyflutamide. A phase III clinical trial (AFFIRM) in 1 199
CRPC patients who have relapsed while on other chemo-
therapy was conducted with 160 mg/day enzalutamide and
placebo at 2:1 ratio [19]. The median overall survival in
enzalutamide arm was 18.4 months compared to 13.6
months in the placebo arm with a p-value of <0.001. The
favorable response was not only observed in overall sur-
vival, but also in PSA reduction, soft-tissue response, the
time for PSA progression and other endpoints. The major
side-effect observed with enzalutamide in a subset of pa-
tients was seizure. Enzalutamide was developed by Medi-
vation in partnership with Astellas. Currently, Pfizer
markets enzalutamide (Xtandi) in the US and Astellas
markets globally.

Prolonged treatment with enzalutamide results in a
mutation at the F876 (F876L) in the AR-LBD, switching
enzalutamide to an agonist [91]. Missense AR mutations,
including this mutation (although rarely or infrequently
detected in the clinic), are observed in 20% of the patient
population treated with enzalutamide for a sustained
period [92]. CRPC responds to enzalutamide for 12e24
months before relapsing again due to various reasons,
including the F876L mutation, and AR-Vs, particularly AR-
V7 [93e95].

Another second-generation AR-LBD competitive-
antagonist co-discovered by Drs. Sawyers and Jung group,
apalutamide (ARN-509) that has an almost identical struc-
ture to enzalutamide, and was developed by Janssen
pharmaceuticals [96]. Due to the structural similarity be-
tween enzalutamide and apalutamide, it was expected that
patients treated with apalutamide would also exhibit F876L
mutated AR and the AR-V7 [91]. Since apalutamide was
approved only recently in 2018, the duration of response is
unknown, although phase I trials have detected F876L
mutation in treated patient population [93]. Apalutamide is
thought to have marginally better activity than enzaluta-
mide, but with less seizurogenic effects than enzalutamide
[97].

Another competitive ligand-binding AR antagonist that
was recently approved was darolutamide [98]. It was
developed by Orion pharmaceuticals as ODM-201 and
further developed by Bayer [99]. Darolutamide does not
cross the blood-brain barrier and hence will not likely
have any seizurogenic effects. In vitro studies have shown
that darolutamide is susceptible to the same mutations
that inactivate hydroxyflutamide and bicalutamide. Dar-
olutamide phase III clinical trial was recently completed in
2018 for the treatment of metastatic CRPC.
5.5. Molecules in preclinical testing that binds to
domains other than the LBD

Considering that approximately 30% of the patients treated
with abiraterone or enzalutamide exhibit AR-Vs, variants
that lack the LBD, it has been anticipated that targeting
domains other than the LBD might be beneficial. Recent
blinded-prospective clinical trial in patients with CRPC
demonstrated that those patients who express AR-V7 have
shorter PFS and overall survival (OS), and fail to respond to
enzalutamide and abiraterone [100]. This and other clinical
studies are clear indication that molecules that target the
AR-Vs through the NTD are important. However, due to the
lack of structural information and knowledge of chemical
moieties that might interact with other domains, such a
pursuit is extremely complicated and cumbersome.

One of the essential steps in drug discovery is the
development of an assay to screen for direct binding of
molecules to the target protein. Due to the lack of a



Figure 4 Screening assays to discover molecules to domains
other than the LBD. AR, androgen receptor; LBD, ligand binding
domain.
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competitive-binding assay to domains other than the AR-
LBD, it is not possible to demonstrate a direct binding of
newly discovered molecules. Currently used methods are
biophysical in nature and can only measure indirect in-
teractions. The most widely used method to determine
binding to domains other than the LBD is fluorescence po-
larization (FP) with purified AR AF-1 [81,101]. This tech-
nique measures the shift in fluorescence emission of the
tyrosine and tryptophan amino acid residues in the AF-1 as
a measure to demonstrate the interaction of the com-
pounds with the domain. Using FP and few indirect
biochemical methods, Dr. Sadar’s group [81] discovered the
first-in-class AF-1-interacting molecule (EPI-001). Subse-
quently, a structural analog of EPI-001, EPI-506, was tested
in a clinical trial in CRPC patients. Unfortunately, the
molecule was ineffective even at doses as high as 2.5 g.
Essa biotech that develops the EPI series has gone back to
the drawing board to identify more potent AF-1-interacting
molecules, and they have recently identified another class
of molecules called sinkotamides [102].

Another group at the University of Tennessee Health Sci-
ence Center (Memphis, TN, USA) discovered a series of mol-
ecules that interact with the AR AF-1 and degrade the AR and
AR-V. Several biophysical methods such as FP, nuclear mag-
netic resonance (NMR), and surface plasmon resonance (SPR)
were used to demonstrate the interaction between the small
molecules and the AR AF-1 [82,83]. Although the biophysical
and biochemical methods are compelling, they are not
confirmatory evidence of direct binding.

Discovering molecules that bind to domains other than
the LBD requires reliable screening methods. Biochemical
methods such as transactivation, mammalian two hybrid, or
Western blots determine the effect of small molecules on
the function of either individual domains or the full length
AR. Biophysical methods such as FP, NMR, SPR, and Raman
spectroscopy are used to determine the interaction of a
molecule with full length AR or an individual domain. Most
biophysical techniques are not confirmatory and can only
serve as a screening method. The results from single bio-
physical method require further validation using different
approaches or multiple biophysical techniques. Radioligand
competitive-binding assay or determination of crystal
structure using X-ray diffraction or cryo-electron micro-
scopy (Cryo-EM) are necessary to confirm the binding of
molecules to domains other than the LBD. Absence of these
confirmatory assays disadvantage the discovery of mole-
cules binding to domains other than the LBD. Fig. 4 shows
the potential steps that could be adopted to discover
molecules targeting domains other than the LBD. If a
molecule binds to the LBD, then it could be potentially
evaluated as an AR-LBD-binding-antagonist and traditional
approaches need to be adopted. However, if a molecule
fails to bind to the AR-LBD, but inhibits the AR activity in a
transient-transactivation assay, then it must be tested in
various biophysical methods to determine if an interaction
with a domain other than the LBD could be detected. If
such interaction can be observed using a biophysical
method, then lead optimization using an appropriate bio-
physical method should be pursued. One of the reliable
methods, thermal-shift assay, provides information not only
on the interaction of a small molecule with a protein, but
also on the ability of the molecule to alter the protein’s
conformation. From our experience, this method produces
consistent results [103].

Although AF-1 has become the domain of interest for
discovering drugs targeting AR and AR-Vs, several groups
have also tried to develop drugs targeting DBD, and an
alternate region on the LBD, BF-3 [104e106]. Many of these
preclinical molecules in development are promising and
interesting, however, recent failures of galetrone and EPI-
506 have raised questions regarding the efficacy of mole-
cules other than conventional competitive antagonists
targeting the AR to treat CRPC or PCa. It could also be
possible that extensive treatment of these cancers with
enzalutamide and abiraterone has resulted in disease that
has acquired a completely different pathological charac-
teristics that are no longer susceptible to next-generation
targeted therapeutics. Galeterone and EPI-506 also have
other potential problems such as poor PK properties
requiring the use of extremely high doses to observe effi-
cacy, if any. In addition, EPI-001 (the EPI-506 analog) has
weak in vitro activity, requiring over 30 mmol/L to achieve
any effect in transactivation or gene-expression assays.
Poor efficacy combined with inferior PK properties have
resulted in their failure.

The recent discovery of PROTACs by a Yale group has
triggered interest in chimera molecules. Arvinus has initi-
ated a phase I clinical trial with a PROTAC targeting the AR
[84]. PROTACs are novel set of compounds that are chimeric
molecules that combine known binders of the AR or any
protein of interest with an E3 ubiquitin ligase binder using a
linker. The concept is to bind AR with the known binder and
attract the E3 ubiquitin ligase to the AR for degradation.
Based on this concept several chimeric complex molecules
have been discovered and a lead has entered phase I clin-
ical trial for advanced CRPC. Considering that the chimeric
molecules are greater than 1 kDa, it will be interesting to
see how the oral delivery of such large molecules will be
possible. Moreover, these PROTACs and chimeric molecules
bind to the LBD and do not affect the AR-Vs.
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6. Conclusion

CRPC is an evolving disease that is challenging to treat.
Several new-generation drugs with distinct mechanisms of
action and large windows of safety are required to provide
sustained benefit to patients. Until one of the new mole-
cules with a distinct mechanism shows success in the clinic,
there will be skepticism whether such molecules can pro-
vide therapeutic benefits. Considering the success of ful-
vestrant, an ER degrader, in breast cancer, it could be
expected that degraders of the AR could be successful to
treat CRPC. However, it is still unclear whether the unique
properties of the AR within its susceptibility to ubiquitin
proteasome pathway might play a role in the success or
failure of SARDs. Until reliable structural information or
assays are developed, AR antagonists are likely to lack
potency. In order to be more successful in discovering
highly potent AR antagonists or degraders, it is not only
relevant to discover molecules with similar chemical
structures or backbones, but also crucial to resolve the
crystal structure of the AR-LBD or the full-length AR to
enable improvements in structure-aided drug discovery.
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