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Abstract

Background: As the critical tissue of the central nervous system, the brain has been found to be involved in gonad
development. Previous studies have suggested that gonadal fate may be affected by the brain. Identifying brain-
specific molecular changes that occur during estrodiol-17β (E2) -induced feminization is crucial to our
understanding of the molecular control of sex differentiation by the brains of fish.

Results: In this study, the differential transcriptomic responses of the Takifugu rubripes larvae brain were compared
after E2 treatment for 55 days. Our results showed that 514 genes were differentially expressed between E2-treated-
XX (E-XX) and Control-XX (C-XX) T. rubripes, while 362 genes were differentially expressed between E2-treated-XY
(E-XY) and Control-XY (C-XY). For example, the expression of cyp19a1b, gnrh1 and pgr was significantly up-regulated,
while st, sl, tshβ, prl and pit-1, which belong to the growth hormone/prolactin family, were significantly down-
regulated after E2 treatment, in both sexes. The arntl1, bhlbe, nr1d2, per1b, per3, cry1, cipc and ciart genes, which are
involved in the circadian rhythm, were also found to be altered. Differentially expressed genes (DEGs), which were
identified between E-XX and C-XX, were significantly enriched in neuroactive ligand-receptor interaction,
arachidonic acid metabolism, cytokine-cytokine receptor interaction and the calcium signaling pathway. The DEGs
that were identified between E-XY and C-XY were significantly enriched in tyrosine metabolism, phenylalanine
metabolism, arachidonic acid metabolism and linoleic acid metabolism.

Conclusion: A number of genes and pathways were identified in the brain of E2-treated T. rubripes larvae by RNA-
seq. It provided the opportunity for further study on the possible involvement of networks in the brain-pituitary-
gonadal axis in sex differentiation in T. rubripes.
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Background
Sex determination and differentiation are the most es-
sential processes for species reproduction [1]. Sex deter-
mination is defined as the developmental process by
which the sex is established. Gonadal sex differentiation
is defined as the process during which the undifferenti-
ated gonad develops into either an ovary or a testis after
the determination of sex [2]. Since sexual dimorphism
(such as body size and growth rate) is common in fish,
elucidating the mechanism involved in sex determin-
ation and differentiation, which may lead to the develop-
ment of a sex control technique, is of great commercial
interest in the aquaculture industry [3]. Moreover, as the
largest group of vertebrates, fish display the greatest di-
versity of sexual phenotypes and are considered excellent
models for the investigation of mechanisms involved in
sex determination, differentiation, and sexual plasticity.
Unlike mammals, sex determination and differentiation
are tremendously complex and flexible in fish and the
sexual fate of fish has been proven to be affected by ex-
ogenous factors (such as social dynamics, temperature,
light conditions, density, pH, stress and hormones) [3–
6]. Among those factors, estrogens are conserved and
are known to be required for ovarian differentiation and
maintenance of the female phenotype [6]. Prior to sexual
differentiation, the administration of estrodiol-17β (E2)
can induce sex reversal (male-to-female) in fish [7, 8]. In
fish, estrogens are synthesized by the aromatization of
androgens, through cytochrome P450 aromatase, which
is mainly encoded by cyp19a1a/b [9]. Previous studies
have shown that treatment with an aromatase inhibitor
and knockout of cyp19a1a can result in sex reversal in
the female [10–12]. E2 treatment methods have been
widely applied to sex ratio control, in particularly with
respect to establishing a monosex population to under-
stand the roles of endocrine and genetic factors regulat-
ing sex determination and differentiation in academic
research [13–16].
Takifugu rubripes, which is commonly known as the

tiger puffer or torafugu, is one of the most popular
marine-cultured species in Asia. It is famous for its
umami taste and has been available in local Chinese
markets since 2016. Tiger puffer aquaculture is mainly
distributed across the north coast of China, and the pro-
duction of farmed pufferfish was over 10, 000 metric
tons in 2020 (data from China Fisheries Statistics 2021).
More than 90% of farmed tiger puffers are exported to
Japan and South Korea. Since T. rubripes testis is a deli-
cacy and ovaries quite poisonous, male torafugu are
more expensive and popular than female torafugu.
Hence, monosex male production is desirable in aqua-
culture. Moreover, T. rubripes is considered as an ideal
model for investigating the molecular mechanisms that
underlie sex determination and differentiation as it has a

relatively small and compact genome, when compared to
other vertebrates [17, 18].
T. rubripes is a gonochoristic fish and with an XX/XY

sex determination system and an allelic variation in the
amhr2 gene (the AMH receptor) that has been shown to
be responsible for maleness [18]. The process of gonadal
development in T. rubripes and the expression profiles of
genes related to the sex differentiation process have been
described in previous studies [19–21]. Intercrosses be-
tween E2-induced generate pseudo female and normal
males resulted in the supermale (YY). In T. rubripes, YY
males can be used to produced monosex male for the
study of gonadal sex differentiation and increasing interest
in commercial production. Although whether the sex re-
versed XY or XX torafugu are fertile or not has not been
confirmed until now, it has been demonstrated that treat-
ment of XX T. rubripes with aromatase inhibitor (fadro-
zole or letrozole) results in the inhibition of ovarian cavity
formation [8, 20, 22]. Treatment of genetically XY T.
rubripes with E2, prior to morphological sex differenti-
ation, can induce feminization. Several genes involved in
E2-induced feminization in the gonads of T. rubripes have
been characterized in our previous study [22].
Prior to differentiation of the gonads, sexual differences exist

in non-gonadal tissues as well as the germline. Thus, these dif-
ferences are created up-stream of gonadal differentiation [23–
25]. As the critical tissue of the central nervous system, the
brain has been found to be involved in germline development,
and the differential development of the two sexes could be the
result of differential gene expression in the brain, prior to the
formation of the gonads [24–29]. Several sexually dimorphic
markers or genes have been identified in the brains of verte-
brates [30–36]. Although sex differences in the brain are often
presumed to be a consequence of gonadal sex, rather than the
cause [37], sex differentiation in the brain is a highly compli-
cated process in lower vertebrates. Previous studies have sug-
gested that gonadal fate may be affected by the brain. For
example, forebrain transplants between male and female Japa-
nese quail embryos, before sexual differentiation, disrupted
testis function [38, 39]. Perceived social changes can also in-
duce sexual transitions via intersection of the hypothalamic-
pituitary-interrenal pathway and hypothalamic-pituitary-gonad
pathway before sex differentiation in some sequentially herm-
aphroditic coral reef fish [40]. In zebrafish (Danio rerio),
luteinizing hormone beta subunit (lhβ)/follicle stimulating hor-
mone beta subunit (fshβ) double knock out resulted in all male
fish, whilst gene disruption of fshr, but not lhcgr, resulted in
masculinization into males and a complete failure of follicle ac-
tivation [41, 42]. Until now, unlike gonadal sex differentiation,
the mechanisms that underlie the sexual differentiation of the
brain have not been completely defined. Identification of genes
related to sex differentiation in the brain may facilitate studies
of gene interaction between the gonads and brain, which con-
trol sex differentiation. However, few studies have focused on
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gene expression changes in the brain during the process of sex
differentiation, particularly during the process of sex steroid
hormone-induced feminization or masculinization in fish spe-
cies such as the T. rubripes [29].
We previously reported the sexually dimorphic expres-

sion profile of genes in T. rubripes brain [43]. In this
study, transcriptomic analysis of brains from the control
and E2-treated groups was then performed. This study
aimed to identify target genes and pathways that are in-
volved in the development of T. rubripes brains and that
responded to E2 administration. The data may provide
new insights into the mechanism of sex differentiation
in the brain and may indicate how estrogen affects gene
expression in the brain.

Results
Histological evaluation of gonadal development
Figure 1 shows the results of the histological analysis of
the gonads. As reported by Yan et al., sex reversed larvae
were not observed in the control groups [22]. Gonads

from the C-XX group occupied the ovarian cavities, which
were filled with a small number of oocytes and a large
number of oogonia, closely arranged on the oviposition
plate. Gonads from the C-XY group were filled with sper-
matogenic cells at different developmental stages (Fig. 1a
and b). However, gonads from the E2-immersed group
were smaller than those from the control group. In
addition, exposure to E2 obviously induced the
feminization of testes, and a deformed ovarian cavity was
observed in all E2-treated XY torafugu (Fig. 1c and d).

Illumina sequencing and mapping, and identification of
global DEGs, in response to E2 treatment
528,862,430 total reads were obtained from all library.
After raw reads filtering, 43,622,952 (C-XX_1),
44,436,616 (C-XX_2), 42,850,608 (C-XX_3), 42,851,086
(C-XY_1), 45,072,134 (C-XY_2), 45,005,800 (C-XY_3),
43,442,122 (E-XX_1), 39,629,744 (E-XX_2), 48,253,210
(E-XX_3), 46,193,034 (E-XY_1), 42,700,218 (E-XY_2)

Fig. 1 Hematoxylin-eosin stained gonad development sections from Takifugu rubripes. (a) C-XX, control group XX (b) C-XY, control group XY; (c)
E2-XX, E2-treated XX (d) E2-XY, E2-treated XY. OG, oogonia; OC, oocyte; OCA, ovarian cavity; DOC, deformed ovarian cavity; SL, spermatogenic
cysts; SG, spermatogonia; SC, spermatocyte. Scale bar, 30 μm
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and 44,804,906 (E-XY_3) clean reads were obtained from
each library, respectively (Table 1).
As shown in Figs. S1, only four DEGs were identified

in the C-XY versus (vs) C-XX comparison, of which
three DEG were up-regulated and one was down-
regulated, such as aryl hydrocarbon receptor interacting
protein-like 1 (aipl1), serine protease hepsin-like, and
nucleoprotein TPR-like (Table 2). There were 411
DEGs between E2-treated (E-XX and E-XY) and Con-
trol (C-XX and C-XY) in total (Fig. 2). In the E-XX vs
C-XX comparison, 301 DEGs were identified, of which
85 were up-regulated (Fig. 3 a). These included
gonadotropin-releasing hormone 1 (gnrh1), cytochrome
P450 aromatase (cyp19a1b), progesterone receptor
(pgr), solute carrier family 6 (slc6a20) and cytochrome
P450 1A1-like (cyp1a1). There were 216 down-
regulated DEGs in this comparison, which included
prolactin (prl), thyroid stimulating hormone (tshb),
somatolactin-like (sl), glycoprotein hormones (cga) and
pro-opiomelanocortin-like (pomc) (Table 2). Moreover,
224 DEGs were identified in the E-XY vs C-XY com-
parison, of which 52 were up-regulated (Fig. 3b), such
as vitellogenin-2-like (vtg2), pgr, gnrh1, cyp19a1b, zona
pellucida sperm-binding protein 4-like (zp3) and
cyp1a1. 172 down-regulated DEGs were observed in
this comparison. These included potassium channel
(kcnk18), WD40 repeat-containing protein (wd40),
basic helix-loop-helix family (bhlhe41) and forkhead
box protein O1-a (foxoa) (Table 2). In the E-XX vs E-
XY comparison, only 3 up-regulated DEGs were identi-
fied, including hetc-domain, protein MAATS1-like
(maats1), and uncharacterized LOC105419364 (Table
2). In the E-XY vs C-XX comparison, 96 were up-
regulated, such as cyp19a1b, cyp1a1 and pgr. 184
down-regulated DEGs were observed, such as bhlhe41,
WD40 and kcnk18 (Table S1).

GO enrichment analysis of DEGs
In the C-XY vs C-XX, E-XX vs C-XX and E-XY vs C-
XY comparisons, genes were mainly enriched in bio-
logical processes, followed by molecular function and
cellular component GO terms (Fig. S2, 4). In the C-XY
vs C-XX comparison, the DEGs were mainly signifi-
cantly enriched in microtubule-based movement and
movement of cell or subcellular component in the bio-
logical process category. In the molecular function cat-
egory, they were enriched in serine-type exopeptidase
activity and exopeptidase activity (Fig. S2). In the E-XX
vs C-XX comparison, DEGs were mainly enriched in re-
sponse to oxygen-containing compound, response to
drug and proteolysis, for biological process, in hormone
activity, sequence-specific DNA binding and serine-type
peptidase activity, for molecular function, and in calcium
ion binding, myosin complex and actin cytoskeleton, for
cellular component. The up-regulated genes were mainly
clustered in proteolysis, for the biological process cat-
egory, extracellular region, for the cellular component
category, and hormone activity, for the molecular func-
tion category. The down-regulated genes were mainly
clustered in cell cycle arrest, for the biological process
category, myosin complex, for the cellular component
category, and protein kinase regulator activity, for the
molecular function category (Fig. 4a). In the E-XY vs C-
XY comparison, response to oxygen-containing com-
pound, response to chemical and response to extracellu-
lar stimulus were highly represented for the biological
process category. Integral component of plasma mem-
brane, intrinsic component of plasma membrane and
plasma membrane part were highly represented for the
cellular component category. Sequence-specific DNA
binding, heme binding and tetrapyrrole binding were
highly represented for the molecular function category.
The up-regulated genes were mainly clustered in

Table 1 Summary statistics of the transcriptome sequencing and mapping in Takifugu rubripes

Sample Raw data Clean_reads Total_map Unique_map Multi_map

C-XX_1 44,523,690 43,622,952 40,982,945(93.95%) 39,573,936(90.72%) 1,409,009(3.23%)

C-XX_2 44,523,690 44,436,616 41,718,759(93.88%) 40,266,124(90.61%) 1,452,635(3.27%)

C-XX_3 66,606,798 42,850,608 40,099,291(93.58%) 38,741,203(90.41%) 1,358,088(3.17%)

C-XY_1 43,978,518 42,851,086 39,724,413(92.7%) 38,336,011(89.46%) 1,388,402(3.24%)

C-XY_2 46,201,180 45,072,134 42,198,181(93.62%) 40,661,639(90.21%) 1,536,542(3.41%)

C-XY_3 46,409,586 45,005,800 42,144,064(93.64%) 40,678,707(90.39%) 1,465,357(3.26%)

E-XX_1 44,537,526 43,442,122 40,708,228(93.71%) 39,264,335(90.38%) 1,443,893(3.32%)

E-XX_2 40,345,586 39,629,744 37,253,090(94.0%) 35,927,359(90.66%) 1,325,731(3.35%)

E-XX_3 49,202,476 48,253,210 45,656,235(94.62%) 44,078,863(91.35%) 1,577,372(3.27%)

E-XY_1 47,529,109 46,193,034 43,403,167(93.96%) 41,703,371(90.28%) 1,699,796(3.68%)

E-XY_2 43,506,024 42,700,218 40,001,299(93.68%) 38,698,894(90.63%) 1,302,405(3.05%)

E-XY_3 45,728,118 44,804,906 42,008,134(93.76%) 40,598,629(90.61%) 1,409,505(3.15%)
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response to extracellular stimulus and response to nutri-
ent levels, in the biological process category, integral
component of plasma membrane, for the cellular com-
ponent category, and sequence-specific DNA binding,
for the molecular function category. The down-regulated
genes were clustered in lipid transport and lipid
localization in the biological process category (Fig. 4b).

KEGG enrichment analysis of DEGs
The most enriched KEGG pathways in the E-XX vs C-
XX comparison were neuroactive ligand-receptor inter-
action, arachidonic acid metabolism, cytokine-cytokine
receptor interaction and the calcium signaling pathway.
The KEGG pathways most enriched by down-regulated
DEGs were neuroactive ligand-receptor interaction,

Table 2 Selection of some of DEGs identified in C-XYvsC-XX, E-XXvsC-XX, E-XYvsC-XY, and E-XX vs E-XY

Gene name log2 Fold change Average FPKM Description

(C-XYvsC-XX) C-XX C-XY

aipl1 1.38 2.7 7.01 aryl hydrocarbon receptor interacting protein-like 1

LOC101065721 1.11 2.15 4.64 serine protease hepsin-like

LOC101063021 1.15 29.49 62.37 nucleoprotein TPR-like

(E-XXvsC-XX) E-XX C-XX

arntl 1.37 18.73 7.26 aryl hydrocarbon receptor nuclear translocator-like

bhlhe41 − 2.06 11 45.96 basic helix-loop-helix family member e41

cga −7.19 0.267 38.54 glycoprotein hormones alpha polypeptide

cipc −1.96 15.72 44.78 CLOCK-interacting pacemaker-like

ciart −1.33 6.45 16.25 circadian-associated transcriptional repressor-like

cyp19b 2.59 81.97 13.67 cytochrome P450 aromatase

cyp1a1 2.25 6.89 1.45 cytochrome P450 1A1-like

gnrh1 3.45 12.83 1.168 gonadotropin-releasing hormone 1

per1 −1.63 9.27 28.66 period circadian clock 1

per3 −1.31 10.26 25.51 period circadian clock 3

pgr 2.55 1.35 0.23 progesterone receptor

prl −11.94 0.02 86.17 prolactin

pomc −7.17 5.77 832.18 pro-opiomelanocortin-like

pou1f1 −4.66 0.053 1.37 POU class 1 homeobox 1

tshb −11.07 0 52.91 thyroid stimulating hormone beta

sl −9.9 0.04 38.65 somatolactin-like

slc6a20 2.12 8.82 2.03 solute carrier family 6 member 20

(E-XYvsC-XY) E-XY C-XY

bhlhe41 −2.25 10.48 49.91 basic helix-loop-helix family member e41

cyp19b 2.82 90.7 12.84 cytochrome P450 aromatase

cyp1a1 1.84 5.66 1.58 cytochrome P450 1A1-like

gnrh1 3.35 17.5 1.72 gonadotropin-releasing hormone 1

kcnk18 −3.05 0.51 4.2 potassium channel two pore domain subfamily member 18

per3 −1.35 10.59 27.02 period circadian clock 3

pgr 3.81 1.51 0.11 progesterone receptor

vtg2 6.54 0.72 0.01 vitellogenin-2-like

Wd40 −2.89 3.19 23.56 WD40 repeat-containing protein SMU1-like

zp4 2.11 3.46 0.8 zona pellucida sperm-binding protein 4-like

(E-XXvsE-XY) E-XX E-XY

hetc 8.77 2.78 0 HETC (ubiquitin-transferase)

maats1 1.18 5.6 2.41 protein MAATS1-like

LOC105419364 6.56 1.88 0 uncharacterized LOC105419364
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steroid hormone biosynthesis, retinol metabolism, cal-
cium signaling pathway and GnRH signaling pathway.
Eight pathways, which included neuroactive ligand-
receptor interaction, notch signaling pathway, cytokine-
cytokine receptor interaction, PPAR signaling pathway,
steroid biosynthesis, calcium signaling pathway,

metabolism of xenobiotics by cytochrome P450 and
GnRH signaling pathway, were the most enriched by up-
regulated DEGs (Fig. 5a). In the E-XY vs C-XY compari-
son, the most enriched KEGG pathways were tyrosine
metabolism, phenylalanine metabolism, arachidonic acid
metabolism and linoleic acid metabolism. The pathways
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Fig. 2 The DEGs observed between the control and E2-treated groups, based on FPKM units. Venn diagram (a) and Heat map (b). C-XX, control
group XX; C-XY, control group XY; E2-XX, E2-treated XX; E2-XY, E2-treated XY

Fig. 3 Volcano plot of differences in gene expression between control and E2-treated groups. (a) E-XX vs C-XX, (b) E-XY vs C-XY; Up-regulated
genes (red), and down-regulated genes (green)
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most enriched by down-regulated DEGs were steroid
hormone biosynthesis, retinol metabolism, PPAR signal-
ing pathway, carbon metabolism, metabolism of xenobi-
otics by cytochrome P450, calcium signaling pathway
and neuroactive ligand-receptor interaction. The tyro-
sine metabolism, phenylalanine metabolism, arachi-
donic acid metabolism, linoleic acid metabolism,
alpha-linolenic acid metabolism, steroid biosynthesis,
histidine metabolism, metabolism of xenobiotics by
cytochrome P450, tryptophan metabolism and calcium
signaling pathways were those most enriched by up-
regulated DEGs (Fig. 5b).

qPCR
The qPCR analysis was used to verify RNA-Seq results
(Fig. 6). In the control group, no significant difference in
mRNA level of gnrh1, cyp1a1 and cyp19a1b was found
between the XY and XX groups (p > 0.05). In the E2

treatment group, the expression of gnrh1, cyp1a1 and
cyp19a1a, in XX and XY larvae, was significantly higher
than in the control group (p < 0.05). The level of
cyp19a1b in the E2-treated XY group was significantly
higher than in the E2-treated XX group. In the control
group, no significant difference was observed in the ex-
pression level of prph, per1b, per3, cipc and ciart, be-
tween XY and XX larvae, whilst the level of nart1 was
significantly lower in XY larvae than in XX larvae (p <
0.05). The expression levels of bh1be, nr1d2, per1b, per3,
cipc and ciart, in E2-treated larvae brains, were signifi-
cantly lower than in the control group (p < 0.05), whilst
the expression levels of arntl1a and cry1 were signifi-
cantly higher than in the control group (p < 0.05).

Discussion
To date, the use of E2 for gender control has been re-
ported in at least 56 bony fish genera from 24 families.
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Fig. 4 Gene ontology (GO) enrichment of DEGs for E-XX vs C-XX (a), and E-XY vs C-XY(b)

Fig. 5 KEGG enrichment analyses of DEGs for E-XX vs C-XX (a), and E-XY vs C-XY (b)
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These fish include rainbow trout (Oncorhynchus mykiss),
fighting fish (Betta splendens) and tilapia (Oreochromis
niloticus) [44–49]. In T. rubripes, previous studies have
also found that treatment with E2, during early sex dif-
ferentiation, can induce feminization [8, 48, 49]. In our
previous study, by E2-treatment (100 μg/L/time, 2 h/
time, 1 time/day, from 25 dah to 55 dah), feminization
of XY T. rubripes was induced, and the results of the
transcriptomic analysis of gonads showed that a large
number of DEGs and pathways involved in the process
of feminization of XY T. rubripes [22]. For example, the
expression of cyp19a1a, foxl2, gsdf, dmrt1, cyp11a1,
cyp17a1, hsd3b1, hsd17b1 and cyp11c1 changed dramat-
ically in the gonad when torafugu were treated with E2.
In this study, we analyzed the brain transcriptome in
order to better clarify the effects of estrogen on gonadal
differentiation. The number of DEGs (eight DEGs at 80
dah) identified in the brain in the C-XX vs C-XY com-
parison was fewer than that identified at 30 dah (250
DEGs) and 40 dah (499 DEGs), in our previous study
[43]. This could be attributed to the use of different dif-
ferentiation stages of the torafugu that were employed in
the two transcriptomic analyses. In addition, more DEGs
were identified in the brain in both the E-XX vs C-XX
comparison (514 DEGs) and E-XY vs C-XY comparison
(362 DEGs). This suggests that the exogenous E2 trig-
gered significant alteration of gene expression profiles in
the brains of both XX and XY torafugu.
Various effects of exposure to E2 have been observed

in teleosts. These effects include changes in brain devel-
opment, endocrine regulation, gonadal development,
growth, bone development, rhythm, feeding behavior
and absorption, which are closely related to fish brain
modulation [50, 51]. Aromatase (CYP19A1) catalyzes
the biosynthesis of estrogens from androgens. In con-
trast to most mammalian species, which possess a single

Cyp19 gene, most teleosts possess duplicated copies of
cyp19a1, namely cyp19a1a and cyp19a1b [52, 53]. The
cyp19a1a gene is predominantly expressed in the ovary,
while cyp19a1b is predominantly expressed in the brain
and is critical for E2 biosynthesis [53, 54]. After E2 treat-
ment, the expression level of cyp19a1b was up-regulated
in the both XX and XY torafugu brain, which indicates
that the E2 synthesized in the brain can be influenced by
circulating E2 levels. The up-regulation of cyp19a1b gene
expression by estrogenic compound administration also
observed in zebrafish [55, 56]. In silico analyses of the
torafugu cyp19a1b promoter have identified putative
ERE binding sites (5′-TGACC-3′, 5′-GGTCAG-3′),
similar to those identified in stickleback and medaka
[57]. Thus, ERE may be necessary for E2-regulated
cyp19a1b expression in torafugu.
The GnRH neurons are the principal output neurons

from the hypothalamus and control reproduction [58].
Three paralogous forms of these neurons exist, termed
GnRH1, GnRH2 and GnRH3 [59]. Pulsatile secretion of
GnRH1 is essential for reproduction in all vertebrates. It
induces follicle-stimulating hormone (FSH) and
luteinizing hormone (LH) secretion in the pituitary,
which triggers gonadal steroidogenesis [60]. In T.
rubripes, the levels of gnrh1 expression in the GnRH sig-
naling pathway were up-regulated in the XX and XY
brain. The use of E2 has also been shown to induce
gnrh1 up-regulation in other vertebrates [58–60]. In vivo
experiments in mice showed that E2 rapidly acts as a
hormone-activated transcription complex, to increase
GnRH1 neuronal activity via ER [61]. However, ERs have
not been identified as DEGs between our control and E2
treatment groups. This may be due to the limitation of
the transcriptomic analysis being performed at a coarse
anatomical scale (such as the whole brain). Thus, we
cannot exclude the possibility that the up-regulation of

Fig. 6 The expression level of gnrh1, cyp19a1b, cyp1a1, prph, nart1, arntl1a, bhlbe, nr1d2, per1b, per3, cipc, cry1 and ciart in the T. rubripes brain after E2
treatment. FPKM (reads per kb per million reads) of obtained by RNA-seq (a). The relative expression levels of genes obtained by qPCR (b). C, Control
group; E2, E2-treated group. Each value represents the mean ± SD of three measurements. One-way ANOVA (p-value < 0.05) was used for analysis
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gnrh1, by exogenous estrogen, occurs via ER in the tora-
fugu brain.
In addition, the progesterone receptor (pgr) was up-

regulated in the both XX and XY torafugu brain after E2
treatment. Like other members of the steroid receptor
superfamily, progesterone receptors are vertebrate intra-
cellular, ligand-inducible transcription factors [62] that
are activated in the absence of their ligands by alter-
ations in phosphorylation status [63]. Estradiol exerts
positive or negative feedback on the hypothalamic-
pituitary system [64–66]. Bashour et al., (2012) found
that progesterone can act directly on GnRH neurons,
through Pgr [66], and McCartney et al., (2009, 2010)
found that the progesterone-sensitive mechanism is in-
fluenced by gonadal steroids [67, 68]. In rats, a previous
study indicated that Pgr is a downstream mediator of
the estradiol/ERα action in kisspeptin neurons [69, 70].
Therefore, pgr may be involved in the mediation of E2-
induced gnrh1 expression in the torafugu brain. In this
study, we also found vtg2 and zp4 were expressed in
brain of XY torafugu by transcriptome sequencing. Vi-
tellogenin is synthesized in the liver of all oviparous taxa
and transported in the blood to the ovary, which is the
common yolk precursor protein [71]. The zona pellucida
(ZP) is an extracellular glycoprotein matrix that sur-
rounds all mammalian oocytes [72]. In teleost species,
ZP genes are expressed either in liver under regulation
of estrogen or in ovary [72]. However, why there is an
extopic expression of those tow genes in torafugu brain
and how they involved in the process of sex differenti-
ation needs to study in the future.
Our previous study also found that the body lengths of

larvae in E2-treated groups were less than those in the
control group and the survival rate of larvae was only
17%. It proved that E2 significantly inhibits growth, sur-
vival and gonad development in torafugu larvae [22].
The results were similiar to data from both tilapia [73]
and rainbow trout [74], in addition to results from an-
other study on torafugu [48]. However, the mechanisms
that underlie the effects are not clear. In mammals, it
has been demonstrated that there is a close interdepend-
ence among the factors that regulate growth and
reproduction, which involve the interactions between
multiple growth peptides and estrogens, with their re-
ceptors [75, 76]. In our transcriptome data, somatotro-
pin (st), thyroid stimulating hormone beta (tshb),
somatolactin-like (sl), prolactin (prl) and pou1f1 (pit-1),
which related development and growth of teletost [77–
91] were down-regulated in the XX and XY T. rubripes
brain after E2 treatment. Therefore, E2 may down-
regulate those genes, by which inhibiting fugu growth
and gonad development. Circadian rhythm is essential
for living organisms to regulate a wide array of behavior
and physiology, such as sleep, activity, reproduction,

feeding and endocrine functions [92]. It exists in most
life forms, from unicellular bacteria to higher organisms
[93]. Although the basic regulatory mechanisms and
functions follow the same general design, the conserva-
tion of expression of genes involved in the circadian
rhythm, throughout the kingdom, is limited [94]. Here,
transcriptomic and analysis showed that the core regula-
tors of gene expression in the XX and XY brain, in-
volved in the circadian rhythm, were altered by E2-
treatment in both sexes in torafugu. For example, arn-
tl1a and cry1 were up-regulated and bhlbe, nr1d2, per1,
per3, cipc and ciart were down-regulated after E2 treat-
ment. Recently, there has been increasing evidence to
suggest that estrogens can alter circadian clock gene ex-
pression in mammals [95–100]. Therefore, the signifi-
cant alteration of the expression levels of circadian clock
genes indicates that estrogen may also interfere with the
biological clock in torafugu.
The DEGs observed between the E2-treated and control

groups in both sexes were significantly enriched in KEGG
pathways such as neuroactive ligand-receptor interaction,
calcium signaling pathway and cell adhesion molecules
(CAMs). The neuroactive ligand-receptor interaction
pathway comprised all ligands and receptors in the cell
membrane for signal transduction [100]. Cell adhesion
molecules are proteins located on the cell surface and are
required for the assembly and interconnection of various
cellular functions, maintenance of tissue integration and
wound healing [101, 102]. Our results suggest that ex-
ogenous stimulating hormones can interfere with signal
transduction. In the E-XX group, the cytokine-cytokine
receptor interaction pathway was the most significantly af-
fected, when compared with E-XY. Cytokines can act in
the CNS as immunoregulators and neuromodulators dur-
ing health and disease [103, 104]. During cytokine-
cytokine interactions, convergence of signaling pathways
and divergence of the cytokine signal to activate other
cytokine systems are involved in synergistic activities
[104]. In the olive flounder, all 11 pathways were enriched
in the brains of E2-treated phenotypic females, for ex-
ample, circadian rhythm, circadian entrainment, dopamin-
ergic synapse, calcium signaling, glutamatergic synapse,
long-term depression, and taste transduction pathways,
etc. [29]. The circadian rhythm, calcium signaling and glu-
tamatergic synapse pathways were also enriched in our
study. These results suggest that cell adhesion, transport,
circadian rhythm and the calcium signaling pathway may
be affected by exposure to E2 in teleosts.
In conclusion, by using transcriptomic sequencing of

XX and XY brains of torafugu larvae to show that many
genes and pathways were altered by E2 exposure. The
genes and pathways identified here will help to elucidate
the genetic basis behind the E2-induced feminization
process. The data also open the possibility of
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investigating networks in the brain-pituitary-gonadal
axis in torafugu.

Materials and methods
Animals
Twenty days after hatching (dah), torafugu larvae of
6.40 ± 0.1 mm body length were purchased from Dalian
Fugu Aquatic Product Co., Ltd., Dalian, China.

Treatment of T. rubripes larvae
Based on previous studies, treated fugu with 100 μg/L
17β-estradiol (E2) (2 h once a day) can induced
feminization [22, 105], none of the treated XY fugu
reverted to testes [105]. In the present study, after a short
period of acclimatization (five days), 5700 larvae were ran-
domly divided into two groups (control and E2-treated
groups) and three replicates were created for each group
(950 larvae/tank (approximately 100 L)). The oxygen level
was maintained > 8mg/L, the pH was maintained at 7.9–
8.1, and salinity of 33 ppt and a temperature of approxi-
mately 20.5–21.5 °C. E2 powder of ≥99% purity (Sigma, St.
Louis, MO, USA) was dissolved in 95% ethanol to form a
solution for the experimental treatment. The E2 adminis-
tration method was the same as described in our previous
study [22]. The experiments were carried out at ~ 21.0 °C,
under a natural photoperiod. Approximately 200 L water
was changed after the two-hour E2 exposure.

Tissue sampling
At the end of the experiment (55 days after treatment
(dat)), larvae were anesthetized in ice water. Gonads to
be used for histological analysis were dissected and fixed
in 4% paraformaldehyde for 24 h. They were then stored
in 70% ethanol. Sampling of brains was performed using
90 torafugu from each treatment (30 larvae per tank).
Brains were stored individually in RNAlater reagent
(Thermo Fisher Scientific, Baltics, USA), in a 1.5 mL
plastic tube on ice. They were then snap-frozen in liquid
nitrogen and stored at − 80 °C until RNA extraction and
sequencing. For genetic sex verification, a piece of fin
tissue sample was stored in a 1.5 ml tube containing
100% alcohol in a freezer at − 20 °C individually.

Histological analysis, genetic gender verification and RNA
preparation
Histological analyses were conducted as described previ-
ously [19]. After histological observation, in order to
identify E2-induced feminized torafugu, genomic DNA
from the paraffin-block tissue was extracted in accord-
ance with the manufacturer’s instructions (TIANamp
FFPE DNA kit, Tiangen, China). For RNA-seq and
quantitative (qPCR), genetic sex identification was also
performed before RNA extraction. DNA was extracted
from the fin tissues using the TIANamp Marine Animals

DNA kit (Tiangen, Beijing, China). Genetic gender veri-
fication for each larva was performed before RNA ex-
traction from brains. The gender was verified using an
SNP on amhr2 gene exon 9, through PCR amplified a
region containing exon 9 and flanking introns using
primers SD3exon8F (5′-CAGATGCACACAAACCAC
CT-3′) and SD3exon10R (5′-TCCCAGTGTTGCG
GTATGTA-3′). Previous studies have demonstrated
there is a perfect concordance between the SNP geno-
type and phenotypic sex [15, 18, 19]. As shown in
(Fig. 7), the genotype of males was C/G (XY) and that of
females was C/C (XX). After sex verification, total RNA
from brain sample from each individual was prepared in
accordance with a previously described protocol [19].

RNA-Seq
Total RNA concentration was measured with a Nano-
Drop ND-1000 spectrophotometer (Thermo Scientific,
Wilmington, DE, USA) and RNA integrity was assessed
with an Agilent 2100 Bioanalyzer (Agilent Technologies,
Santa Clara, CA, USA). Libraries were prepared as fol-
lows; for each replicate, a pool of 6 μg of RNA from gen-
etic XX or XY torafugu (1 μg of purified brain RNA
from each individual, six individuals were mixed to-
gether) was regarded as a single sample and 1 μg of RNA
per sample was used as input material. Twelve sequen-
cing libraries, which included the control XX (C-XX_1,
C-XX_2, C-XX_3), control XY (C-XY_1, C-XY_2, C-

Fig. 7 Sequence traces of amhr2 from a female (left) and a male
(right) fugu. The male is heterozygous at the non-synonymous SNP
site that converts His384 codon into Asp384 codon
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XY_3), E2-treated XX (E-XX_1, E-XX_2, E-XX_3), and
E2-treated XY (E-XY_1, E-XY_2, E-XY_3), were gener-
ated using a NEBNext Ultra RNA Library Prep kit for
Illumina (NEB, Ipswich, MA, USA) [41]. The products
were purified using an AMPure XP system (Beckman
Coulter, Beverly, USA) to obtain a region of approxi-
mately 250 to 300 bp. The library preparations were con-
ducted as previously described [19].
The reference genome and gene model annotation file

were downloaded directly from NCBI (ftp://ftp.ncbi.nlm.
nih.gov/genomes/all/GCF_000180615.1_FUGU5) and
Hisat2 v2.0.5 was used for the alignment analysis of
clean data from each library. The most common
method, fragments of kilobase per exon model per mil-
lion reads mapped (FPKM) was used to calculate gene
expression levels. Differential expression analysis for the
control or E2-treamented groups was conducted using
the DESeq2 R package. The p-values were adjusted in

accordance with methods that have been reported previ-
ously [42]. The threshold for significant differential ex-
pression was a p-value of 0.05 and log2 (fold-change) of
1 [106]. Subsequently, gene ontology (GO) and Kyoto
Encyclopedia of Genes and Genomes (KEGG) enrich-
ment analyses were performed to categorize differentially
expressed genes (DEGs). The GO terms and pathways
with a corrected p-value of less than 0.05 were consid-
ered significantly enriched.

qPCR verification
The gnrh1, cyp19a1b, cyp1a1, prph, nart1, arntl1a,
bhlbe, nr1dd2, per1b, per3, cipc, cry1 and ciart genes
were randomly selected for RNA-seq validation by
qPCR, using an Applied Biosystems 7900 HT Real-Time
PCR system, as described previously [18]. The reference
gene used for the qPCR analysis was β-actin. Primers for
the reference gene and other genes selected for valid-
ation were designed using the Primer Premier 5.0 pro-
gram (Table 3). The relative expression of genes was
calculated using the 2−ΔΔCT method. Data are expressed
as the mean ± SEM. Statistical significance analysis be-
tween the treatment and control groups was conducted
using one-way ANOVA (p-value < 0.05) in the IBM
SPSS software.
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Table 3 Primers used for qPCR of β-actin and sex-biased genes

Name Primer Sequence (5′˗3′) Length (bp)

β-actin Forward CAGATGTGGATCAGCAAGCA 245

Reverse GCTGAAGTTGTTGGGCATTT

gnrh1 Forward GCTGGTCGGGAGTCTGATGT 155

Reverse AACCCAGAAGAGCGGAGGA

cyp19b Forward AACAAGTACGGCAGCCTGG 153

Reverse TCCCTCCATCCCGATACACT

cyp1a1 Forward ATGGCACCGAGGTCAACAA 119

Reverse CAGGATTGCCAGGAAGAGGTA

prph Forward AAGCCATAGGAAAGGAGAGGG 137

Reverse GCGGAAGGCAATCAGGTTA

nart1 Forward TTCCCACAATAACCAGCATCA 147

Reverse CACGCTTACACTTTCAGCAACA

arntl1a Forward TCCTGTTTGTGGTCGGTTGT 181

Reverse CTCTCTCGTGGGGCTGTATCT

bhlbe Forward GCGACGGCAAAGATAAAGATAC 200

Reverse CTGTCCCACGCTGCTTATTC

nr1d2 Forward CGCCCACATCAACAAGGA 187

Reverse ATGTGCGTAGGTGGGAGTGT

per1b Forward CACCCTCAACGCACTCAAA 175

Reverse GTCGGTGTTTTTCAGGGTGTA

per3 Forward ACAATGGTTCCAGCGGTTAT 109

Reverse TGCGAGTCCTCCCACAGA

cipc Forward ACAGGGTCAAAGGAAGGGTG 105

Reverse GTTGGTGATGCTGATGCTTGT

cry1 Forward AGGCGGGTGTAGAGGTCATT 110

Reverse GGTCTGGAAACGCTTGTAGGT

ciart Forward CGCTCCCTCCAAGATTCCT 145

Reverse TGAGACGAGGGCACTTGTAGAG
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