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Abstract: Interface modification is an important way to get better performance from organic solar
cells (OSCs). A natural biomolecular material methionine was successfully applied as the electron
transport layer (ETL) to the inverted OSCs in this work. A series of optical, morphological, and
electrical characterizations of thin films and devices were used to analyze the surface modification
effects of methionine on zinc oxide (ZnO). The analysis results show that the surface modification
of ZnO with methionine can cause significantly reduced surface defects for ZnO, optimized surface
morphology of ZnO, improved compatibility between ETL and the active layer, better-matched energy
levels between ETL and the acceptor, reduced interface resistance, reduced charge recombination,
and enhanced charge transport and collection. The power conversion efficiency (PCE) of OSCs based
on PM6:BTP-ec9 was improved to 15.34% from 14.25% by modifying ZnO with methionine. This
work shows the great application potential of natural biomolecule methionine in OSCs.
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1. Introduction

Organic solar cells (OSCs) have become the focus of new energy research worldwide
due to their low cost, light weight, transparency, good flexibility, and large area prepara-
tion [1–3]. OSCs are moving towards commercialization with the continuous improvement
of various research groups on device engineering and the synthetic tailoring of organic
molecules [4–7]. The power conversion efficiency (PCE) and stability of OSCs are still the
main research focus. In the traditional device structure of OSCs, the acidity of the classic
hole transport layer poly(3,4-ethylenedioxythiophene): poly(styrenesulfonic acid) (PE-
DOT:PSS) will corrode the indium tin oxide (ITO) to a certain degree over time, which will
lead to the aging of the device [8–10], while the metal electrodes (such as calcium [Ca] and
aluminium [Al]) with low work function (WF) are unstable due to easy oxidation [11,12].
Inverted OSCs with high WF metals as anodes (such as silver [Ag] and gold [Au]) and mod-
ified ITO as cathodes have been developed to improve these problems. OSCs with inverted
structures have more advantages to device stability and device preparation [13–16].

The introduction of an electron transport layer (ETL) between the ITO electrode and the
active layer is an effective strategy to get better performance from the inverted OSCs [17,18].
A excellent ETL can not only adjust the energy level arrangement between the acceptor
material and the electrode and promote single charge transport, but also modify the active
layer morphology and regulate the built-in electric field of the device [19–24]. Due to
its diverse preparation methods, high transparency, low WF, and high electron mobility,
zinc oxide (ZnO) has frequently been used as an ETL material in inverted OSCs [25–28].
However, ZnO film prepared by the sol-gel method has some disadvantages such as
uneven surface morphology, poor contact with the active layer, and high surface defect
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density [29–32]. Among them, the uneven surface morphology of ZnO film is not conducive
to the film-forming of the active layer on its surface. The surface defects of ZnO film will
affect the transfer and recombination process of charge. The bad contact between ZnO
and the active layer will cause larger series resistance of the device. These problems
can limit the application of ZnO as ETL on the inverted OSCs. To reduce the impact of
these issues, materials such as polymers, polyelectrolytes, small molecules, ionic liquids,
and self-assembled monolayers (SAMs) have been applied to the surface modification of
ZnO [32–35]. Organic materials account for most of these, which generally have complex
synthetic procedures or large gaps between batches, which is not conducive to the practical
application of the OSCs [36–38]. Therefore, the development of new and efficient ETL
materials is very important. Natural biological materials are one of the potential ETL
candidates. Abundant natural biological materials are widely found in animals, plants,
and microorganisms in nature. Simultaneously, natural biological materials have the
characteristics of being environmentally friendly and having diverse functional groups.
Some natural biological materials have been applied to the interface modification of OSCs,
such as deoxyribonucleic acid (DNA), amino acids, and cellulose. Brown et al. modified
ZnO with DNA to improve the rectification ratio and shunt resistance of the cells as well as
reduce the WF of the electrode [39]. Ahmad et al. observed appropriate WF and surface
wettability with homogenous surface morphology by using polyaspartic acid to modify
ZnO [40]. Wu et al. used cellulose and its derivatives as the ETL of OSCs, which improved
light absorption and interface contact, thus improving the device’s performance [41]. The
above natural biomaterials were introduced into OSCs as ETLs, and the corresponding
device performance was improved.

The amino acid methionine is a biological material widely present in protein-rich foods
such as beans. In this work, we successfully introduced methionine as ETL into the inverted
OSC. The device structure of used OSCs (ITO/ETL/PM6: BTP-ec9/MoO3/Ag) and the
chemical structures of used materials (PM6, BTP-ec9, methionine) are shown in Figure 1.
The PCEs of the OSCs are increased from 5.45% to 10.33% by adding methionine on the
surface of ITO, with enhanced the short-circuit current density (JSC) of 24.43 mA cm−2,
open circuit voltage (VOC) of 0.67 V and fill factor (FF) of 63.16%. The PCE of OSCs
based on PM6:BTP-ec9 was improved to 15.34% from 14.25% by modifying ZnO with
methionine, resulting from the synchronously enhanced JSC of 25.52 mA cm−2, FF of
71.58%, and VOC of 0.84 V. The analyses based on optical characterization indicate that
the modification of methionine on the surface of ZnO film cannot absorb or block the
sunlight irradiated from the transparent electrode into the active layer and can significantly
reduce the surface defects of ZnO. The analyses of the morphological characteristics of
thin films show that the modification of methionine for the ZnO surface can optimize
the surface morphology of ZnO and can improve the compatibility between ZnO and
the active layer. The analyses based on the electrical characteristics of thin films and the
devices indicate that the modification of methionine can significantly improve energy
level matching between ETL and the acceptor, reduce interface resistance, reduce charge
recombination, and promote charge transport and charge collection.
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Figure 1. Schematic diagram of the device structure for used OSCs and the chemical structures for
the used materials.

2. Results and Discussion

In this work, the inverted OSCs with the structure of ITO/ETL/PM6:BTP-ec9/MoO3/Ag
were prepared to study the effect of methionine. The current density and voltage (J-V) curves
of OSCs were obtained under AM 1.5 G simulated sunlight of 100 mW cm−2, as shown in
Figure 2a. The key photovoltaic parameters of JSC, VOC, FF, and PCE are summarized in
Table 1 for OSCs with different ETLs. The VOC, JSC, and FF of the OSCs without ETL are 0.47 V,
23.25 mA cm−2, and 49.88%, respectively, which leads to a low PCE of 5.45%. The OSCs based
on methionine as ETL exhibit a PCE of 10.33%, a VOC of 0.67 V, a JSC of 24.43 mA cm−2, and a
FF of 63.16%. In this work, a mixed solution was used as the solvent of methionine. The weight
ratio of deionized water and methanol is 1:9, and the optimized concentration of methionine
solution was 1 mg mL−1. The J-V Characteristic curves of OSCs with methionine as ETL under
different concentrations (0.5 mg mL−1, 1 mg mL−1, 2 mg mL−1) of methionine solution are
shown in Figure S1 and Table S1. The PCE, JSC, and FF of OSCs with methionine as ETL under
a methionine solution concentration of 1 mg mL−1 are improved when compared with OSCs
with methionine as ETL under at a concentration of 0.5 mg mL−1. When the concentration
is further increased, the PCE of OSCs is reduced along with the increased FF and the
reduced JSC, because of which it may be said that an overly thick methionine layer leads to
large series resistance. Previous studies have proved that methanol can also be applied to
embellish the ETL of OSCs [42]. Therefore, OSCs with mixed solvents used to modify ITO
were prepared as a contrast device. The OSCs with mixed solvents for the modification
ITO exhibit a JSC of 24.16 mA cm−2, a FF of 60.40%, and a VOC of 0.55 V, resulting in a
PCE of 8.02%. The contact potential difference (CPD) of the ITO modified by different
ETLs was obtained by Kelvin probe force microscopy (KPFM). The obtained CPD image,
CPD data, and WF are shown in Figure S2 and Table S2, where 4.70 eV is the WF of the
determined ITO, which was used to aid in the calculation of other WF. The WF of the ITO
modified by mixed solvent was decreased from 4.70 eV to 4.54 eV, which is attributed to the
interface dipole between ITO and active layer induced by methanol [42]. The introduction
of interface dipoles may increase the built-in potential of the device, which is conducive
to charge transmission and collection. The performance of OSCs with methionine as their
ETL has been improved to a greater extent than that of the OSCs with mixed solvent as
ETL, indicating that the solute methionine in the methionine solution plays a major role
in cathode interface modification [43]. A PCE of 14.25% was acquired in the OSCs with
ZnO as the ETL, along with a JSC of 24.79 mA cm−2, a VOC of 0.83 V, and a FF of 69.26%.
An optimized PCE of 15.34% was achieved in OSCs with ZnO/methionine as their ETLs,
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along with a JSC of 25.52 mA cm−2, a VOC of 0.84 V, and a FF of 71.58%. The JSC, VOC, and
FF of OSCs were increased by the modification of ZnO with methionine, resulting in an
increased PCE. The above results show that whether methionine is used as ETL alone or as
a double ETL with ZnO, the performance of OSCs is improved.
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Table 1. Key photovoltaic parameters of OSCs with different ETLs.

ETL Jsc
(mA cm−2)

Voc
(V)

FF
(%)

PCE
(%)

Without 23.25 0.47 49.88 5.45
Water+methanol 24.16 0.55 60.40 8.02

Methionine solution 24.43 0.67 63.16 10.33
ZnO 24.79 0.83 69.26 14.25

ZnO/methionine solution 25.52 0.84 71.58 15.34

A series of device and film characteristics were measured to further explore the working
mechanisms of methionine at the cathode interface. The external quantum efficiency (EQE)
spectra for OSCs with different ETLs are shown in Figure 2b. The EQE of the OSCs with
methionine, ZnO, or ZnO/methionine as ETLs are larger than that of the OSCs without ETL in
the spectral range of 400–850 nm. For different devices, the changing trend of EQE conforms to
the law of corresponding JSC. Among them, the EQE of the OSCs based on ZnO/methionine
as ETLs has the greatest enhancement effect, which may be attributed to multiple factors,
such as the optimized morphology of the active layer, the better ohmic contact of active
layer and cathode, and the improved compatibility between ETL and the active layer. In the
wavelength range of 300–400 nm, the EQE enhancement effect of OSCs with methionine as
their ETL is greater than that of OSCs based on ZnO or ZnO/methionine as their ETL. The
absorption spectra and transmission spectra of ZnO, methionine, and ZnO/methionine films
with quartz glass as a substrate were obtained in order to study the light transmittance of
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ETLs, as shown in Figures 2c and S3a. The values of the absorption and transmission spectra
of methionine film approach 0 and 100% in the wavelength range of 300–900 nm, respectively.
This result indicates the sunlight irradiated from the transparent electrode into the active layer
will not be blocked by the methionine film. The absorption or transmission spectra of ZnO or
ZnO/methionine films coincide in the wavelength range of 300–900 nm, which confirms the
high light transmission performance of methionine films again. Similar absorption intensities
in the range of 300–900 nm are obtained in the ZnO and ZnO/methionine films, which
should be attributed to the self-absorption of ZnO. The self-absorption of ZnO ought to be
the principal consideration for the larger EQE value of OSCs with methionine as ETL in
the wavelength range of 300–400 nm. The light absorption of the active layer in OSCs with
different ETLs is explored by the absorption and transmission spectra of the active layer
and ETLs/active layer, as shown in Figures 2d and S3b. The absorption intensities of the
ZnO/active layer films and ZnO/methionine/active layer films are significantly enhanced
compared to those of the active layer only in the range of 300–400 nm, which should be due to
the self-absorption of ZnO. The absorption and transmission spectra of the methionine/active
layer films and active layer films are almost identical. These results further confirm that the
sunlight irradiated from the transparent electrode into the active layer cannot be absorbed or
blocked when methionine is an ETL of OSCs.

The surface morphology of different ETL films was studied by atomic force mi-
croscopy (AFM). The measured height images are given in Figure 3a. The relatively
smooth surface was obtained with a similar root–mean–square (RMS) surface roughness
of 1.94 nm and 2.07 nm for ITO and ITO/methionine films, respectively. A relatively
rough surface with an RMS surface roughness of 2.69 nm was formed on the surface
of ITO/ZnO due to the formation of the corrugated micro-nano structure. The RMS
surface roughness decreased from 2.69 nm to 1.23 nm when methionine was used to
modify the surface of ZnO. The smoother and more orderly surface morphology may be
formed because methionine can fill or cover the gap in the uneven surface of the ITO/ZnO
film [44]. Compared with the original ITO/ZnO film, ITO/ZnO/methionine film may
form a better interface contact with the active layer, resulting in better electron transport
and promoting the improvement of JSC and FF [45,46]. The surface morphology of active
layers (PM6:BTP-ec9) prepared on the surface of ITO, ITO/methionine, ITO/ZnO, and
ITO/ZnO/methionine was characterized by AFM, as shown in Figure 3b. Some small
aggregation is observed on the surface of ITO/methionine/PM6:BTP-ec9 film. A relatively
smooth surface with an RMS surface roughness of 1.69 nm and 2.28 nm is observed on the
surface of ITO/PM6:BTP-ec9 and ITO/ZnO/PM6:BTP-ec9, respectively. The surface of the
ITO/ZnO/methionine/PM6:BTP-ec9 film has the most uniform morphology with an RMS
surface roughness of 1.61 nm, which means that the PM6:BTP-ec9 film may have better
interface contact with the ITO/ZnO/methionine. The more obvious difference in surface
height for the active layer can be seen in the line scanning diagram and height histogram
as shown in Figure S4. The different surface morphology of the active layer may be related
to the surface energy of ETLs [47]. The contact angles of different ETLs with deionized
water (W) and ethylene glycol (EG) as detection liquids were measured to verify or refute
this hypothesis, as shown in Figure 4. The surface energy of the film was calculated by the
contact angle measurement method combined with the Wu model, as shown in Table 2 [48].
According to the contact angle calculation, the surface energies of ITO, ITO/methionine,
ITO/ZnO, and ITO/ZnO/methionine films are 63.76, 39.07, 51.65, and 36.09 mN m−1,
respectively. The surface energies of ITO/methionine and ITO/ZnO/methionine are lower
than that of ITO and ITO/ZnO. The different surface energies of ETLs may lead to dif-
ferent wettability, which may affect the drying kinetics of the active layer spin-coated in
ETLs, thereby affecting the morphology of the active layer [47]. From the water contact
angle diagram it can be seen that the water contact angle of ITO/ZnO/methionine film
is significantly larger than that of ITO/ZnO film, which indicates that the surface of ZnO
becomes more hydrophobic after methionine modification. The more hydrophobic surface
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of ETL will enhance the close contact between ETL and the active layer, thus improving the
atmosphere stability of OSCs [49].
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Table 2. Key photovoltaic parameters of OSCs with different ETLs.

ITO/ETLs
θW
(o)

θEG
(o)

Surface Energy
(mN m−1)

Without 33.33 31.51 63.76
Methionine solution 66.67 49.15 39.07

ZnO 49.31 39.12 51.65
ZnO/methionine solution 73.10 69.50 36.09

The effect of methionine on the electron extraction behavior of ZnO film was further
studied by the measurement of photoluminescence (PL) spectra, as shown in Figure 5a. Un-
der the effect of a 320 nm excitation light, the ZnO film shows two emission peaks centered
at 530 nm and 400 nm. The emission peak at 400 nm comes from free exciton recombination
at the near band edge [50]. The emission peak at 530 nm stems from the surface defect
of the oxygen vacancy [17,51]. The oxygen vacancy can become a potential electron well,
and each vacancy can capture one or two electrons, thereby increasing the probability
of charge recombination [52]. The intensity of the PL spectra for ZnO/methionine films
showed a significant reduction compared with that of the ZnO films. The decreased emis-
sion intensity of ZnO/methionine film at 400 nm may originate from the decreased band
edge emission. The decreased emission intensity of ZnO/methionine films at 530 nm may
originate from the reduction of oxygen defects, which may be conducive to improving
the charge extraction efficiency. The above phenomena show that the modification of
methionine on the surface of ZnO film can significantly reduce the surface defects of ZnO.
The photoinduced charge transport behavior in the active layer can also be detected by
PL spectra. The PL spectra for active layer film prepared on the surface of different ETLs
and separate active layer film under the same conditions are shown in Figure 5b. The
active layer films spin-coated in the different ETLs have greater PL quenching efficiencies
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compared with the separate active layer film. Higher PL quenching efficiency indicates
that more efficient charge transport and less charge recombination loss can be realized in
the active layer, which is conducive to obtaining higher photocurrent in the devices [53,54].
The PL quenching degree of the ZnO/methionine/active layer is the largest, indicating
that the surface modification of ZnO by methionine is conducive to promoting electron
transfer and reducing charge recombination.
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In order to more deeply understand the influence of different ETLs on charge transport,
the charge mobility was fitted by the space charge limited current (SCLC) model. Under dark
state conditions, the typical log (J) and log (V) curves were obtained for the pure hole device
(ITO/PEDOT:PSS/PM6:BTP-ec9/MoO3/Ag) and pure electron devices (ITO/ETLs/PM6: BTP-
ec9/PDIN/Al), as shown in Figure S5. The slopes of the log (J) and log (V) curves of these
devices are close to 1 at low applied voltage, which signifies that the interface contact in
the device can be viewed as an ohmic contact. At higher applied voltages, the slope of the
log (J) and log (V) curves is about 2, which indicates that the injection rate of the carriers
exceeds the recombination rate, thus forming SCLC flow [55,56]. The corresponding curves of
ln(Jd3/V2)-(V/d)0.5 for the pure hole device and pure electronic devices with different ETLs are
shown in Figure S6. The calculated hole mobility (µh) is 1.02 × 10−3 cm2 V−1s−1. The calculated
electron mobility (µe) and µh/µe ratio of the active layer are listed in Table S3. The µe of the
active layer for the device without ETL is 4.69 × 10−4 cm2 V−1 s−1. The µe of the active layer
for the device with methionine or ZnO as ETL is increased to 5.72 × 10−4 cm2 V−1 s−1 and
6.33 × 10−4 cm2 V−1 s−1. The µe of the active layer for the device with ZnO/methionine as
ETLs is further increased to 1.27 × 10−3 cm2 V−1s−1. These data mean that the modification of
methionine on the surface of ITO or ITO/ZnO is conducive to promoting electron transport.
The µh/µe ratio of the active layer for the device without ETL is 2.18. The µh/µe ratios of the
active layers of devices with methionine, ZnO, or ZnO/methionine as ETLs are 1.79, 1.62, and
0.80, respectively. These data show that the modification of methionine as ETL on the surface of
ITO or ITO/ZnO can promote the transport balance of electrons and holes in the OSCs.

To achieve effective electron extraction in OSCs, the match between the WF of ETL
and the lowest unoccupied molecular orbital (LUMO) of the acceptor is a prerequisite.
The CPDs of ITO/ETLs were measured by the KPFM method in order to explore the
degree of the energy level matching between ETL and the active layer. The obtained
CPD data and image are shown in Figure S1. The WFs are calculated by the particular
WF of the ITO (4.70 eV). The WFs and CPDs are shown in Table S2 and Figure 6a for
ITO/different ETLs films. Compared with ITO, the WF of ITO/methionine, ITO/ZnO,
and ITO/methionine/ZnO are lowered to 4.44 eV, 4.33 eV, and 4.23 eV, respectively. The
schematic diagram of the energy levels is shown in Figure 6b. The ITO modified with
ZnO/methionine has the lowest WF value, which better matches the energy level of the
LUMO level of the acceptor. Meanwhile, the decreased WFs of ITO/ETLs can lead to
enhanced built-in potential and increased VOC. Appropriate energy level matching and
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increased built-in potential can improve electron transport and collection while reducing
the series resistance of OSCs [57].
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To further explore the charge transport characteristics of the device, electrochemical
impedance spectroscopy (EIS) was performed in a specific frequency range (1 Hz–1 MHz)
under the application of VOC bias. Figure 7a shows the Nyquist plots of OSCs obtained by
EIS. According to the inserted equivalent circuit diagram, the series resistance (R1) is related
to the sheet resistance of the electrodes and electrical contacts, which can be explained by the
initiation point of the Nyquist diagram. Four OSCs based on different ETLs showed small
and similar R1 values. The charge transfer resistance (R2) is related to the interface resistance
of the electrode/active layer and the internal resistance of the active layer, which could
be described by the semicircle radius of the Nyquist diagram [58,59]. The OSC without
ETL shows a relatively large R2 value, which may cause greater charge transport blockage.
The R2 values are decreased for the OSCs based on methionine, ZnO, or ZnO/methionine
as ETLs. The OSCs with ZnO/methionine as ETLs have the lowest R2, which could be
attributed to the smooth surface morphology of the active layer and the good compatibility
between ETLs and the active layer. The lower R2 value can promote charge transport and
charge collection, resulting in a higher FF [60]. The photocurrent density’s (Jph) dependence
on the effective voltage (Veff) of OSCs was investigated in order to further explore the
influence of ETLs on the exciton dissociation and charge collection, which is shown in
Figure 7b [61], where Jph equals the value of current density under illumination (JL) minus
current density in the dark (JD), and Veff equals the value of the voltage at Jph = 0 (V0) minus
the applied voltage in the devices (V). When Veff reaches 1.5 V, the photocurrent density
represents the saturation photocurrent density (Jsat). Under a short circuit, the photocurrent
density represents Jpha. The exciton dissociation efficiency (Pdiss) could be reckoned with
by Jpha/Jsat. Under maximum output power, the photocurrent density represents Jphb. The
charge collection efficiency (Pcoll) can be reckoned with by Jphb/Jsat. The Pdiss and Pcoll are
95.7% and 80.0% for the optimized OSCs with ZnO/methionine as ETLs, which are larger
than those of 88.8% and 72.4% for the methionine-based OSCs as well as bigger than
those of 88.5% and 75.6% for the ZnO-based OSCs. These results show that OSCs with
ZnO/methionine as ETL show better charge collection and exciton dissociation efficiency,
resulting in the highest FF [62]. The JSC and FF of OSCs are also affected by charge
recombination. Therefore, the charge recombination degree in OSCs with different ETLs
was researched according to the J–V curve of OSCs under light intensities (Plight) of 100,
79, 50, 39.5, 25, 12.5, or 10 mW cm−2 (Figure S7). The JSC and VOC as functions of Plight are
described in Figure S8a,b, respectively. The dependence of the JSC on the light intensity
follows a power law (JSC ∝ (Plight)α), where α stands for an exponential factor. When
bimolecular recombination is inhibited, the exponential factor α should be close to 1, which
can indicate a weak loss of charge. The α value for OSCs with ZnO is 0.950. The α value for
ZnO/methionine as ETL is 0.978. This indicates that the bimolecular recombination in OSCs
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with ZnO/methionine as ETL is relatively lower compared with ZnO devices. The trap-
assisted recombination degree in OSCs could be determined by the relationship between
VOC and Plight [VOC ∝ n(kT/q)ln(Plight)]. Where n is the ideal factor under illumination,
which represents the recombination dynamics in the OSCs, k is Boltzmann’s constant, T is
absolute temperature, and q is basic charge. When it comes to trap-assisted recombination,
the slope of the VOC–Plight curve may be greater than kT/q. The slopes of OSCs based on
ZnO/methionine as ETLs (1.172 kT/q) are smaller than those of OSCs based on ZnO as
ETLs (1.426 kT/q). This indicates that the single-molecule or trap-assisted recombination of
OSCs can be restrained to a certain extent by introducing methionine on the surface of ZnO.
These results indicate that the introduction of methionine between ZnO and the active
layer can effectively inhibit the bimolecular recombination and trap-assisted recombination,
thus significantly improving the performance of devices using ZnO/methionine as ETLs.
To investigate the effect of methionine on the device stability, the J–V curves of ZnO or
ZnO/methionine-based OSCs were repeatedly measured for 35 h while stored in a high-
purity nitrogen-filled glovebox. The normalized PCEs versus storage time are shown in
Figure S9. After 35 h, the PCEs of the OSCs with ZnO or ZnO/methionine as ETLs were
decreased to 91%, or 93% of the corresponding initial values. The OSCs with methionine
or ZnO/methionine as ETLs have higher stability compared to IOSCs with ZnO as ETL.
The surface modification of ZnO by methionine has some positive effects on the stability
of OSCs.
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3. Conclusions

In this work, a natural biomolecule methionine was successfully applied to the inverted
OSCs. The optimized OSCs with methionine/ZnO as double ETLs exhibit a PCE of 15.34%,
along with a synergistically increased JSC of 25.52 mA cm−2, FF of 71.58%, and VOC of
0.84 V compared with the OSCs based on ZnO as ETL. A series of optical, morphological,
and electrical characterization analysis results for thin films and the devices shows the
numerous advantages of the surface modification of ZnO with methionine. The surface
modification of ZnO with methionine can cause significantly reduced surface defects for
ZnO, optimized surface morphology of ZnO, improved compatibility between ETL and the
active layer, better-matched energy levels between ETL and the acceptor, reduced interface
resistance, reduced charge recombination, and enhanced charge transport and collection.
This work indicates that methionine has great potential as a surface modification material
to improve the performance of OSCs.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/molecules27196363/s1, Table S1: Key photovoltaic parameters of OSCs with methionine as
ETL under different concentrations of methionine solution, Table S2: CPD and WFs of ITO modified
by different ETLs, Table S3: Hole mobility and electron mobility extracted from the SCLC model,
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Figure S1: J-V characteristics curves of OSCs with methionine as ETL under different concentrations
of methionine solution, Figure S2: (a) CPD data and (b–f) CPD images of ITO modified by different
ETLs captured in KPFM, Figure S3: (a) Transmission spectra of different ETLs films and (b) different
ETLs/active layer films, Figure S4: (a) Line scanning height of the AFM images of PM6:BTP-ec9
films spin-coated on ITO, ITO/methionine, ITO/ZnO, and ITO/ZnO/methionine; (b) surface height
histogram extracted from corresponding AFM image, Figure S5: (a) Shows a typical plot of log (J)
versus log (V) curves obtained when holes are injected into a hole-only device, and (b) shows the
same curve when electrons are injected into a purely electronic device. The dotted line represents the
slope, Figure S6: ln(JL3/V2)-(V/L)0.5 curves for the SCLC fitting of (a) hole-only devices with the
structure of ITO/PEDOT:PSS/active layer/MoO3/Al and (b) electron-only devices with the structure
of ITO/ETL/active layer/PDIN/Al, Figure S7: J-V curves of OSCs with ZnO or ZnO/methionine
as ETLs under AM 1.5G illumination with the light intensities of 100, 79, 50, 39.5, 25, 12.5, or
10 mW cm−2, respectively, Figure S8: (a) JSC and (b) VOC dependence on the light intensity of OSCs
with ZnO or ZnO/methionine as ETLs, Figure S9: Normalized PCE versus storage time for ZnO or
ZnO/methionine-based OSCs stored in a high-purity nitrogen-filled glovebox.
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