

Received 5 September 2016 Accepted 24 October 2016

Edited by R. F. Baggio, Comisión Nacional de Energía Atómica, Argentina

**Keywords:** crystal structure; carbacylamidophosphates; calcium sodium binuclear compounds.

CCDC reference: 1511311

**Supporting information**: this article has supporting information at journals.iucr.org/e





# Crystal structure of aquatris{ $\mu$ -N-[bis(diethyl-amino)phosphoryl]-2,2,2-trichloroacetamidato- $\kappa^{3}O,O':O$ }calciumsodium

# Iuliia Shatrava,<sup>a</sup>\* Kateryna Gubina,<sup>a</sup> Vladimir Ovchynnikov,<sup>a</sup> Viktoriya Dyakonenko<sup>b</sup> and Vladimir Amirkhanov<sup>a</sup>

<sup>a</sup>Taras Shevchenko National University of Kyiv, Department of Chemistry, Volodymyrska str., 64, 01033 Kyiv, Ukraine, and <sup>b</sup>STC "Institute for Single Crystals", 60 Nauki ave., Kharkiv 61072, Ukraine. \*Correspondence e-mail: jshatrava@gmail.com

In the molecular structure of the title compound,  $[CaNa(C_{10}H_{20}Cl_3N_3O_2P)_3-(H_2O)]$ , the Ca<sup>2+</sup> ion has a slightly distorted octahedral coordination environment defined by six O atoms which belong to the carbonyl and phosphoryl groups of the three coordinating ligands. Two Cl atoms of CCl<sub>3</sub> groups and four O atoms form the coordination environment of the Na<sup>+</sup> ion: three from the carbonyl groups of ligands and one O atom from a coordinating water molecule. In the crystal, the bimetallic complexes are assembled into chains along the *c*-axis direction *via*  $O-H \cdots O$  hydrogen bonds that involve the coordinating water molecules and the phosphoryl groups.

### 1. Chemical context

In recent years, the interest of many researchers has been focused on metal-phosphorus containing chelates and their usefulness as reagents (principally the alkali metal derivatives) and as potential precursors (the alkaline earth derivatives) for chemical vapor deposition (CVD) (Hanusa, 2003), thin films (Hitzbleck *et al.*, 2004; Demadis *et al.*, 2009, 2010), antitumor activity (Liu *et al.*, 2012) and as models for calcium-binding proteins (bearing biologically relevant ligands) (Hoang *et al.*, 2003).

Polyfunctional phosphorus compounds [O=P-C(R)-P=O(L), having oxygen-donor groups capable of binding a number of metal ions into structurally versatile metal phosphonate hybrids  $M^{2+}/L$  (Sr<sup>2+</sup>, Ba<sup>2+</sup>, Ca<sup>2+</sup>) or  $A^+/M^{2+}/L$  (A = Na, K) have received considerable attention (Colodrero *et* al., 2011; Niekiel & Stock, 2014). Complexes based on carbacylamido-phosphates (CAPhos) containing the phosphorylated structural core [O=C-NH-P=O] have been used as luminescence markers (Litsis et al., 2015), for their cytotoxic activity (Grynuyk et al., 2016) and as buildingblocks in aimed synthesis of coordination compounds with specified structure (Shatrava et al., 2016). The especially interesting feature of carbacylamidophosphate ligands is the bidentate or bidentate-chelate character of their coordination to the central atom (Amirkhanov et al., 2014; Gubina et al., 2000). On this subject, two papers related to complexes of an alkali element in the coordination chemistry of carbacylamidophosphates have been published (Trush et al., 2005; Litsis et al., 2010).

The present paper is devoted to the synthesis and structural analysis of a  $Ca^{2+}$ -containing complex [CaNa(L)<sub>3</sub>(H<sub>2</sub>O)], (I),

in which the Na<sup>+</sup> ion is four-coordinate and has additional contacts with two Cl atoms and where  $L^-$  is the CAPhos ligand with a bidentate-chelate and bridging function of the carbonyl group.



### 2. Structural commentary

In the title structure (Fig. 1), the Ca atom is coordinated by all six O atoms of three bidentate chelating CAPhos ligands in a distorted octahedral geometry. The Ca-O(C) bond lengths [2.371 (2)–2.392 (2) Å] are longer than the Ca-O(P) bonds [2.262 (2)–2.323 (2) Å]. Similar Ca-O(P) bond lengths of



Figure 1

The molecular structure of (I), showing 30% probability displacement ellipsoids and the atom-numbering scheme. Labels and H atoms of ethyl groups have been omitted for clarity.

Table 1Hydrogen-bond geometry (Å, °).

| ingenoona geometry (in, ).          |          |                         |              |                             |  |  |
|-------------------------------------|----------|-------------------------|--------------|-----------------------------|--|--|
| $D - H \cdot \cdot \cdot A$         | D-H      | $H \cdot \cdot \cdot A$ | $D \cdots A$ | $D - H \cdot \cdot \cdot A$ |  |  |
| $O7-H7A\cdots O3^{i}$               | 0.86 (4) | 2.23 (4)                | 2.959 (3)    | 143 (3)                     |  |  |
| $O7 - H7B \cdot \cdot \cdot O5^{i}$ | 0.80 (4) | 2.08 (4)                | 2.843 (3)    | 159 (4)                     |  |  |
|                                     |          |                         |              |                             |  |  |

Symmetry code: (i)  $x, -y + \frac{1}{2}, z - \frac{1}{2}$ .

2.283 (6)–2.332 (6) Å are found in the structures of  $[Ca{Ph_2} P(O)CH_2P(O)Ph_2]_3]^{2+}$  (Hursthouse *et al.*, 2005) and  $[Ca(C_8H_{11}NO_5PS)_2]_n$  (Trush *et al.*, 2009).

The P=O, C-N and C=O bond lengths in (I) are in good agreement with those observed for complexes based on CAPhos ligands (Amirkhanov et al., 2014). The coordination polyhedron around Na<sup>+</sup> has a distorted tetrahedron-like geometry, formed by three carbonyl oxygen atoms from three ligands and one from the coordinating water molecule with O(C)-Na-O(C) and O(C)-Na-O(W) angle ranges of 76.19 (8)-77.48 (7)° and 126.09 (10)-141.26 (9)°, respectively. The Na ion also has additional contacts with two Cl atoms of CCl<sub>3</sub> groups [2.976 (1) and 3.086 (1) Å. The Na–O(W) bond length [2.276 (2) Å] is significantly shorter than the Na-O(C)bonds [2.333 (2)–2.393 (2) Å]. A similar type of bonding was observed earlier in  $[Na_2(C_{10}H_{16}Cl_3N_3O_4P)_2(H_2O)_2]_n$  (Litsis et al., 2010), [Na{Ph<sub>2</sub>P(O)CH<sub>2</sub>P(O)Ph<sub>2</sub>]<sub>3</sub>Cl] (Ding et al., 2000),  $[NaNd(C_{14}H_{21}N_3O_5PS)_4]_n$  (Shatrava *et al.*, 2010) and  $[NaNd(C_8H_{11}NO_5PS)_4]_n$  (Moroz *et al.*, 2007). The Ca···Na distance of 3.321 (3) Å is much shorter than that in  $[CaNa(PC)_2(H_2O)]_n$  [4.3972 (5) Å; PC = phosphocitrate ligand; Demadis, 2003).

## 3. Supramolecular features

In the crystal, the complex molecules are linked into chains along the *c* axis *via*  $O-H \cdots O$  hydrogen-bonding interactions (Fig. 2, Table 1) in which the water O atom acts as a donor, and the O atoms of the two phosphoryl groups of a neighbouring molecule act as the acceptors.

### 4. Database survey

A search of the Cambridge Structural Database (Version 5.37, with one update; Groom *et al.*, 2016) returned five entries for crystal structures of calcium sodium binuclear compounds with phosphorus-containing acids (Demadis *et al.*, 2001). Only one binuclear coordination compound based on the CAPhos ligand with an encapsulated sodium cation is known, *viz.* NaEr $L_4$ ·H<sub>2</sub>O (Amirkhanov *et al.*, 1996*a*).

## 5. Synthesis and crystallization

The synthesis of HL was carried out according to a previously reported method (Amirkhanov *et al.*, 1996*b*). Anhydrous  $CaCl_2$  (0.027 g, 0.24 mmol) was dissolved in hot methanol and added to a solution of NaL (0.257 g, 0.73 mmol) in acetone. Colorless crystals of the complex suitable for X-ray diffraction



Figure 2

The molecular packing for (I), showing hydrogen-bonded chains running along the *c* axis.  $O-H\cdots O$  hydrogen bonds are shown as dashed lines.

could be separated over a period of three days; they were washed with acetone. IR (KBr pellet,  $cm^{-1}$ ): 1618 (*s*, CO) and 1110 (*s*, PO).

### 6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2. All C-bound H atoms were idealized (C–H = 0.98–0.99 Å) and refined within the riding-model approximation with  $U_{\rm iso}({\rm H}) = 1.2$  or 1.5  $U_{\rm eq}({\rm C})$ . The coordinates of water H atoms were freely refined, with  $U_{\rm iso}({\rm H}) = 1.5U_{\rm eq}({\rm O})$ .

### References

- Agilent (2013). CrysAlis PRO. Agilent Technologies Ltd, Yarnton, England.
- Amirkhanov, V., Ovchynnikov, V., Trush, V., Gawryszewska, P. & Jerzykiewicz, L. (2014). *Ligands. Synthesis, Characterization and Role in Biochemistry*, edited by P. Gawryszewska, pp. 199–248. New York: Nova Science Publishers.
- Amirkhanov, V. M., Ovchynnikov, V. A., Trush, V. A. & Skopenko, V. V. (1996b). Russ. J. Org. Chem. 32, 376–380.
- Amirkhanov, V. M., Trush, V. A., Kapshuk, A. A. & Skopenko, V. V. (1996a). Russ. J. Inorg. Chem. 41, 2052–2057.
- Colodrero, R. M. P., Cabeza, A., Olivera-Pastor, P., Papadaki, M., Rius, J., Choquesillo-Lazarte, D., García-Ruiz, J. M., Demadis, K. D. & Aranda, M. A. G. (2011). *Cryst. Growth Des.* **11**, 1713– 1722.
- Demadis, K. D. (2003). Inorg. Chem. Commun. 6, 527-530.
- Demadis, K. D., Anagnostou, Z. & Zhao, H. (2009). *Appl. Mater. Interfaces*, **1**, 35–38.
- Demadis, K. D., Papadaki, M. & Cisarova, I. (2010). Appl. Mater. Interfaces, 2, 1814–1816.

| Table 2               |  |
|-----------------------|--|
| Experimental details. |  |

Crystal data Chemical formula  $M_r$ Crystal system, space group Temperature (K) a, b, c (Å)

 $V(A^3)$ 

Radiation type  $\mu \text{ (mm}^{-1}\text{)}$ Crystal size (mm)

Data collection Diffractometer Absorption correction

 $T_{\min}, T_{\max}$ No. of measured, independent and observed  $[I > 2\sigma(I)]$  reflections  $R_{int}$  $(\sin \theta/\lambda)_{\max}$  (Å<sup>-1</sup>)

Refinement  $R[F^2 > 2\sigma(F^2)]$ ,  $wR(F^2)$ , S No. of reflections No. of parameters H-atom treatment

 $\Delta \rho_{\rm max}, \, \Delta \rho_{\rm min} \, ({\rm e} \, {\rm \AA}^{-3})$ 

[CaNa(C10H20Cl3N3O2P)3(H2O)] 1135.91 Monoclinic,  $P2_1/c$ 100 13.4014 (5), 21.8127 (10), 18.2427 (6) 100.539 (4) 5242.8 (4) 4 Μο Κα 0.73  $0.5 \times 0.3 \times 0.2$ Agilent Xcalibur, Sapphire3 Multi-scan (CrvsAlis PRO; Agilent, 2013) 0.981, 1.000 56299, 16965, 10752 0.077 0.757 0.063, 0.131, 1.05 16965 559 H atoms treated by a mixture of independent and constrained refinement

Computer programs: CrysAlis PRO (Agilent, 2013), SHELXT (Sheldrick, 2015a), SHELXL2014 (Sheldrick, 2015b) and OLEX2 (Dolomanov et al., 2009).

0.81, -0.53

- Demadis, K. D., Sallis, J. D., Raptis, R. G. & Baran, P. (2001). J. Am. Chem. Soc. 123, 10129–10130.
- Ding, Y., Fanwick, P. E. & Walton, R. A. (2000). *Inorg. Chim. Acta*, **309**, 159–162.
- Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.
- Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.
- Grynuyk, I. I., Prylutska, S. V., Kariaka, N. S., Sliva, T. Yu., Moroz, O. V., Franskevych, D. V., Amirkhanov, V. M., Matyshevska, O. P. & Slobodyanik, M. S. (2016). Ukr. Biokhim. Zh. 87, 154–161.
- Gubina, K. E., Ovchynnikov, V. A., Amirkhanov, V. M., Fischer, H., Stumpf, R. & Skopenko, V. V. (2000). Z. Naturforsch. Teil B, 55, 576–582.
- Hanusa, T. P. (2003). *Comprehensive Coordination Chemistry II*, 2nd ed, edited by J. A. McCleverty. Oxford: Elsevier.
- Hitzbleck, J., Deacon, G. B. & Ruhlandt-Senge, K. (2004). Angew. Chem. Int. Ed. 43, 5218–5220.
- Hoang, Q. Q., Sicheri, F., Howard, A. J. & Yang, D. S. C. (2003). *Nature*, **425**, 977–980.
- Hursthouse, M. B., Levason, W., Ratnani, R., Reid, G., Stainer, H. & Webster, M. (2005). *Polyhedron*, **24**, 121–128.
- Litsis, O. O., Ovchynnikov, V. A., Scherbatskii, V. P., Nedilko, S. G., Sliva, T. Yu., Dyakonenko, V. V., Shishkin, O. V., Davydov, V. I., Gawryszewska, P. & Amirkhanov, V. M. (2015). *Dalton Trans.* 44, 15508–15522.
- Litsis, O. O., Ovchynnikov, V. A., Sliva, T. Y., Konovalova, I. S. & Amirkhanov, V. M. (2010). *Acta Cryst.* E66, m426–m427.
- Liu, D., Kramer, S. A., Huxford-Phillips, R. C., Wang, S., Della Rocca, J. & Lin, W. (2012). *Chem. Commun.* **48**, 2668–2670.
- Moroz, O. V., Shishkina, S. V., Trush, V. A., Sliva, T. Y. & Amirkhanov, V. M. (2007). *Acta Cryst.* E63, m3175-m3176.

## research communications

Niekiel, F. & Stock, N. (2014). Cryst. Growth Des. 14, 599-606.

- Shatrava, I., Ovchynnikov, V., Gubina, K., Shishkina, S., Shishkin, O. & Amirkhanov, V. (2016). *Struct. Chem.* **27**, 1413–1425.
- Shatrava, I. O., Sliva, T. Y., Ovchynnikov, V. A., Konovalova, I. S. & Amirkhanov, V. M. (2010). *Acta Cryst.* E66, m397–m398.
- Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.

- Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.
- Trush, V. A., Gubina, K. E., Amirkhanov, V. M., Swiatek-Kozlowska, J. & Domasevitch, K. V. (2005). *Polyhedron*, **24**, 1007–1014.
- Trush, E. A., Trush, V. A., Sliva, T. Y., Konovalova, I. S. & Amirkhanov, V. M. (2009). Acta Cryst. E65, m1231.

Acta Cryst. (2016). E72, 1683-1686 [https://doi.org/10.1107/S2056989016017035]

Crystal structure of aquatris{ $\mu$ -N-[bis(diethylamino)phosphoryl]-2,2,2-trichloroacetamidato- $\kappa^3 O, O': O$ }calciumsodium

## Iuliia Shatrava, Kateryna Gubina, Vladimir Ovchynnikov, Viktoriya Dyakonenko and Vladimir Amirkhanov

## **Computing details**

Data collection: *CrysAlis PRO* (Agilent, 2013); cell refinement: *CrysAlis PRO* (Agilent, 2013); data reduction: *CrysAlis PRO* (Agilent, 2013); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: *SHELXL2014* (Sheldrick, 2015b); molecular graphics: *OLEX2* (Dolomanov *et al.*, 2009); software used to prepare material for publication: *OLEX2* (Dolomanov *et al.*, 2009).

 $A quatris \{\mu - N - [bis(diethylamino) phosphoryl] - 2, 2, 2 - trichloroacetamidato - \kappa^3 O, O': O\} calciums odium$ 

## Crystal data

 $[CaNa(C_{10}H_{20}Cl_3N_3O_2P)_3(H_2O)]$   $M_r = 1135.91$ Monoclinic,  $P2_1/c$  a = 13.4014 (5) Å b = 21.8127 (10) Å c = 18.2427 (6) Å  $\beta = 100.539$  (4)° V = 5242.8 (4) Å<sup>3</sup> Z = 4

Data collection

Agilent Xcalibur, Sapphire3 diffractometer Radiation source: Enhance (Mo) X-ray Source Graphite monochromator Detector resolution: 16.1827 pixels mm<sup>-1</sup>  $\omega$  scans Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2013)  $T_{\min} = 0.981, T_{\max} = 1.000$ 

## Refinement

Refinement on  $F^2$ Least-squares matrix: full  $R[F^2 > 2\sigma(F^2)] = 0.063$  $wR(F^2) = 0.131$ S = 1.0516965 reflections 559 parameters 0 restraints F(000) = 2360  $D_x = 1.439 \text{ Mg m}^{-3}$ Mo K\alpha radiation,  $\lambda = 0.71073 \text{ Å}$ Cell parameters from 9777 reflections  $\theta = 2.9-31.1^{\circ}$   $\mu = 0.73 \text{ mm}^{-1}$  T = 100 KBlock, colourless  $0.5 \times 0.3 \times 0.2 \text{ mm}$ 

56299 measured reflections 16965 independent reflections 10752 reflections with  $I > 2\sigma(I)$  $R_{int} = 0.077$  $\theta_{max} = 32.5^\circ, \ \theta_{min} = 2.9^\circ$  $h = -17 \rightarrow 19$  $k = -32 \rightarrow 32$  $l = -21 \rightarrow 26$ 

Primary atom site location: structure-invariant direct methods Hydrogen site location: mixed H atoms treated by a mixture of independent and constrained refinement  $w = 1/[\sigma^2(F_o^2) + (0.0333P)^2 + 3.9976P]$ where  $P = (F_o^2 + 2F_c^2)/3$  $(\Delta/\sigma)_{max} = 0.001$   $\Delta \rho_{\rm max} = 0.81 \text{ e } \text{\AA}^{-3}$ 

## Special details

**Geometry**. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

 $\Delta \rho_{\rm min} = -0.53 \ {\rm e} \ {\rm \AA}^{-3}$ 

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters  $(\hat{A}^2)$ 

|     | x            | У            | Ζ             | $U_{ m iso}$ */ $U_{ m eq}$ |  |
|-----|--------------|--------------|---------------|-----------------------------|--|
| Cal | 0.30938 (4)  | 0.26175 (3)  | 0.05317 (3)   | 0.01394 (11)                |  |
| C11 | 0.52209 (7)  | 0.41961 (4)  | -0.07288 (5)  | 0.0412 (2)                  |  |
| Cl2 | 0.49248 (6)  | 0.31147 (4)  | -0.16544 (4)  | 0.03247 (19)                |  |
| C13 | 0.68577 (7)  | 0.33489 (6)  | -0.07300 (6)  | 0.0556 (3)                  |  |
| Cl4 | 0.02206 (7)  | 0.41154 (4)  | -0.15774 (4)  | 0.03229 (19)                |  |
| C15 | -0.08582 (6) | 0.31288 (5)  | -0.10258 (4)  | 0.0352 (2)                  |  |
| Cl6 | 0.06795 (6)  | 0.28761 (4)  | -0.18889 (4)  | 0.02943 (18)                |  |
| Cl7 | 0.20528 (7)  | 0.10653 (4)  | -0.18555 (4)  | 0.03215 (19)                |  |
| C18 | 0.35228 (7)  | 0.02340 (4)  | -0.10288 (4)  | 0.0350 (2)                  |  |
| C19 | 0.41532 (7)  | 0.14074 (4)  | -0.14729 (4)  | 0.0340 (2)                  |  |
| P1  | 0.56560 (6)  | 0.27334 (4)  | 0.12621 (4)   | 0.02079 (17)                |  |
| P2  | 0.15063 (5)  | 0.37823 (3)  | 0.08914 (4)   | 0.01445 (14)                |  |
| P3  | 0.22119 (6)  | 0.11337 (4)  | 0.07838 (4)   | 0.01754 (15)                |  |
| Na1 | 0.29650 (9)  | 0.26717 (6)  | -0.13032 (6)  | 0.0213 (3)                  |  |
| 01  | 0.45756 (15) | 0.26654 (11) | 0.13545 (10)  | 0.0231 (5)                  |  |
| O2  | 0.42012 (14) | 0.29851 (10) | -0.02518 (10) | 0.0212 (5)                  |  |
| 03  | 0.22811 (14) | 0.32988 (9)  | 0.11674 (10)  | 0.0174 (4)                  |  |
| O4  | 0.19420 (14) | 0.30713 (10) | -0.04789 (10) | 0.0198 (4)                  |  |
| 05  | 0.25053 (16) | 0.17625 (10) | 0.10821 (10)  | 0.0200 (4)                  |  |
| O6  | 0.29464 (16) | 0.18838 (10) | -0.04410 (10) | 0.0212 (4)                  |  |
| O7  | 0.27508 (19) | 0.25628 (12) | -0.25633 (11) | 0.0259 (5)                  |  |
| H7A | 0.275 (3)    | 0.221 (2)    | -0.276 (2)    | 0.039*                      |  |
| H7B | 0.267 (3)    | 0.2825 (19)  | -0.287 (2)    | 0.039*                      |  |
| N1  | 0.62190 (18) | 0.20676 (13) | 0.14390 (14)  | 0.0249 (6)                  |  |
| N2  | 0.63464 (19) | 0.32149 (13) | 0.18381 (13)  | 0.0240 (6)                  |  |
| N3  | 0.58423 (18) | 0.29959 (13) | 0.04559 (13)  | 0.0229 (6)                  |  |
| N4  | 0.19814 (18) | 0.44687 (12) | 0.08862 (12)  | 0.0180 (5)                  |  |
| N5  | 0.06822 (18) | 0.37906 (11) | 0.14712 (12)  | 0.0173 (5)                  |  |
| N6  | 0.08462 (17) | 0.36888 (11) | 0.00484 (12)  | 0.0176 (5)                  |  |
| N7  | 0.26564 (19) | 0.06364 (12) | 0.14352 (13)  | 0.0215 (5)                  |  |
| N8  | 0.09859 (19) | 0.10053 (13) | 0.05679 (13)  | 0.0238 (6)                  |  |
| N9  | 0.26156 (19) | 0.09295 (12) | 0.00233 (12)  | 0.0202 (5)                  |  |
| C1  | 0.5617 (3)   | 0.15065 (16) | 0.13558 (19)  | 0.0315 (8)                  |  |
| H1A | 0.4956       | 0.1592       | 0.1504        | 0.038*                      |  |
| H1B | 0.5970       | 0.1194       | 0.1703        | 0.038*                      |  |
| C2  | 0.5423 (3)   | 0.1244 (2)   | 0.0581 (2)    | 0.0536 (12)                 |  |
| H2A | 0.5086       | 0.1551       | 0.0230        | 0.080*                      |  |
| H2B | 0.4988       | 0.0881       | 0.0567        | 0.080*                      |  |

| H2C  | 0.6070      | 0.1127       | 0.0443        | 0.080*      |
|------|-------------|--------------|---------------|-------------|
| C3   | 0.7291 (2)  | 0.20065 (18) | 0.1366 (2)    | 0.0338 (8)  |
| H3A  | 0.7618      | 0.2415       | 0.1417        | 0.041*      |
| H3B  | 0.7330      | 0.1844       | 0.0866        | 0.041*      |
| C4   | 0.7852 (3)  | 0.1579 (2)   | 0.1958 (2)    | 0.0478 (10) |
| H4A  | 0.7630      | 0.1156       | 0.1843        | 0.072*      |
| H4B  | 0.7706      | 0.1695       | 0.2447        | 0.072*      |
| H4C  | 0.8584      | 0.1610       | 0.1967        | 0.072*      |
| C5   | 0.6416 (3)  | 0.31108 (19) | 0.26430 (17)  | 0.0353 (8)  |
| H5A  | 0.6133      | 0.2702       | 0.2721        | 0.042*      |
| H5B  | 0.5999      | 0.3421       | 0.2844        | 0.042*      |
| C6   | 0.7500 (3)  | 0.3146 (2)   | 0.3069 (2)    | 0.0456 (10) |
| H6A  | 0.7928      | 0.2864       | 0.2844        | 0.068*      |
| H6B  | 0.7517      | 0.3031       | 0.3590        | 0.068*      |
| H6C  | 0.7754      | 0.3565       | 0.3046        | 0.068*      |
| C7   | 0.6476 (3)  | 0.38515 (17) | 0.1624 (2)    | 0.0332 (8)  |
| H7C  | 0.6696      | 0.3856       | 0.1135        | 0.040*      |
| H7D  | 0.7024      | 0.4039       | 0.1993        | 0.040*      |
| C8   | 0.5531 (3)  | 0.4239 (2)   | 0.1572 (2)    | 0.0519(11)  |
| H8A  | 0.5009      | 0.4087       | 0.1165        | 0.078*      |
| H8B  | 0.5692      | 0.4666       | 0.1474        | 0.078*      |
| H8C  | 0.5280      | 0.4215       | 0.2043        | 0.078*      |
| C9   | 0.5147 (2)  | 0.30817 (14) | -0.01230 (15) | 0.0180 (6)  |
| C10  | 0.5541 (2)  | 0.34089 (17) | -0.07783 (17) | 0.0279 (7)  |
| C11  | 0.2773 (2)  | 0.46682 (15) | 0.15059 (15)  | 0.0229 (6)  |
| H11A | 0.3383      | 0.4789       | 0.1306        | 0.027*      |
| H11B | 0.2962      | 0.4318       | 0.1848        | 0.027*      |
| C12  | 0.2451 (3)  | 0.52007 (16) | 0.19431 (16)  | 0.0322 (8)  |
| H12A | 0.2276      | 0.5552       | 0.1610        | 0.048*      |
| H12B | 0.3011      | 0.5313       | 0.2346        | 0.048*      |
| H12C | 0.1860      | 0.5081       | 0.2156        | 0.048*      |
| C13  | 0.1801 (3)  | 0.48730 (15) | 0.02316 (15)  | 0.0269 (7)  |
| H13A | 0.1814      | 0.5304       | 0.0402        | 0.032*      |
| H13B | 0.1117      | 0.4789       | -0.0060       | 0.032*      |
| C14  | 0.2579 (3)  | 0.4792 (2)   | -0.02705 (18) | 0.0441 (11) |
| H14A | 0.2445      | 0.5089       | -0.0680       | 0.066*      |
| H14B | 0.2533      | 0.4375       | -0.0474       | 0.066*      |
| H14C | 0.3261      | 0.4861       | 0.0019        | 0.066*      |
| C15  | -0.0128 (2) | 0.42512 (15) | 0.13284 (16)  | 0.0236 (6)  |
| H15A | -0.0685     | 0.4096       | 0.0940        | 0.028*      |
| H15B | 0.0140      | 0.4630       | 0.1137        | 0.028*      |
| C16  | -0.0545 (3) | 0.44007 (17) | 0.20263 (19)  | 0.0352 (8)  |
| H16A | -0.1024     | 0.4743       | 0.1924        | 0.053*      |
| H16B | 0.0015      | 0.4515       | 0.2428        | 0.053*      |
| H16C | -0.0895     | 0.4041       | 0.2178        | 0.053*      |
| C17  | 0.0369 (2)  | 0.31950 (15) | 0.17294 (17)  | 0.0236 (6)  |
| H17A | 0.0126      | 0.3258       | 0.2205        | 0.028*      |
| H17B | 0.0971      | 0.2924       | 0.1834        | 0.028*      |

| C18  | -0.0452 (3) | 0.2872 (2)    | 0.1191 (2)    | 0.0502 (11) |
|------|-------------|---------------|---------------|-------------|
| H18A | -0.0212     | 0.2794        | 0.0723        | 0.075*      |
| H18B | -0.1059     | 0.3131        | 0.1092        | 0.075*      |
| H18C | -0.0616     | 0.2482        | 0.1408        | 0.075*      |
| C19  | 0.1140 (2)  | 0.33714 (13)  | -0.04671 (14) | 0.0154 (5)  |
| C20  | 0.0332 (2)  | 0.33663 (14)  | -0.12081 (15) | 0.0189 (6)  |
| C21  | 0.0375 (2)  | 0.10914 (17)  | 0.11532 (18)  | 0.0296 (7)  |
| H21A | -0.0120     | 0.1425        | 0.1002        | 0.036*      |
| H21B | 0.0827      | 0.1219        | 0.1619        | 0.036*      |
| C22  | -0.0188 (3) | 0.05222 (19)  | 0.1303 (2)    | 0.0439 (10) |
| H22A | -0.0653     | 0.0400        | 0.0848        | 0.066*      |
| H22B | -0.0575     | 0.0605        | 0.1699        | 0.066*      |
| H22C | 0.0298      | 0.0191        | 0.1460        | 0.066*      |
| C23  | 0.0422 (3)  | 0.09849 (18)  | -0.02034 (18) | 0.0335 (8)  |
| H23A | -0.0205     | 0.0742        | -0.0216       | 0.040*      |
| H23B | 0.0840      | 0.0772        | -0.0519       | 0.040*      |
| C24  | 0.0138 (3)  | 0.1614 (2)    | -0.0531 (2)   | 0.0544 (12) |
| H24A | -0.0256     | 0.1569        | -0.1036       | 0.082*      |
| H24B | 0.0757      | 0.1848        | -0.0550       | 0.082*      |
| H24C | -0.0269     | 0.1831        | -0.0218       | 0.082*      |
| C25  | 0.3321 (2)  | 0.08055 (16)  | 0.21407 (15)  | 0.0242 (7)  |
| H25A | 0.3591      | 0.1223        | 0.2094        | 0.029*      |
| H25B | 0.3904      | 0.0519        | 0.2236        | 0.029*      |
| C26  | 0.2770 (3)  | 0.0788 (2)    | 0.27963 (17)  | 0.0370 (9)  |
| H26A | 0.2224      | 0.1093        | 0.2722        | 0.055*      |
| H26B | 0.3249      | 0.0881        | 0.3256        | 0.055*      |
| H26C | 0.2481      | 0.0379        | 0.2834        | 0.055*      |
| C27  | 0.2515 (3)  | -0.00186 (16) | 0.12843 (17)  | 0.0288 (7)  |
| H27A | 0.1929      | -0.0075       | 0.0873        | 0.035*      |
| H27B | 0.2349      | -0.0221       | 0.1732        | 0.035*      |
| C28  | 0.3436 (3)  | -0.03324 (19) | 0.1075 (2)    | 0.0425 (10) |
| H28A | 0.3598      | -0.0142       | 0.0625        | 0.064*      |
| H28B | 0.3288      | -0.0768       | 0.0981        | 0.064*      |
| H28C | 0.4016      | -0.0290       | 0.1486        | 0.064*      |
| C29  | 0.2896 (2)  | 0.13098 (14)  | -0.04402 (14) | 0.0175 (6)  |
| C30  | 0.3164 (2)  | 0.10037 (15)  | -0.11537 (15) | 0.0236 (6)  |
|      |             |               |               |             |

## Atomic displacement parameters $(Å^2)$

|     | $U^{11}$   | $U^{22}$    | $U^{33}$   | $U^{12}$    | $U^{13}$    | $U^{23}$     |
|-----|------------|-------------|------------|-------------|-------------|--------------|
| Cal | 0.0156 (3) | 0.0131 (3)  | 0.0133 (2) | 0.0009 (2)  | 0.0028 (2)  | 0.00007 (19) |
| Cl1 | 0.0513 (6) | 0.0240 (5)  | 0.0446 (5) | -0.0105 (4) | -0.0008(4)  | 0.0118 (4)   |
| Cl2 | 0.0381 (5) | 0.0402 (5)  | 0.0217 (3) | 0.0048 (4)  | 0.0126 (3)  | 0.0056 (3)   |
| C13 | 0.0214 (4) | 0.0944 (10) | 0.0543 (6) | 0.0021 (5)  | 0.0153 (4)  | 0.0331 (6)   |
| Cl4 | 0.0469 (5) | 0.0223 (4)  | 0.0233 (4) | 0.0071 (4)  | -0.0051 (3) | 0.0042 (3)   |
| C15 | 0.0202 (4) | 0.0513 (6)  | 0.0325 (4) | -0.0092 (4) | 0.0006 (3)  | -0.0041 (4)  |
| Cl6 | 0.0339 (4) | 0.0317 (5)  | 0.0198 (3) | 0.0090 (4)  | -0.0027 (3) | -0.0102 (3)  |
| Cl7 | 0.0412 (5) | 0.0340 (5)  | 0.0178 (3) | 0.0065 (4)  | -0.0036 (3) | -0.0068 (3)  |
|     |            |             |            |             |             |              |

| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $\begin{array}{c} -0.0013 (3) \\ -0.0002 (3) \\ 0.0061 (3) \\ -0.0006 (3) \\ -0.0005 (3) \\ 0.0013 (4) \\ 0.0050 (9) \\ 0.0040 (8) \\ -0.0012 (7) \\ 0.0000 (8) \\ 0.0000 (7) \\ -0.0002 (8) \\ 0.0008 (8) \\ 0.0008 (8) \\ 1) \\ 0.0089 (11) \\ 0.0051 (10) \\ 0.0077 (11) \\ 0.0003 (9) \\ 0.0019 (9) \end{array}$      |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $\begin{array}{c} -0.0002 \ (3) \\ 0.0061 \ (3) \\ -0.0006 \ (3) \\ -0.0005 \ (3) \\ 0.0013 \ (4) \\ 0.0050 \ (9) \\ 0.0040 \ (8) \\ -0.0012 \ (7) \\ 0.0000 \ (8) \\ 0.0000 \ (7) \\ -0.0002 \ (8) \\ 0.0008 \ (8) \\ 1) \\ 0.0089 \ (11) \\ 0.0051 \ (10) \\ 0.0077 \ (11) \\ 0.0003 \ (9) \\ 0.0019 \ (9) \end{array}$ |
| P1 $0.0164(4)$ $0.0226(4)$ $0.0215(4)$ $-0.0025(3)$ $-0.0015(3)$ P2 $0.0175(3)$ $0.0124(4)$ $0.0134(3)$ $0.0015(3)$ $0.0027(3)$ P3 $0.0245(4)$ $0.0132(4)$ $0.0152(3)$ $0.0002(3)$ $0.0041(3)$ Na1 $0.0260(6)$ $0.0247(7)$ $0.0135(5)$ $0.0025(5)$ $0.0043(5)$ O1 $0.0187(10)$ $0.0335(14)$ $0.0160(9)$ $-0.0030(9)$ $0.0005(8)$ O2 $0.0177(10)$ $0.0281(13)$ $0.0177(9)$ $-0.0021(9)$ $0.0031(8)$ O3 $0.207(10)$ $0.0152(11)$ $0.0157(9)$ $0.0031(8)$ $0.0017(8)$ O4 $0.0191(10)$ $0.0241(12)$ $0.0164(9)$ $0.0063(9)$ $0.0077(8)$ O5 $0.0321(11)$ $0.0156(11)$ $0.0162(9)$ $0.0004(9)$ $0.0071(8)$ O7 $0.0426(13)$ $0.0204(13)$ $0.0155(10)$ $0.0013(11)$ $0.0071(10)$ N1 $0.0179(12)$ $0.0221(15)$ $0.0327(14)$ $-0.0038(11)$ $-0.0012(1)$ N2 $0.0235(13)$ $0.0224(15)$ $0.0240(12)$ $-0.0038(11)$ $-0.0018(10)$ N4 $0.0205(12)$ $0.0180(13)$ $0.0183(11)$ $0.0018(10)$ $0.0025(9)$ N5 $0.0214(12)$ $0.0161(13)$ $0.0173(11)$ $0.0008(11)$ $0.0025(9)$ N7 $0.0283(13)$ $0.0173(14)$ $0.0173(11)$ $0.0011(11)$ $0.0052(10)$ N8 $0.0245(13)$ $0.0149(13)$ $0.0173(11)$ $0.0011(11)$ $0.0052(10)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $\begin{array}{c} 0.0061 \ (3) \\ -0.0006 \ (3) \\ -0.0005 \ (3) \\ 0.0013 \ (4) \\ 0.0050 \ (9) \\ 0.0040 \ (8) \\ -0.0012 \ (7) \\ 0.0000 \ (8) \\ 0.0000 \ (7) \\ -0.0002 \ (8) \\ 0.0008 \ (8) \\ 0.0008 \ (8) \\ 1) \\ 0.0051 \ (10) \\ 0.0077 \ (11) \\ 0.0003 \ (9) \\ 0.0019 \ (9) \end{array}$                   |
| P2 $0.0175$ (3) $0.0124$ (4) $0.0134$ (3) $0.0015$ (3) $0.0027$ (3)P3 $0.0245$ (4) $0.0132$ (4) $0.0152$ (3) $0.0002$ (3) $0.0041$ (3)Na1 $0.0260$ (6) $0.0247$ (7) $0.0135$ (5) $0.0025$ (5) $0.0043$ (5)O1 $0.0187$ (10) $0.0335$ (14) $0.0160$ (9) $-0.0030$ (9) $0.0005$ (8)O2 $0.0177$ (10) $0.0281$ (13) $0.0177$ (9) $-0.0021$ (9) $0.0031$ (8)O3 $0.0207$ (10) $0.0152$ (11) $0.0157$ (9) $0.0031$ (8) $0.0017$ (8)O4 $0.0191$ (10) $0.0241$ (12) $0.0164$ (9) $0.0063$ (9) $0.0031$ (8)O5 $0.0321$ (11) $0.0156$ (11) $0.0136$ (9) $-0.0030$ (9) $0.0077$ (8)O6 $0.0324$ (12) $0.0160$ (11) $0.0162$ (9) $0.0004$ (9) $0.0071$ (10)N1 $0.0179$ (12) $0.0224$ (13) $0.0127$ (14) $-0.0020$ (11) $-0.0010$ (10)N2 $0.0235$ (13) $0.0224$ (15) $0.0240$ (12) $-0.0038$ (11) $-0.0010$ (10)N4 $0.0205$ (12) $0.0180$ (13) $0.0148$ (10) $-0.0036$ (10) $0.0015$ (9)N5 $0.0214$ (12) $0.0160$ (13) $0.0171$ (11) $0.0018$ (10) $0.0025$ (9)N7 $0.0283$ (13) $0.0173$ (14) $0.0179$ (11) $0.0008$ (11) $0.0018$ (10)N8 $0.0245$ (13) $0.0261$ (15) $0.0210$ (12) $0.0011$ (11) $0.0052$ (10)                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $\begin{array}{c} -0.0006 (3) \\ -0.0005 (3) \\ 0.0013 (4) \\ 0.0050 (9) \\ 0.0040 (8) \\ -0.0012 (7) \\ 0.0000 (8) \\ 0.0000 (7) \\ -0.0002 (8) \\ 0.0008 (8) \\ 1) \\ 0.0089 (11) \\ 0.0051 (10) \\ 0.0077 (11) \\ 0.0003 (9) \\ 0.0019 (9) \end{array}$                                                                |
| P3 $0.0245$ (4) $0.0132$ (4) $0.0152$ (3) $0.0002$ (3) $0.0041$ (3)Na1 $0.0260$ (6) $0.0247$ (7) $0.0135$ (5) $0.0025$ (5) $0.0043$ (5)O1 $0.0187$ (10) $0.0335$ (14) $0.0160$ (9) $-0.0030$ (9) $0.0005$ (8)O2 $0.0177$ (10) $0.0281$ (13) $0.0177$ (9) $-0.0021$ (9) $0.0031$ (8)O3 $0.0207$ (10) $0.0152$ (11) $0.0157$ (9) $0.0031$ (8) $0.0017$ (8)O4 $0.0191$ (10) $0.0241$ (12) $0.0164$ (9) $0.0063$ (9) $0.0077$ (8)O5 $0.0321$ (11) $0.0156$ (11) $0.0162$ (9) $0.0004$ (9) $0.0077$ (8)O6 $0.0324$ (12) $0.0160$ (11) $0.0152$ (10) $0.0013$ (11) $0.0071$ (10)N1 $0.0179$ (12) $0.0221$ (15) $0.0327$ (14) $-0.0020$ (11) $-0.0012$ (1N2 $0.0235$ (13) $0.0224$ (15) $0.0240$ (12) $-0.0038$ (11) $-0.0010$ (16)N3 $0.0176$ (12) $0.0180$ (13) $0.0148$ (10) $-0.0036$ (10) $0.0015$ (9)N5 $0.0214$ (12) $0.0136$ (13) $0.0183$ (11) $0.0018$ (10) $0.0025$ (9)N7 $0.0283$ (13) $0.0173$ (14) $0.0179$ (11) $0.0008$ (11) $0.0018$ (10)N8 $0.0245$ (13) $0.0261$ (15) $0.0210$ (12) $0.0011$ (11) $0.0052$ (10)N9 $0.0286$ (13) $0.0149$ (13) $0.0173$ (11) $0.0011$ (11) $0.0052$ (10)                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $\begin{array}{c} -0.0005 \ (3) \\ 0.0013 \ (4) \\ 0.0050 \ (9) \\ 0.0040 \ (8) \\ -0.0012 \ (7) \\ 0.0000 \ (8) \\ 0.0000 \ (7) \\ -0.0002 \ (8) \\ 0.0008 \ (8) \\ 1) \\ 0.0089 \ (11) \\ 0.0051 \ (10) \\ 0.0077 \ (11) \\ 0.0003 \ (9) \\ 0.0019 \ (9) \end{array}$                                                   |
| Na1 $0.0260$ (6) $0.0247$ (7) $0.0135$ (5) $0.0025$ (5) $0.0043$ (5)O1 $0.0187$ (10) $0.0335$ (14) $0.0160$ (9) $-0.0030$ (9) $0.0005$ (8)O2 $0.0177$ (10) $0.0281$ (13) $0.0177$ (9) $-0.0021$ (9) $0.0031$ (8)O3 $0.0207$ (10) $0.0152$ (11) $0.0157$ (9) $0.0031$ (8) $0.0017$ (8)O4 $0.0191$ (10) $0.0241$ (12) $0.0164$ (9) $0.0063$ (9) $0.0077$ (8)O5 $0.0321$ (11) $0.0156$ (11) $0.0136$ (9) $-0.0030$ (9) $0.0077$ (8)O6 $0.0324$ (12) $0.0160$ (11) $0.0155$ (10) $0.0013$ (11) $0.0071$ (10)N1 $0.0179$ (12) $0.0221$ (15) $0.0247$ (14) $-0.0020$ (11) $-0.0012$ (11)N2 $0.0235$ (13) $0.0224$ (15) $0.0240$ (12) $-0.0038$ (11) $-0.0010$ (14)N3 $0.0176$ (12) $0.0241$ (15) $0.0261$ (12) $0.0016$ (11) $0.0015$ (9)N5 $0.0214$ (12) $0.0180$ (13) $0.0148$ (10) $-0.0036$ (10) $0.0025$ (9)N7 $0.0283$ (13) $0.0173$ (14) $0.0179$ (11) $0.0008$ (11) $0.0018$ (10)N8 $0.0245$ (13) $0.0261$ (15) $0.0210$ (12) $0.0011$ (11) $0.0052$ (10)N9 $0.0286$ (13) $0.0149$ (13) $0.0173$ (11) $0.0011$ (11) $0.0052$ (10)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $\begin{array}{c} 0.0013 \ (4) \\ 0.0050 \ (9) \\ 0.0040 \ (8) \\ -0.0012 \ (7) \\ 0.0000 \ (8) \\ 0.0000 \ (7) \\ -0.0002 \ (8) \\ 0.0008 \ (8) \\ 1) \\ 0.0089 \ (11) \\ 0.0051 \ (10) \\ 0.0077 \ (11) \\ 0.0003 \ (9) \\ 0.0019 \ (9) \end{array}$                                                                    |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $\begin{array}{c} 0.0050 (9) \\ 0.0040 (8) \\ -0.0012 (7) \\ 0.0000 (8) \\ 0.0000 (7) \\ -0.0002 (8) \\ 0.0008 (8) \\ 0.0089 (11) \\ 0.0051 (10) \\ 0.0077 (11) \\ 0.0003 (9) \\ 0.0019 (9) \end{array}$                                                                                                                  |
| O2         0.0177 (10)         0.0281 (13)         0.0177 (9)         -0.0021 (9)         0.0031 (8)           O3         0.0207 (10)         0.0152 (11)         0.0157 (9)         0.0031 (8)         0.0017 (8)           O4         0.0191 (10)         0.0241 (12)         0.0164 (9)         0.0063 (9)         0.0031 (8)           O5         0.0321 (11)         0.0156 (11)         0.0136 (9)         -0.0030 (9)         0.0077 (8)           O6         0.0324 (12)         0.0160 (11)         0.0162 (9)         0.0004 (9)         0.0071 (8)           O7         0.0426 (13)         0.0204 (13)         0.0155 (10)         0.0013 (11)         0.0071 (10)           N1         0.0179 (12)         0.0221 (15)         0.0327 (14)         -0.0020 (11)         -0.0012 (11)           N2         0.0235 (13)         0.0224 (15)         0.0240 (12)         -0.0038 (11)         -0.0010 (10)           N3         0.0176 (12)         0.0241 (15)         0.0240 (12)         -0.0036 (10)         0.0015 (9)           N4         0.0205 (12)         0.0180 (13)         0.0148 (10)         -0.0036 (10)         0.0015 (9)           N5         0.0214 (12)         0.0161 (13)         0.0171 (11)         0.0025 (9)         0.0283 (13)         0.0173 (14) <td< td=""><td><math display="block">\begin{array}{c} 0.0040 \ (8) \\ -0.0012 \ (7) \\ 0.0000 \ (8) \\ 0.0000 \ (7) \\ -0.0002 \ (8) \\ 0.0008 \ (8) \\ 1) \\ 0.0089 \ (11) \\ 0.0051 \ (10) \\ 0.0077 \ (11) \\ 0.0003 \ (9) \\ 0.0019 \ (9) \end{array}</math></td></td<> | $\begin{array}{c} 0.0040 \ (8) \\ -0.0012 \ (7) \\ 0.0000 \ (8) \\ 0.0000 \ (7) \\ -0.0002 \ (8) \\ 0.0008 \ (8) \\ 1) \\ 0.0089 \ (11) \\ 0.0051 \ (10) \\ 0.0077 \ (11) \\ 0.0003 \ (9) \\ 0.0019 \ (9) \end{array}$                                                                                                    |
| O3         0.0207 (10)         0.0152 (11)         0.0157 (9)         0.0031 (8)         0.0017 (8)           O4         0.0191 (10)         0.0241 (12)         0.0164 (9)         0.0063 (9)         0.0031 (8)           O5         0.0321 (11)         0.0156 (11)         0.0136 (9)         -0.0030 (9)         0.0077 (8)           O6         0.0324 (12)         0.0160 (11)         0.0162 (9)         0.0004 (9)         0.0071 (8)           O7         0.0426 (13)         0.0204 (13)         0.0155 (10)         0.0013 (11)         0.0071 (10)           N1         0.0179 (12)         0.0221 (15)         0.0327 (14)         -0.0020 (11)         -0.0012 (11)           N2         0.0235 (13)         0.0224 (15)         0.0240 (12)         -0.0038 (11)         -0.0010 (10)           N3         0.0176 (12)         0.0241 (15)         0.0261 (12)         0.0016 (11)         0.0018 (10)           N4         0.0205 (12)         0.0180 (13)         0.0183 (11)         0.0018 (10)         0.00269 (9)           N5         0.0214 (12)         0.0161 (13)         0.0171 (11)         0.0023 (10)         0.0025 (9)           N7         0.0283 (13)         0.0173 (14)         0.0179 (11)         0.0008 (11)         0.0018 (10)           N8                                                                                                                                                                                                                                                                                  | $\begin{array}{c} -0.0012 \ (7) \\ 0.0000 \ (8) \\ 0.0000 \ (7) \\ -0.0002 \ (8) \\ 0.0008 \ (8) \\ 1) \\ 0.0089 \ (11) \\ 0.0051 \ (10) \\ 0.0077 \ (11) \\ 0.0003 \ (9) \\ 0.0019 \ (9) \end{array}$                                                                                                                    |
| O40.0191 (10)0.0241 (12)0.0164 (9)0.0063 (9)0.0031 (8)O50.0321 (11)0.0156 (11)0.0136 (9)-0.0030 (9)0.0077 (8)O60.0324 (12)0.0160 (11)0.0162 (9)0.0004 (9)0.0071 (8)O70.0426 (13)0.0204 (13)0.0155 (10)0.0013 (11)0.0071 (10)N10.0179 (12)0.0221 (15)0.0327 (14)-0.0020 (11)-0.0012 (11)N20.0235 (13)0.0224 (15)0.0240 (12)-0.0038 (11)-0.0010 (10)N30.0176 (12)0.0241 (15)0.0261 (12)0.0016 (11)0.0015 (9)N40.0205 (12)0.0180 (13)0.0148 (10)-0.0036 (10)0.0015 (9)N50.0214 (12)0.0161 (13)0.0171 (11)0.0025 (9)N60.0193 (12)0.0161 (13)0.0171 (11)0.0008 (11)0.0018 (10)N80.0245 (13)0.0261 (15)0.0210 (12)0.0011 (11)0.0051 (10)N90.0286 (13)0.0149 (13)0.0173 (11)0.0011 (11)0.0052 (10)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $\begin{array}{c} 0.0000 \ (8) \\ 0.0000 \ (7) \\ -0.0002 \ (8) \\ 0.0008 \ (8) \\ 1) \\ 0.0089 \ (11) \\ 0.0051 \ (10) \\ 0.0077 \ (11) \\ 0.0003 \ (9) \\ 0.0019 \ (9) \end{array}$                                                                                                                                     |
| O50.0321 (11)0.0156 (11)0.0136 (9)-0.0030 (9)0.0077 (8)O60.0324 (12)0.0160 (11)0.0162 (9)0.0004 (9)0.0071 (8)O70.0426 (13)0.0204 (13)0.0155 (10)0.0013 (11)0.0071 (10)N10.0179 (12)0.0221 (15)0.0327 (14)-0.0020 (11)-0.0012 (11)N20.0235 (13)0.0224 (15)0.0240 (12)-0.0038 (11)-0.0010 (10)N30.0176 (12)0.0241 (15)0.0261 (12)0.0016 (11)0.0018 (10)N40.0205 (12)0.0180 (13)0.0148 (10)-0.0036 (10)0.0015 (9)N50.0214 (12)0.0161 (13)0.0171 (11)0.0023 (10)0.0025 (9)N70.0283 (13)0.0173 (14)0.0179 (11)0.0008 (11)0.0018 (10)N80.0245 (13)0.0261 (15)0.0210 (12)0.0011 (11)0.0051 (10)N90.0286 (13)0.0149 (13)0.0173 (11)0.0011 (11)0.0052 (10)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $\begin{array}{c} 0.0000 \ (7) \\ -0.0002 \ (8) \\ 0.0008 \ (8) \\ 1) \\ 0.0051 \ (10) \\ 0.0077 \ (11) \\ 0.0003 \ (9) \\ 0.0019 \ (9) \end{array}$                                                                                                                                                                      |
| O60.0324 (12)0.0160 (11)0.0162 (9)0.0004 (9)0.0071 (8)O70.0426 (13)0.0204 (13)0.0155 (10)0.0013 (11)0.0071 (10)N10.0179 (12)0.0221 (15)0.0327 (14)-0.0020 (11)-0.0012 (11)N20.0235 (13)0.0224 (15)0.0240 (12)-0.0038 (11)-0.0010 (10)N30.0176 (12)0.0241 (15)0.0261 (12)0.0016 (11)0.0018 (10)N40.0205 (12)0.0180 (13)0.0148 (10)-0.0036 (10)0.0015 (9)N50.0214 (12)0.0161 (13)0.0171 (11)0.0032 (10)0.0025 (9)N60.0193 (12)0.0161 (13)0.0179 (11)0.0008 (11)0.0018 (10)N80.0245 (13)0.0261 (15)0.0210 (12)0.0011 (11)0.0051 (10)N90.0286 (13)0.0149 (13)0.0173 (11)0.0011 (11)0.0052 (10)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $\begin{array}{c} -0.0002 \ (8) \\ 0.0008 \ (8) \\ 1) \\ 0.0089 \ (11) \\ 0.0051 \ (10) \\ 0.0077 \ (11) \\ 0.0003 \ (9) \\ 0.0019 \ (9) \end{array}$                                                                                                                                                                     |
| O70.0426 (13)0.0204 (13)0.0155 (10)0.0013 (11)0.0071 (10)N10.0179 (12)0.0221 (15)0.0327 (14)-0.0020 (11)-0.0012 (1N20.0235 (13)0.0224 (15)0.0240 (12)-0.0038 (11)-0.0010 (10)N30.0176 (12)0.0241 (15)0.0261 (12)0.0016 (11)0.0015 (9)N40.0205 (12)0.0180 (13)0.0148 (10)-0.0036 (10)0.0015 (9)N50.0214 (12)0.0161 (13)0.0183 (11)0.0018 (10)0.0069 (9)N60.0193 (12)0.0161 (13)0.0171 (11)0.0032 (10)0.0025 (9)N70.0283 (13)0.0173 (14)0.0179 (11)0.0008 (11)0.0018 (10)N80.0245 (13)0.0261 (15)0.0210 (12)0.0011 (11)0.0051 (10)N90.0286 (13)0.0149 (13)0.0173 (11)0.0011 (11)0.0052 (10)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.0008 (8)           1)         0.0089 (11)           0)         0.0051 (10)           0.00077 (11)           0.0003 (9)           0.0019 (9)                                                                                                                                                                             |
| N10.0179 (12)0.0221 (15)0.0327 (14)-0.0020 (11)-0.0012 (1N20.0235 (13)0.0224 (15)0.0240 (12)-0.0038 (11)-0.0010 (19N30.0176 (12)0.0241 (15)0.0261 (12)0.0016 (11)0.0018 (10)N40.0205 (12)0.0180 (13)0.0148 (10)-0.0036 (10)0.0015 (9)N50.0214 (12)0.0136 (13)0.0183 (11)0.0018 (10)0.0069 (9)N60.0193 (12)0.0161 (13)0.0171 (11)0.0032 (10)0.0025 (9)N70.0283 (13)0.0173 (14)0.0179 (11)0.0008 (11)0.0018 (10)N80.0245 (13)0.0261 (15)0.0210 (12)0.0011 (11)0.0051 (10)N90.0286 (13)0.0149 (13)0.0173 (11)0.0011 (11)0.0052 (10)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $\begin{array}{c} 1) & 0.0089 (11) \\ 0.0051 (10) \\ 0.0077 (11) \\ 0.0003 (9) \\ 0.0019 (9) \end{array}$                                                                                                                                                                                                                 |
| N20.0235 (13)0.0224 (15)0.0240 (12)-0.0038 (11)-0.0010 (14)N30.0176 (12)0.0241 (15)0.0261 (12)0.0016 (11)0.0018 (10)N40.0205 (12)0.0180 (13)0.0148 (10)-0.0036 (10)0.0015 (9)N50.0214 (12)0.0136 (13)0.0183 (11)0.0018 (10)0.0069 (9)N60.0193 (12)0.0161 (13)0.0171 (11)0.0032 (10)0.0025 (9)N70.0283 (13)0.0173 (14)0.0179 (11)0.0008 (11)0.0018 (10)N80.0245 (13)0.0261 (15)0.0210 (12)0.0011 (11)0.0051 (10)N90.0286 (13)0.0149 (13)0.0173 (11)0.0011 (11)0.0052 (10)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0) 0.0051 (10)<br>0.0077 (11)<br>0.0003 (9)<br>0.0019 (9)                                                                                                                                                                                                                                                                 |
| N30.0176 (12)0.0241 (15)0.0261 (12)0.0016 (11)0.0018 (10)N40.0205 (12)0.0180 (13)0.0148 (10)-0.0036 (10)0.0015 (9)N50.0214 (12)0.0136 (13)0.0183 (11)0.0018 (10)0.0069 (9)N60.0193 (12)0.0161 (13)0.0171 (11)0.0032 (10)0.0025 (9)N70.0283 (13)0.0173 (14)0.0179 (11)0.0008 (11)0.0018 (10)N80.0245 (13)0.0261 (15)0.0210 (12)0.0011 (11)0.0051 (10)N90.0286 (13)0.0149 (13)0.0173 (11)0.0011 (11)0.0052 (10)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.0077 (11)<br>0.0003 (9)<br>0.0019 (9)                                                                                                                                                                                                                                                                                   |
| N40.0205 (12)0.0180 (13)0.0148 (10)-0.0036 (10)0.0015 (9)N50.0214 (12)0.0136 (13)0.0183 (11)0.0018 (10)0.0069 (9)N60.0193 (12)0.0161 (13)0.0171 (11)0.0032 (10)0.0025 (9)N70.0283 (13)0.0173 (14)0.0179 (11)0.0008 (11)0.0018 (10)N80.0245 (13)0.0261 (15)0.0210 (12)0.0011 (11)0.0051 (10)N90.0286 (13)0.0149 (13)0.0173 (11)0.0011 (11)0.0052 (10)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.0003 (9)<br>0.0019 (9)                                                                                                                                                                                                                                                                                                  |
| N50.0214 (12)0.0136 (13)0.0183 (11)0.0018 (10)0.0069 (9)N60.0193 (12)0.0161 (13)0.0171 (11)0.0032 (10)0.0025 (9)N70.0283 (13)0.0173 (14)0.0179 (11)0.0008 (11)0.0018 (10)N80.0245 (13)0.0261 (15)0.0210 (12)0.0011 (11)0.0051 (10)N90.0286 (13)0.0149 (13)0.0173 (11)0.0011 (11)0.0052 (10)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.0019 (9)                                                                                                                                                                                                                                                                                                                |
| N60.0193 (12)0.0161 (13)0.0171 (11)0.0032 (10)0.0025 (9)N70.0283 (13)0.0173 (14)0.0179 (11)0.0008 (11)0.0018 (10)N80.0245 (13)0.0261 (15)0.0210 (12)0.0011 (11)0.0051 (10)N90.0286 (13)0.0149 (13)0.0173 (11)0.0011 (11)0.0052 (10)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                           |
| N70.0283 (13)0.0173 (14)0.0179 (11)0.0008 (11)0.0018 (10)N80.0245 (13)0.0261 (15)0.0210 (12)0.0011 (11)0.0051 (10)N90.0286 (13)0.0149 (13)0.0173 (11)0.0011 (11)0.0052 (10)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -0.0025(9)                                                                                                                                                                                                                                                                                                                |
| N8         0.0245 (13)         0.0261 (15)         0.0210 (12)         0.0011 (11)         0.0051 (10)           N9         0.0286 (13)         0.0149 (13)         0.0173 (11)         0.0011 (11)         0.0052 (10)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.0013 (9)                                                                                                                                                                                                                                                                                                                |
| N9 0.0286 (13) 0.0149 (13) 0.0173 (11) 0.0011 (11) 0.0052 (10)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -0.0022 (10)                                                                                                                                                                                                                                                                                                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -0.0011 (9)                                                                                                                                                                                                                                                                                                               |
| C1 0.0333 (18) 0.0201 (18) 0.0408 (19) -0.0048 (15) 0.0056 (15)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.0042 (14)                                                                                                                                                                                                                                                                                                               |
| C2 $0.058(3)$ $0.033(2)$ $0.058(3)$ $0.010(2)$ $-0.019(2)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -0.0165 (19)                                                                                                                                                                                                                                                                                                              |
| C3 $0.0220(16)$ $0.029(2)$ $0.048(2)$ $-0.0003(14)$ $0.0000(15)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.0085 (16)                                                                                                                                                                                                                                                                                                               |
| C4 0.037 (2) 0.043 (3) 0.061 (3) 0.0092 (19) 0.0040 (19)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.008 (2)                                                                                                                                                                                                                                                                                                                 |
| C5 $0.041(2)$ $0.037(2)$ $0.0256(16)$ $-0.0128(17)$ $-0.0001(12)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 5) 0.0051 (14)                                                                                                                                                                                                                                                                                                            |
| C6 $0.051(2)$ $0.044(3)$ $0.0330(19)$ $0.012(2)$ $-0.0152(19)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -0.0026(17)                                                                                                                                                                                                                                                                                                               |
| C7 0.0310 (18) 0.0249 (19) 0.0400 (19) -0.0062 (15) -0.0036 (15)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 5) 0.0051 (15)                                                                                                                                                                                                                                                                                                            |
| C8 0.054 (3) 0.033 (2) 0.063 (3) 0.015 (2) -0.006 (2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | -0.003 (2)                                                                                                                                                                                                                                                                                                                |
| C9 0.0178 (14) 0.0167 (15) 0.0204 (13) 0.0003 (11) 0.0057 (11)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.0047 (11)                                                                                                                                                                                                                                                                                                               |
| C10 $0.0217(15)$ $0.034(2)$ $0.0282(16)$ $-0.0006(14)$ $0.0063(13)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.0110 (14)                                                                                                                                                                                                                                                                                                               |
| C11 0.0247 (15) 0.0238 (18) 0.0186 (13) -0.0040 (13) -0.0001 (12)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2) 0.0011 (12)                                                                                                                                                                                                                                                                                                            |
| C12 $0.053(2)$ $0.0215(18)$ $0.0192(14)$ $-0.0015(16)$ $-0.0015(12)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | -0.0048(12)                                                                                                                                                                                                                                                                                                               |
| C13 0.048 (2) 0.0149 (16) 0.0162 (13) -0.0053 (14) 0.0013 (13)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.0017 (11)                                                                                                                                                                                                                                                                                                               |
| C14 0.062 (3) 0.049 (3) 0.0233 (16) -0.028 (2) 0.0128 (17)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.0003 (16)                                                                                                                                                                                                                                                                                                               |
| C15 0.0255 (15) 0.0189 (17) 0.0290 (15) 0.0074 (13) 0.0117 (13)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.0031 (12)                                                                                                                                                                                                                                                                                                               |
| C16 0.043 (2) 0.025 (2) 0.045 (2) 0.0116 (16) 0.0254 (17)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.0031 (15)                                                                                                                                                                                                                                                                                                               |
| C17 0.0270 (16) 0.0167 (16) 0.0297 (15) 0.0052 (13) 0.0121 (13)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.0061 (12)                                                                                                                                                                                                                                                                                                               |
| C18 $0.060(3)$ $0.035(2)$ $0.054(2)$ $-0.027(2)$ $0.008(2)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.0079 (19)                                                                                                                                                                                                                                                                                                               |
| C19 0.0156 (13) 0.0146 (14) 0.0155 (12) -0.0004 (11) 0.0012 (10)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.0021 (10)                                                                                                                                                                                                                                                                                                               |
| C20 0.0196 (14) 0.0167 (15) 0.0193 (13) 0.0013 (12) 0.0009 (11)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -0.0021 (11)                                                                                                                                                                                                                                                                                                              |
| C21 0.0262 (16) 0.033 (2) 0.0306 (16) 0.0042 (15) 0.0081 (14)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -0.0020 (14)                                                                                                                                                                                                                                                                                                              |
| C22 $0.055(2)$ $0.039(3)$ $0.043(2)$ $-0.004(2)$ $0.0239(19)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.0048 (17)                                                                                                                                                                                                                                                                                                               |
| C23 $0.0292(17)$ $0.039(2)$ $0.0299(17)$ $-0.0060(16)$ $-0.0014(14)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 4) -0.0014 (15)                                                                                                                                                                                                                                                                                                           |
| C24 $0.044(2)$ $0.065(3)$ $0.051(2)$ $0.012(2)$ $-0.002(2)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.023 (2)                                                                                                                                                                                                                                                                                                                 |
| C25 0.0248 (15) 0.0296 (19) 0.0183 (13) -0.0016 (14) 0.0043 (12)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.0050 (12)                                                                                                                                                                                                                                                                                                               |
| C26 $0.038(2)$ $0.053(3)$ $0.0194(15)$ $-0.0077(19)$ $0.0047(14)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                           |

| C27 | 0.0407 (19) | 0.0199 (18) | 0.0264 (15) | 0.0014 (15) | 0.0080 (14) | 0.0037 (13)  |
|-----|-------------|-------------|-------------|-------------|-------------|--------------|
| C28 | 0.062 (3)   | 0.030 (2)   | 0.039 (2)   | 0.014 (2)   | 0.0179 (19) | 0.0063 (16)  |
| C29 | 0.0218 (14) | 0.0160 (15) | 0.0143 (12) | 0.0031 (12) | 0.0020 (11) | -0.0012 (10) |
| C30 | 0.0319 (17) | 0.0197 (17) | 0.0191 (13) | 0.0048 (13) | 0.0043 (12) | 0.0015 (11)  |

Geometric parameters (Å, °)

| Ca1—O1  | 2.2621 (19) | С5—Н5А   | 0.9900    |
|---------|-------------|----------|-----------|
| Cal—O2  | 2.380 (2)   | С5—Н5В   | 0.9900    |
| Cal—O3  | 2.281 (2)   | C5—C6    | 1.519 (5) |
| Cal—O4  | 2.3917 (19) | С6—Н6А   | 0.9800    |
| Cal—O5  | 2.323 (2)   | С6—Н6В   | 0.9800    |
| Cal—O6  | 2.371 (2)   | С6—Н6С   | 0.9800    |
| Cl1—C10 | 1.776 (4)   | С7—Н7С   | 0.9900    |
| Cl2—C10 | 1.779 (3)   | C7—H7D   | 0.9900    |
| Cl3—C10 | 1.756 (3)   | С7—С8    | 1.511 (5) |
| Cl4—C20 | 1.763 (3)   | C8—H8A   | 0.9800    |
| C15—C20 | 1.766 (3)   | C8—H8B   | 0.9800    |
| C16—C20 | 1.765 (3)   | C8—H8C   | 0.9800    |
| C17—C30 | 1.783 (3)   | C9—C10   | 1.564 (4) |
| C18—C30 | 1.750 (3)   | C11—H11A | 0.9900    |
| C19—C30 | 1.776 (3)   | C11—H11B | 0.9900    |
| P1—O1   | 1.495 (2)   | C11—C12  | 1.515 (4) |
| P1—N1   | 1.641 (3)   | C12—H12A | 0.9800    |
| P1—N2   | 1.646 (3)   | C12—H12B | 0.9800    |
| P1—N3   | 1.639 (3)   | C12—H12C | 0.9800    |
| P2—O3   | 1.501 (2)   | C13—H13A | 0.9900    |
| P2—N4   | 1.628 (3)   | C13—H13B | 0.9900    |
| P2—N5   | 1.663 (2)   | C13—C14  | 1.519 (5) |
| P2—N6   | 1.641 (2)   | C14—H14A | 0.9800    |
| P3—O5   | 1.501 (2)   | C14—H14B | 0.9800    |
| P3—N7   | 1.638 (3)   | C14—H14C | 0.9800    |
| P3—N8   | 1.642 (3)   | C15—H15A | 0.9900    |
| P3—N9   | 1.640 (2)   | C15—H15B | 0.9900    |
| Na1—O2  | 2.393 (2)   | C15—C16  | 1.516 (4) |
| Nal—O4  | 2.378 (2)   | C16—H16A | 0.9800    |
| Nal—O6  | 2.333 (2)   | C16—H16B | 0.9800    |
| Nal—O7  | 2.276 (2)   | C16—H16C | 0.9800    |
| O2—C9   | 1.264 (3)   | C17—H17A | 0.9900    |
| O4—C19  | 1.262 (3)   | C17—H17B | 0.9900    |
| O6—C29  | 1.254 (4)   | C17—C18  | 1.508 (5) |
| O7—H7A  | 0.86 (4)    | C18—H18A | 0.9800    |
| O7—H7B  | 0.80 (4)    | C18—H18B | 0.9800    |
| N1—C1   | 1.459 (4)   | C18—H18C | 0.9800    |
| N1—C3   | 1.472 (4)   | C19—C20  | 1.570 (4) |
| N2—C5   | 1.472 (4)   | C21—H21A | 0.9900    |
| N2—C7   | 1.461 (4)   | C21—H21B | 0.9900    |
| N3—C9   | 1.288 (3)   | C21—C22  | 1.504 (5) |

| N4—C11                   | 1.467 (3)                | C22—H22A                                                                                 | 0.9800                   |
|--------------------------|--------------------------|------------------------------------------------------------------------------------------|--------------------------|
| N4—C13                   | 1.469 (4)                | C22—H22B                                                                                 | 0.9800                   |
| N5-C15                   | 1.468 (4)                | C22—H22C                                                                                 | 0.9800                   |
| N5-C17                   | 1.469 (4)                | C23—H23A                                                                                 | 0.9900                   |
| N6—C19                   | 1.286 (3)                | C23—H23B                                                                                 | 0.9900                   |
| N7—C25                   | 1.472 (4)                | C23—C24                                                                                  | 1.517 (5)                |
| N7—C27                   | 1.461 (4)                | C24—H24A                                                                                 | 0.9800                   |
| N8—C21                   | 1.471 (4)                | C24—H24B                                                                                 | 0.9800                   |
| N8—C23                   | 1.471 (4)                | C24—H24C                                                                                 | 0.9800                   |
| N9—C29                   | 1.289 (4)                | C25—H25A                                                                                 | 0.9900                   |
| C1—H1A                   | 0.9900                   | C25—H25B                                                                                 | 0.9900                   |
| C1—H1B                   | 0.9900                   | C25—C26                                                                                  | 1.516 (4)                |
| C1-C2                    | 1 502 (5)                | C26—H26A                                                                                 | 0.9800                   |
| C2—H2A                   | 0.9800                   | C26—H26B                                                                                 | 0.9800                   |
| C2H2B                    | 0.9800                   | C26—H26C                                                                                 | 0.9800                   |
| C2_H2C                   | 0.9800                   | C27—H27A                                                                                 | 0.9000                   |
| C3_H3A                   | 0.9000                   | C27_H27B                                                                                 | 0.9900                   |
| C3 H3B                   | 0.9900                   | $C_{27}$ $C_{28}$                                                                        | 1,519 (5)                |
| $C_3 = C_4$              | 0.9900                   | $C_{2}^{0} = C_{2}^{0}$                                                                  | 0.0800                   |
| $C_{4}$ $H_{4A}$         | 0.0800                   | C28 H28B                                                                                 | 0.9800                   |
| C4—II4A<br>C4 H4B        | 0.9800                   | $\begin{array}{c} C_{20} \\ \hline \\ C_{28} \\ \hline \\ H_{28}C \\ \hline \end{array}$ | 0.9800                   |
| $C_4$ —II4D              | 0.9800                   | $C_{20} = C_{20}$                                                                        | 1.562(4)                 |
| C4—II4C                  | 0.9000                   | 629—630                                                                                  | 1.502 (4)                |
| 01-Ca1-02                | 79 33 (7)                | H8B—C8—H8C                                                                               | 109.5                    |
| 01 - Ca1 - 03            | 94 32 (7)                | $\Omega^2 = \Omega^9 = N^3$                                                              | 132.7(3)                 |
| 01 - Ca1 - 04            | 148 96 (8)               | 02 - 09 - 010                                                                            | 132.7(3)<br>113.6(2)     |
| $01 - C_{21} - 05$       | 94.39(7)                 | $N_{3}$ $C_{9}$ $C_{10}$                                                                 | 113.0(2)<br>113.5(2)     |
| 01 - Ca1 - 05            | 118.09(8)                | $C_{11} - C_{10} - C_{12}$                                                               | 113.5(2)<br>108 53 (17)  |
| 01 - Ca1 - 00            | 77 47 (7)                | $C_{12}$ $C_{10}$ $C_{12}$                                                               | 108.55(17)<br>108.61(19) |
| $O_2 - C_{a1} - O_7$     | 110 61 (8)               | $C_{13}$ $C_{10}$ $C_{12}$                                                               | 108.01(19)<br>108.37(18) |
| $O_3 = C_{a1} = O_4$     | 70.71(3)                 | $C_{10} = C_{10} = C_{12}$                                                               | 106.57(10)               |
| $O_{3} = C_{a1} = O_{5}$ | 9.71(7)                  | $C_{P} = C_{10} = C_{11}$                                                                | 100.5(2)                 |
| 03-Ca1-05                | 94.12 (7)                | $C_{9} = C_{10} = C_{12}$                                                                | 110.9(2)                 |
| 05-Ca1-00                | 140.90(7)                | $C_{9}$ $C_{10}$ $C_{15}$                                                                | 113.8 (2)                |
| 03-Ca1-02                | 143.92(0)<br>116.21(7)   | N4 = C11 = H11P                                                                          | 108.9                    |
| 03-Ca1-04                | 110.31(7)                | N4-C11-H11B                                                                              | 108.9                    |
| 03-Ca1-00                | 78.07 (7)                | $\mathbf{N4} = \mathbf{C11} = \mathbf{C12}$                                              | 115.4 (5)                |
| 00-Ca1-02                | 75.74(7)                 | HIIA—CII—HIIB                                                                            | 107.7                    |
| 00-Cal-04                | /3.45 (/)                | CI2—CII—HIIA                                                                             | 108.9                    |
| OI = PI = NI             | 108.03(13)<br>115.74(12) |                                                                                          | 108.9                    |
| OI - PI - NZ             | 115.74 (15)              | CII—CI2—HI2A                                                                             | 109.5                    |
| OI-PI-N3                 | 116.44 (12)              | C11—C12—H12B                                                                             | 109.5                    |
| NI—PI—N2                 | 104./5 (13)              | CII—CI2—HI2C                                                                             | 109.5                    |
| N3—PI—NI                 | 110.21 (14)              | HI2A—CI2—HI2B                                                                            | 109.5                    |
| $N_3 - P_1 - N_2$        | 100.95 (13)              | H12A—C12—H12C                                                                            | 109.5                    |
| 03—P2—N4                 | 113.64 (12)              | H12B—C12—H12C                                                                            | 109.5                    |
| 03—P2—N5                 | 107.07 (12)              | N4—C13—H13A                                                                              | 109.0                    |
| 03—P2—N6                 | 116.65 (12)              | N4—C13—H13B                                                                              | 109.0                    |
| N4—P2—Ca1                | 114.86 (9)               | N4—C13—C14                                                                               | 113.1 (3)                |

| N4—P2—N5                                            | 107.44 (13)              | H13A—C13—H13B           | 107.8              |
|-----------------------------------------------------|--------------------------|-------------------------|--------------------|
| N4—P2—N6                                            | 104.66 (12)              | C14—C13—H13A            | 109.0              |
| N6—P2—N5                                            | 106.89 (12)              | C14—C13—H13B            | 109.0              |
| O5—P3—N7                                            | 107.79 (12)              | C13—C14—H14A            | 109.5              |
| O5—P3—N8                                            | 115.28 (13)              | C13—C14—H14B            | 109.5              |
| O5—P3—N9                                            | 116 73 (12)              | C13—C14—H14C            | 109.5              |
| N7—P3—Ca1                                           | 128 31 (10)              | H14A—C14—H14B           | 109.5              |
| N7P3N8                                              | 126.31(10)<br>106.03(14) | H14A - C14 - H14C       | 109.5              |
| N7P3N9                                              | 107.54(13)               | H14B-C14-H14C           | 109.5              |
| N9_P3_N8                                            | 107.34(13)<br>102.78(13) | $M_{-}C_{15}$ $H_{15}$  | 109.3              |
| $\Omega_{1}$ $\Omega_{2}$ $\Omega_{3}$ $\Omega_{2}$ | 77.48(7)                 | N5 C15 H15R             | 109.2              |
| 04 - Na1 - 02<br>06 - Na1 - 02                      | 76.19(8)                 | N5-C15-C16              | 109.2<br>111.9 (2) |
| $O_{1} = O_{2}$                                     | 76.12 (8)                | H15A C15 H15B           | 107.0              |
| 00—Na1— $04$                                        | 70.42(0)                 | $C_{16} C_{15} H_{15A}$ | 107.9              |
| 07 Na1 $04$                                         | 141.20(9)<br>124 11(0)   | C16 C15 H15P            | 109.2              |
| 07 - Na1 - 04                                       | 134.11(9)<br>126.00(10)  | C10-C13-H13B            | 109.2              |
| 0/-Nal-00                                           | 120.09(10)               | C15 - C10 - H10A        | 109.5              |
| PI-OI-Cal                                           | 132.8/(11)               | C15—C16—H16B            | 109.5              |
| Cal = O2 = O1                                       | 88.21 (/)                | C15-C16-H16C            | 109.5              |
| C9—02—Cal                                           | 131.21 (17)              | H16A—C16—H16B           | 109.5              |
| C9—O2—Nal                                           | 136.08 (18)              | H16A—C16—H16C           | 109.5              |
| P2—O3—Cal                                           | 130.74 (10)              | H16B—C16—H16C           | 109.5              |
| Nal—O4—Cal                                          | 88.29 (7)                | N5—C17—H17A             | 108.5              |
| C19—O4—Ca1                                          | 129.28 (16)              | N5—C17—H17B             | 108.5              |
| C19—O4—Na1                                          | 142.40 (17)              | N5—C17—C18              | 114.9 (3)          |
| P3—O5—Ca1                                           | 131.58 (11)              | H17A—C17—H17B           | 107.5              |
| Na1—O6—Ca1                                          | 89.86 (8)                | C18—C17—H17A            | 108.5              |
| C29—O6—Ca1                                          | 132.10 (17)              | C18—C17—H17B            | 108.5              |
| C29—O6—Na1                                          | 138.03 (18)              | C17—C18—H18A            | 109.5              |
| Na1—O7—H7A                                          | 120 (2)                  | C17—C18—H18B            | 109.5              |
| Na1—O7—H7B                                          | 128 (3)                  | C17—C18—H18C            | 109.5              |
| H7A—O7—H7B                                          | 111 (4)                  | H18A—C18—H18B           | 109.5              |
| C1—N1—P1                                            | 119.8 (2)                | H18A—C18—H18C           | 109.5              |
| C1—N1—C3                                            | 116.4 (3)                | H18B-C18-H18C           | 109.5              |
| C3—N1—P1                                            | 118.9 (2)                | O4—C19—N6               | 131.8 (2)          |
| C5—N2—P1                                            | 117.6 (2)                | O4—C19—C20              | 115.9 (2)          |
| C7—N2—P1                                            | 121.1 (2)                | N6-C19-C20              | 112.2 (2)          |
| C7—N2—C5                                            | 115.1 (3)                | Cl4—C20—Cl5             | 109.11 (16)        |
| C9—N3—P1                                            | 125.5 (2)                | Cl4—C20—Cl6             | 107.91 (15)        |
| C11—N4—P2                                           | 119.8 (2)                | Cl6—C20—Cl5             | 108.57 (16)        |
| C11—N4—C13                                          | 115.9 (2)                | C19—C20—Cl4             | 108.6 (2)          |
| C13—N4—P2                                           | 123.43 (19)              | C19—C20—C15             | 110.13 (19)        |
| C15—N5—P2                                           | 116.78 (18)              | C19—C20—Cl6             | 112.42 (19)        |
| C15—N5—C17                                          | 114.6 (2)                | N8—C21—H21A             | 109.0              |
| C17—N5—P2                                           | 117.2 (2)                | N8—C21—H21B             | 109.0              |
| C19—N6—P2                                           | 124.6 (2)                | N8—C21—C22              | 113.0 (3)          |
| C25—N7—P3                                           | 123.4 (2)                | H21A—C21—H21B           | 107.8              |
| C27—N7—P3                                           | 119.6 (2)                | C22—C21—H21A            | 109.0              |
| C27—N7—C25                                          | 116.5 (2)                | C22—C21—H21B            | 109.0              |
|                                                     |                          |                         |                    |

| C21—N8—P3  | 118.0(2)  | C21—C22—H22A  | 109.5       |
|------------|-----------|---------------|-------------|
| C23—N8—P3  | 123.4 (2) | C21—C22—H22B  | 109.5       |
| C23—N8—C21 | 116.2 (3) | C21—C22—H22C  | 109.5       |
| C29—N9—P3  | 124.1 (2) | H22A—C22—H22B | 109.5       |
| N1—C1—H1A  | 108.6     | H22A—C22—H22C | 109.5       |
| N1—C1—H1B  | 108.6     | H22B—C22—H22C | 109.5       |
| N1—C1—C2   | 114.5 (3) | N8—C23—H23A   | 108.9       |
| H1A—C1—H1B | 107.6     | N8—C23—H23B   | 108.9       |
| C2-C1-H1A  | 108.6     | N8—C23—C24    | 113.4 (3)   |
| C2—C1—H1B  | 108.6     | H23A—C23—H23B | 107.7       |
| C1—C2—H2A  | 109.5     | C24—C23—H23A  | 108.9       |
| C1—C2—H2B  | 109.5     | C24—C23—H23B  | 108.9       |
| C1—C2—H2C  | 109.5     | C23—C24—H24A  | 109.5       |
| H2A—C2—H2B | 109.5     | C23—C24—H24B  | 109.5       |
| H2A—C2—H2C | 109.5     | C23—C24—H24C  | 109.5       |
| H2B—C2—H2C | 109.5     | H24A—C24—H24B | 109.5       |
| N1—C3—H3A  | 109.5     | H24A—C24—H24C | 109.5       |
| N1—C3—H3B  | 109.5     | H24B—C24—H24C | 109.5       |
| N1—C3—C4   | 110.9 (3) | N7—C25—H25A   | 109.1       |
| НЗА—СЗ—НЗВ | 108.1     | N7—C25—H25B   | 109.1       |
| С4—С3—Н3А  | 109.5     | N7—C25—C26    | 112.3 (3)   |
| C4—C3—H3B  | 109.5     | H25A—C25—H25B | 107.9       |
| C3—C4—H4A  | 109.5     | C26—C25—H25A  | 109.1       |
| C3—C4—H4B  | 109.5     | C26—C25—H25B  | 109.1       |
| C3—C4—H4C  | 109.5     | C25—C26—H26A  | 109.5       |
| H4A—C4—H4B | 109.5     | C25—C26—H26B  | 109.5       |
| H4A—C4—H4C | 109.5     | C25—C26—H26C  | 109.5       |
| H4B—C4—H4C | 109.5     | H26A—C26—H26B | 109.5       |
| N2—C5—H5A  | 109.1     | H26A—C26—H26C | 109.5       |
| N2—C5—H5B  | 109.1     | H26B—C26—H26C | 109.5       |
| N2—C5—C6   | 112.5 (3) | N7—C27—H27A   | 108.8       |
| H5A—C5—H5B | 107.8     | N7—C27—H27B   | 108.8       |
| С6—С5—Н5А  | 109.1     | N7—C27—C28    | 113.9 (3)   |
| C6—C5—H5B  | 109.1     | H27A—C27—H27B | 107.7       |
| С5—С6—Н6А  | 109.5     | C28—C27—H27A  | 108.8       |
| С5—С6—Н6В  | 109.5     | C28—C27—H27B  | 108.8       |
| С5—С6—Н6С  | 109.5     | C27—C28—H28A  | 109.5       |
| H6A—C6—H6B | 109.5     | C27—C28—H28B  | 109.5       |
| Н6А—С6—Н6С | 109.5     | C27—C28—H28C  | 109.5       |
| H6B—C6—H6C | 109.5     | H28A—C28—H28B | 109.5       |
| N2—C7—H7C  | 108.7     | H28A—C28—H28C | 109.5       |
| N2—C7—H7D  | 108.7     | H28B—C28—H28C | 109.5       |
| N2—C7—C8   | 114.2 (3) | O6—C29—N9     | 131.7 (3)   |
| H7C—C7—H7D | 107.6     | O6—C29—C30    | 113.9 (2)   |
| С8—С7—Н7С  | 108.7     | N9—C29—C30    | 114.2 (3)   |
| C8—C7—H7D  | 108.7     | C18—C30—C17   | 109.84 (18) |
| С7—С8—Н8А  | 109.5     | C18—C30—C19   | 108.36 (17) |
| C7—C8—H8B  | 109.5     | C19—C30—C17   | 107.63 (15) |
|            |           |               |             |

| $\begin{array}{c} .6 (2) \\ .1 (2) \\ (3) \\ 4 (3) \\ 77.6 (2) \\ 5.9 (3) \\ .9 (3) \\ 0.1 (3) \\ 0.1 (3) \\ 0.1 (2) \\ 6 (3) \\ 0.6.24 (19) \\ 2.6 (3) \\ 5.3 (3) \\ 5.3 (3) \\ 5.3 (3) \end{array}$ |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| .1 (2)<br>(3)<br>(4 (3)<br>(7.6 (2)<br>5.9 (3)<br>(3.9 (3)<br>0.8 (3)<br>0.1 (3)<br>0.1 (2)<br>6 (3)<br>0.6.24 (19)<br>2.6 (3)<br>5.3 (3)<br>5.3 (3)                                                  |
| (3)<br>4 (3)<br>77.6 (2)<br>5.9 (3)<br>4.9 (3)<br>0.8 (3)<br>0.1 (3)<br>0.1 (2)<br>6 (3)<br>06.24 (19)<br>2.6 (3)<br>5.3 (3)<br>5.3 (3)                                                               |
| (3)<br>4 (3)<br>17.6 (2)<br>5.9 (3)<br>9.9 (3)<br>0.8 (3)<br>0.1 (3)<br>0.1 (2)<br>6 (3)<br>0.6.24 (19)<br>2.6 (3)<br>5.3 (3)<br>5.3 (3)<br>5.3 (3)                                                   |
| 4 (3)<br>77.6 (2)<br>5.9 (3)<br>4.9 (3)<br>0.8 (3)<br>0.1 (3)<br>0.1 (2)<br>6 (3)<br>0.6.24 (19)<br>2.6 (3)<br>5.3 (3)<br>5.3 (3)                                                                     |
| 77.6 (2)<br>5.9 (3)<br>4.9 (3)<br>0.8 (3)<br>0.1 (3)<br>0.1 (2)<br>6 (3)<br>06.24 (19)<br>2.6 (3)<br>5.3 (3)<br>5.3 (3)                                                                               |
| 5.9 (3)<br>9.9 (3)<br>9.8 (3)<br>9.1 (2)<br>6 (3)<br>96.24 (19)<br>9.6 (3)<br>5.3 (3)<br>5.3 (3)<br>5.3 (3)                                                                                           |
| 4.9 (3)<br>0.8 (3)<br>0.1 (3)<br>0.1 (2)<br>6 (3)<br>06.24 (19)<br>2.6 (3)<br>5.3 (3)<br>5.3 (3)                                                                                                      |
| 0.8 (3)<br>0.1 (3)<br>0.1 (2)<br>6 (3)<br>06.24 (19)<br>2.6 (3)<br>5.3 (3)<br>(.3 (3)                                                                                                                 |
| 0.1 (3)<br>0.1 (2)<br>6 (3)<br>06.24 (19)<br>0.6 (3)<br>0.3 (3)<br>0.3 (3)                                                                                                                            |
| 0.1 (2)<br>6 (3)<br>06.24 (19)<br>2.6 (3)<br>5.3 (3)                                                                                                                                                  |
| 6 (3)<br>06.24 (19)<br>2.6 (3)<br>5.3 (3)                                                                                                                                                             |
| 06.24 (19)<br>2.6 (3)<br>5.3 (3)                                                                                                                                                                      |
| 2.6 (3)<br>5.3 (3)                                                                                                                                                                                    |
| 5.3 (3)<br>5.3 (3)                                                                                                                                                                                    |
| (3)                                                                                                                                                                                                   |
|                                                                                                                                                                                                       |
| 72(17)                                                                                                                                                                                                |
| (9(2))                                                                                                                                                                                                |
| $\frac{19}{2}$                                                                                                                                                                                        |
| 343(3)                                                                                                                                                                                                |
| 4(2)                                                                                                                                                                                                  |
| (2)                                                                                                                                                                                                   |
| 1(3)                                                                                                                                                                                                  |
| $\frac{1}{2} (3)$                                                                                                                                                                                     |
| 8(3)                                                                                                                                                                                                  |
| 25(3)                                                                                                                                                                                                 |
| 5.5(3)                                                                                                                                                                                                |
| 1(4)                                                                                                                                                                                                  |
| 1(4)                                                                                                                                                                                                  |
| (20(10))                                                                                                                                                                                              |
| (2)                                                                                                                                                                                                   |
| 03.4 (2)                                                                                                                                                                                              |
| 2.7 (3)                                                                                                                                                                                               |
| 2.33 (15)                                                                                                                                                                                             |
| 0(2)                                                                                                                                                                                                  |
| 3.4 (2)                                                                                                                                                                                               |
| 13.5 (3)                                                                                                                                                                                              |
| 7 (2)                                                                                                                                                                                                 |
| o8.6 (2)                                                                                                                                                                                              |
| (3)                                                                                                                                                                                                   |
| 5.9 (2)                                                                                                                                                                                               |
| 7 (2)                                                                                                                                                                                                 |
| 0 (3)                                                                                                                                                                                                 |
| 3.4 (3)                                                                                                                                                                                               |
| 4.6 (2)                                                                                                                                                                                               |
| 8.69 (15)                                                                                                                                                                                             |
| 3 (3)                                                                                                                                                                                                 |
| (0, 0)                                                                                                                                                                                                |
|                                                                                                                                                                                                       |

| Na1—Cl6—C20—C19 | -16.8 (2)    | N7—P3—N9—C29   | -142.0 (2)   |
|-----------------|--------------|----------------|--------------|
| Na1—C19—C30—C17 | 68.32 (14)   | N8—P3—O5—Ca1   | -103.14 (17) |
| Na1—C19—C30—C18 | -172.95 (13) | N8—P3—N7—C25   | -130.3 (2)   |
| Na1—C19—C30—C29 | -47.42 (19)  | N8—P3—N7—C27   | 58.4 (3)     |
| Na1—O2—C9—N3    | -145.1 (3)   | N8—P3—N9—C29   | 106.4 (3)    |
| Na1—O2—C9—C10   | 39.5 (4)     | N9—P3—O5—Ca1   | 17.6 (2)     |
| Na1—O4—C19—N6   | -157.6 (2)   | N9—P3—N7—C25   | 120.3 (2)    |
| Na1—O4—C19—C20  | 22.5 (4)     | N9—P3—N7—C27   | -51.0 (3)    |
| Na1—O6—C29—N9   | -157.8 (2)   | N9—P3—N8—C21   | 175.0 (2)    |
| Na1—O6—C29—C30  | 18.1 (4)     | N9—P3—N8—C23   | -23.2 (3)    |
| O1—P1—N1—C1     | 24.0 (3)     | N9-C29-C30-Cl7 | 96.6 (3)     |
| O1—P1—N1—C3     | 178.3 (2)    | N9-C29-C30-C18 | -24.2 (3)    |
| O1—P1—N2—C5     | 56.2 (3)     | N9-C29-C30-Cl9 | -146.8 (2)   |
| O1—P1—N2—C7     | -94.8 (3)    | C1—N1—C3—C4    | -60.9 (4)    |
| O1—P1—N3—C9     | -8.2 (3)     | C3—N1—C1—C2    | -68.4 (4)    |
| O2—C9—C10—Cl1   | 77.8 (3)     | C5—N2—C7—C8    | -81.3 (4)    |
| O2—C9—C10—Cl2   | -40.1 (3)    | C7—N2—C5—C6    | -74.6 (4)    |
| O2—C9—C10—Cl3   | -162.6 (2)   | C11—N4—C13—C14 | 79.5 (3)     |
| O3—P2—N4—C11    | -40.2 (2)    | C13—N4—C11—C12 | 74.1 (3)     |
| O3—P2—N4—C13    | 128.4 (2)    | C15—N5—C17—C18 | 61.1 (4)     |
| O3—P2—N5—C15    | 177.4 (2)    | C17—N5—C15—C16 | 61.3 (3)     |
| O3—P2—N5—C17    | -41.0 (2)    | C21—N8—C23—C24 | 80.4 (4)     |
| O3—P2—N6—C19    | -23.8 (3)    | C23—N8—C21—C22 | 75.2 (4)     |
| O4—C19—C20—Cl4  | -114.1 (2)   | C25—N7—C27—C28 | -73.1 (3)    |
| O4—C19—C20—C15  | 126.5 (2)    | C27—N7—C25—C26 | -82.4 (4)    |
|                 |              |                |              |

## Hydrogen-bond geometry (Å, °)

| D—H···A                           | D—H      | Н…А      | D····A    | <i>D</i> —H··· <i>A</i> |
|-----------------------------------|----------|----------|-----------|-------------------------|
| 07—H7 <i>A</i> ···O3 <sup>i</sup> | 0.86 (4) | 2.23 (4) | 2.959 (3) | 143 (3)                 |
| O7—H7 <i>B</i> ···O5 <sup>i</sup> | 0.80 (4) | 2.08 (4) | 2.843 (3) | 159 (4)                 |

Symmetry code: (i) x, -y+1/2, z-1/2.