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Background: Spinal tuberculosis (TB) has the highest incidence in remote plateau
areas, particularly in Tibet, China, due to inadequate local healthcare services, which
not only facilitates the transmission of TB bacteria but also increases the burden on
grassroots hospitals. Computer-aided diagnosis (CAD) is urgently required to improve
the efficiency of clinical diagnosis of TB using computed tomography (CT) images.
However, classical machine learning with handcrafted features generally has low
accuracy, and deep learning with self-extracting features relies heavily on the size of
medical datasets. Therefore, CAD, which effectively fuses multimodal features, is an
alternative solution for spinal TB detection.

Methods: A new deep learning method is proposed that fuses four elaborate image
features, specifically three handcrafted features and one convolutional neural network
(CNN) feature. Spinal TB CT images were collected from 197 patients with spinal
TB, from 2013 to 2020, in the People’s Hospital of Tibet Autonomous Region, China;
3,000 effective lumbar spine CT images were randomly screened to our dataset, from
which two sets of 1,500 images each were classified as tuberculosis (positive) and
health (negative). In addition, virtual data augmentation is proposed to enlarge the
handcrafted features of the TB dataset. Essentially, the proposed multimodal feature
fusion CNN consists of four main sections: matching network, backbone (ResNet-
18/50, VGG-11/16, DenseNet-121/161), fallen network, and gated information fusion
network. Detailed performance analyses were conducted based on the multimodal
features, proposed augmentation, model stability, and model-focused heatmap.

Results: Experimental results showed that the proposed model with VGG-11 and virtual
data augmentation exhibited optimal performance in terms of accuracy, specificity,
sensitivity, and area under curve. In addition, an inverse relationship existed between

Frontiers in Microbiology | www.frontiersin.org 1 February 2022 | Volume 13 | Article 823324

https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org/journals/microbiology#editorial-board
https://www.frontiersin.org/journals/microbiology#editorial-board
https://doi.org/10.3389/fmicb.2022.823324
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3389/fmicb.2022.823324
http://crossmark.crossref.org/dialog/?doi=10.3389/fmicb.2022.823324&domain=pdf&date_stamp=2022-02-23
https://www.frontiersin.org/articles/10.3389/fmicb.2022.823324/full
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/microbiology#articles


fmicb-13-823324 February 17, 2022 Time: 16:14 # 2

Li et al. Features Fusion of Spinal Tuberculosis

the model size and test accuracy. The model-focused heatmap also shifted from the
irrelevant region to the bone destruction caused by TB.

Conclusion: The proposed augmentation effectively simulated the real data distribution
in the feature space. More importantly, all the evaluation metrics and analyses
demonstrated that the proposed deep learning model exhibits efficient feature fusion for
multimodal features. Our study provides a profound insight into the preliminary auxiliary
diagnosis of spinal TB from CT images applicable to the Tibetan area.

Keywords: computer-aided diagnosis, spinal tuberculosis, computed tomography, feature fusion, deep learning

INTRODUCTION

Spinal tuberculosis (spinal TB) is secondary to TB of the
lung, gastrointestinal tract, or lymphatic tract, and it causes
bone TB via the blood circulation route (Garg and Somvanshi,
2011; Rasouli et al., 2012; Khanna and Sabharwal, 2019). The
insidious onset of spinal TB and the lack of specificity in
clinical manifestations can lead to serious symptoms, such as
kyphosis, abscess injection, and spinal instability, further causing
paraplegia or death (Qian et al., 2018; Vanino et al., 2020). The
incidence of TB is significantly higher in underdeveloped plateau
regions, particularly in the Tibetan area of China (Du et al.,
2017; Zhu et al., 2017); for example, the rate of reported TB
cases in the Tibet Autonomous Region was 166.6 per 100,000
in 2017, which was the highest in China. Spinal TB accounts for
approximately 2% of pulmonary TB, 15% of extrapulmonary TB,
and 50% of bone and joint TB throughout the world (Fuentes
Ferrer et al., 2012). Moreover, the CT manifestation of spinal
TB is complicated, including typical manifestations (destruction
of the vertebral body, collapse of the vertebral space, abscess
compression on the spinal cord or nerve roots, etc.) and atypical
manifestations (vertebral body osteoid formation, vertebral body
disruption in the anterior column, vertebral body endplate
worm-like disruption, pus in the paravertebral soft tissue shadow,
continuous unilateral bone disruption, and asymmetry between
the imaging manifestations and symptoms) (Cremin et al., 1993;
Rauf et al., 2015).

Local grassroots hospitals lack experienced specialists and
multimodal medical imaging equipment, they have only CT
or digital radiography (DR) machines. Therefore, most Tibetan
grassroots doctors cannot make expeditious medical decisions.
These poor health conditions lead to high rates of misdiagnosis,
missed diagnosis, and delays in effective treatment, which result
in severe complications that impose serious social burdens
on Tibetan herdsmen (Wang et al., 2015). Computer-aided
diagnosis (CAD), including classical machine learning (ML)
and deep learning (DL), is an effective method for assisting
primary care physicians in treating patients with spinal TB;
CAD builds mathematical models on computers using fuzzy
mathematics, probability statistics, and even artificial intelligence
to process patient information and propose diagnostic opinions
and treatment plans. To the best of our knowledge, except for a
few reports on the simple application of statistical analysis to the
clinical diagnosis of spinal TB (Zhang et al., 2019; Liu et al., 2021),

there are limited studies on artificial intelligence-aided diagnosis
of spinal TB, including diagnostic classification, pathological
grading, lesion segmentation, and prognostic analysis.

Radiomics, a typical example of traditional ML, is an
automated high-throughput method that extracts a significant
amount of quantitative handcrafted features from medical
images (Lambin et al., 2012). These handcrafted features
are the conversion of digital images into mineable data
and the subsequent analyses of these data for decision
support (Gillies et al., 2016), such as color, texture, shape,
and statistical characteristics, including scale-invariant feature
transform (SIFT), speeded-up robust features (SURF), and
oriented rotated brief (ORB) (Abdellatef et al., 2020). Currently,
although many handcrafted features have been designed for
various clinical applications (Moradi et al., 2007; Aerts et al.,
2014; Cook et al., 2014; Wang et al., 2014; Li et al., 2018;
Tian et al., 2018; Song et al., 2021), classical ML cannot
accurately perform ancillary diagnostics of TB owing to its
limited accuracy (Goodfellow et al., 2016; Currie et al., 2019).
The design of handcrafted features often involves finding the
right trade-off between accuracy and computational efficiency
based on the subjective understanding of key issues (Nanni et al.,
2017); therefore, an inappropriate handcrafted feature typically
results in poor generalization ability (Suzuki et al., 2012), which
significantly hinders the development of ML diagnostic systems.

Contrastingly, DL based on convolutional neural networks
(CNNs) is another medical CAD method that enhances
the identification of subtle differences in radiographical
characteristics, and it is feasible for integrating multi-omics
medical data by harnessing the power of computing (Altaf
et al., 2019; Alkhateeb et al., 2021). Unlike traditional ML,
the features extracted by DL can be predetermined by a CNN
during training, without elaborate design (Anwar et al., 2018).
There are various CNN models that are applicable to different
medical scenarios, such as common CNN for grading (Yang
et al., 2018; Swarnambiga et al., 2019), U-Net for segmentation
(Ronneberger et al., 2015; Jackson et al., 2018; Deng et al., 2021),
and GAN for the generation of synthetic images (Lei et al.,
2019). The technological innovations of CAD show that DL
could be a suitable candidate for auxiliary diagnosis in modern
healthcare systems. However, a CNN needs the majority of
datasets to extract features automatically and requires significant
training time to obtain a reliable model (Goodfellow et al.,
2016; Currie et al., 2019), both of which are scarce resources
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in medical practices. Moreover, the lack of interpretability of
DL is another important factor that hinders its development in
rigorous clinical work.

Therefore, the effective fusion of the multimodal features
extracted from both ML and DL is one of the key directions to
further improve the performance of CAD when compared with
the counterparts of individuals above. This approach has had
several successful applications with medical radiological images,
such as in the determination of tumor benignity and malignancy
(Antropova et al., 2017; Xie et al., 2018; Khosravi et al., 2021),
lesion segmentation (Su et al., 2021), survival prediction (Shboul
et al., 2019; Guo et al., 2021), detection of COVID-19 from chest
CT images (Wang S.-H. et al., 2021), and cancer diagnosis and
prognosis (Chen et al., 2020). By contrast, published studies on
spinal TB have mainly focused on the clinical manifestations and
surgical protocol of spinal tuberculosis (Garg and Somvanshi,
2011; Zhu et al., 2017; Khanna and Sabharwal, 2019). Different
feature fusion methods have been developed for different clinical
purposes, such as a Bayesian algorithm-based method that can
realize the fusion decision of multiple features (Khaleghi et al.,
2013), a sparse representation-based method that can obtain
the joint sparse representation of multiple features (Lai and
Deng, 2018), and a DL-based method that can strengthen the
feature learning process of deep neural networks (Zhang et al.,
2021). However, most of the aforementioned fused features are
different representations under the same modality owing to the
difficulty of multimodal fusion, and in cross-modal learning,
it is difficult to implement transfer learning between more
than two modalities. Conversely, the gated information fusion
network (Arevalo et al., 2017; Kim et al., 2018) ensures that each
single modality can work independently and transfer knowledge
mutually, and it realizes the effective fusion of multimodal
information, including histology images and genomic features
(Chen et al., 2020). It adopts the Kronecker product of unimodal
feature representations to control the expressiveness of each
single feature via a gated information attention mechanism.

In this study, a multimodal feature fusion CNN is proposed
to classify spinal TB CT images obtained from local grassroots
hospitals in the Tibetan area. It provides a breakthrough in
the application area of spinal TB auxiliary diagnosis, although
it simply implements the classification of tuberculosis-health
diagnostic results in spinal TB CT images. Specifically, the
proposed network fuses three different elaborate features,
namely SIFT, SURF, and ORB, with the DL feature that
originates from the convolutional output layer of common
CNNs. A new augmentation algorithm for handcrafted features
that effectively simulates the data distribution in the feature space
is proposed as a substitute for the image augmentation method.
Additionally, a model was designed and used to effectively
integrate these individual features, which included four different
sections: matching network for consistency of different feature
dimensions, backbone for sparse representation of features, fallen
network for dimensional reduction, and fusion network for
hybridizing multimodal features by a gated mechanism. We
evaluated the hypothesis that the proposed method can effectively
distinguish tubercular cases from healthy images by conducting
experiments and performing several analyses. For convenience,

from here on, “positive” and “negative” represent tuberculosis
and health, respectively. Based on initial hypothesis attempts,
further research will be conducted on other auxiliary diagnostics
to form a complete auxiliary diagnostic process for spinal TB and
solve the long-standing problem of spinal tuberculosis in Tibet.

MATERIALS AND METHODS

Data Collection
A multimodal image dataset was obtained from the People’s
Hospital of Tibet Autonomous Region, China, and consisted
of DR and CT images of 197 patients with spinal TB acquired
between 2013 to 2020. They were screened by two physicians
based on basic patient information, medical records, and imaging
evaluation, all of which were surgically treated as definite spinal
tuberculosis pathology according to the corresponding guidelines
about the diagnosis of spinal TB (Hoffman et al., 1993; Liu et al.,
2021). The inclusion and exclusion criteria for the spinal TB cases
were as follows:

Inclusion criteria:

• Diagnosis of spinal tuberculosis was confirmed by puncture
biopsy or postoperative pathological examination;
• Preoperative DR and CT examinations were performed;
• Complete case data (e.g., gender, age, medical history,

physical examination, imaging, and pathology data);
• Patients who were first examined in primary care hospitals

in less developed areas and had CT imaging data were
prioritized for inclusion.

Exclusion criteria:

• Cases suspected of having spinal tuberculosis without
pathological examination;
• A history of spinal trauma before the diagnosis of spinal

tuberculosis;
• Incomplete case information.

Table 1 presents the patients’ gender, age, and lesion segment.
Some patients had multiple site infections; therefore, the total
number of female and male patients is not equal to the total
number of cases of cervical, thoracic, lumbar, and sacral vertebral
infections. It can be seen that middle-aged people (30–59 years)
were the most infected among all age groups, and the number
of men infected with spinal TB was higher than that of women.
The patients presented in this table are the ones who bear the
heaviest social and family pressures. Furthermore, the lumbar
vertebrae are the most susceptible to spinal TB infection;
therefore, the current research was mainly conducted on the TB
of lumbar vertebrae.

Although X-ray examinations are widely used in various
primary hospitals, they provide limited information. CT
examinations are approximately 20–25 times more sensitive than
X-ray-based tissue density tests and are currently one of the
most effective clinical bone examination methods. Spiral electron
CT provides a high-resolution visualization of the destruction,
hyperplasia, sclerosis, and focal boundaries of vertebral bone.
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Furthermore, it reveals the position of dead bone, fragmented
bone, and their protrusion into the spinal canal, showing
paravertebral abscesses and their density. Moreover, the lumbar
spine has the highest incidence of tuberculosis as it has the
most mobility and bears the heaviest burden along the entire
spine, as shown in Table 1. For the initial research of spinal
TB, a total of 3,000 CT images of the lumbar vertebrae were
randomly selected from the abovementioned multimodal image
dataset based on slice level, which included a set of 1,500 slices
for negative and positive cases. Finally, a small dataset of spinal
TB CT images was obtained to explore the flexibility of CAD on
spinal TB CT images.

Feature Selection
Feature engineering is a key step in the supervised classification
of pathology images that directly affects the final classification
result. Image feature extraction is the premise of image analysis,
which is the most effective way to simplify the expression of
high-dimensional image data. Based on the above qualitative
diagnostic characteristics from orthopedists, three handcrafted
features were extracted from spinal TB CT images, including
three types of feature descriptors of the vertebral column in
CT slices: SIFT (Lowe, 2004), SURF (Bay et al., 2006), and
ORB (Rublee et al., 2011). In addition to the handcrafted
features mentioned above, deep features were extracted from
the convolutional layers and fully connected layers of CNNs.
These elaborate features are required for initial preprocessing to
ensure dimensional consistency between different features before
extracting the respective image characteristics. To understand
the varied descriptions of different features, the meaning of the
diverse features is indicated as follows.

Local feature: Feature vectors of SIFT, SURF, ORB;

Elaborate feature: Hand-crafted feature and deep learning feature
extracted from CT images by classical machine
learning and deep learning;

Hand-crafted feature: Vectors manually extracted from CT images by
classical machine learning;

Deep learning feature: Vectors automatically extracted from convolutional
layer of CNN by deep learning;

Extracted feature: Hand-crafted feature and deep learning feature
extracted from CT images by classical machine
learning and deep learning;

Individual feature: Single feature of SIFT, SURF, ORB, and CNN;

Training feature descriptor: Key point descriptor of SIFT, SURF, ORB calculated
from training dataset;

Feature descriptor: Key point descriptor of SIFT, SURF, ORB;

Clustering feature: Hand-crafted feature after searching codebook;

Augmented feature: Hand-crafted feature after augmentation;

Weighted feature: Hand-crafted feature after TF-IDF, i.e., local feature.

Local Features Described With Scale-Invariant
Feature Transform, Speeded-Up Robust Features,
and Oriented Rotated Brief
Several key points, such as the points of corners and edges,
highlights, and dark spots, in an image do not change with

TABLE 1 | Information of patient with spinal TB.

Age Gender Lesion segment

Female Male Cervix Thorax Lumbar Sacrum

10–19 3 7 0 4 4 3

20–29 12 14 0 9 19 1

30–39 18 22 0 19 23 6

40–49 24 19 1 19 24 3

50–59 18 27 1 29 16 4

60–69 10 13 1 13 9 2

70–79 3 6 0 5 4 0

80–89 0 1 0 0 1 0

Sum 88 109 3 98 100 19

luminance, transformation, and noise. These image feature
points, which are typically used for image matching and image
recognition, can reflect the essential features of an image.
Scale-invariant feature transform (SIFT), speeded-up robust
features (SURF), and oriented rotated brief (ORB) are three
widespread methods used to describe these local feature points.
Speckle and corner are just two typical feature points that
can reflect key information that exists in the image. Speckle
points usually refer to areas with color and grayscale that
are different from the surrounding regions. Corner points are
the intersection of two edges in the stable and informative
areas of an image, which have certain characteristics, such
as rotation invariance, scale invariance, affine invariance, and
illumination invariance. These feature descriptors have been
applied to various medical scenarios, such as medical image
classification (Khan et al., 2015), medical image stitching (Singla
and Sharma, 2014; Win and Kitjaidure, 2018), medical image
fusion (Wang L. et al., 2021), medical image registration
(Lukashevich et al., 2011; Li et al., 2012), and medical image
retrieval (Govindaraju and Kumar, 2016).

Scale-invariant feature transform uses the Difference of
Gaussian (DoG) matrix, which is a speckle detection method, to
detect scale-space extrema, and uses an orientation histogram to
extract the key point direction. The essence of the SIFT algorithm
is to identify the key points and calculate their directions in
different scale-spaces. The key points found by SIFT are almost
speckle points that cannot be changed by illumination, affine
transformation, or noise, such as highlights in dark areas and
dark spots in bright areas.

Speeded-up robust features is a scale and rotation invariant
descriptor on based on SIFT. Rather than choosing the difference
of a Gaussian matrix to detect scale-space extrema in SIFT, it
calculates an approximation of the Laplacian of the Gaussian
by a Hessian matrix. Instead of using an orientation histogram
in SIFT, Harris wavelet response, a corner detection algorithm,
is used to assign key point orientations in SURF. Therefore,
the key points found by SURF are significantly different
from the speckle points found by SIFT. The number of key
points detected by SURF is more than that detected by SIFT,
whereas the vector dimension (64) of SURF is less than the
length (128) of SIFT.
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As a very fast binary descriptor based on two
algorithms, Features from Accelerated Segment Test (FAST)
(Khan et al., 2015) and Binary Robust Independent Elementary
Features (BRIEF) (Calonder et al., 2010), ORB is an improved
algorithm that outperforms the SIFT and SURF algorithms in
terms of nearest-neighbor matching and description efficiency.
FAST was used to extract the corner points whose pixel gray
value is obviously different from the pixel gray value in the
surrounding fields, and BRIEF was employed to describe the
points that were extracted by FAST. It has the least number of
feature points and the lowest dimensionality (32) of extracted
features. In summary, it is a fast feature extracting and matching
algorithm with poor quality compared with SIFT and SURF.

Before extracting feature points, the original spinal TB CT
images were enhanced by adjusting the window width and
position, and the vertebral region was isolated by watershed
segmentation, which had a clear presentation on the centrum
and also eliminated noise interference from non-skeletal areas.
Subsequently, the feature points of SIFT, SURF, and ORB
were transported to the bag of words (BoW) and term
frequency–inverse document frequency (TF-IDF) models to
obtain fifty-dimension feature vectors, as illustrated in Figure 1.
The BoW and TF-IDF models with virtual augmentation
are explored in section “Feature Preprocessing.” Finally, we
obtained three eigenvectors, which are the local features
of all TB images.

Deep Learning Features
In addition to the above handcrafted features, the DL
characteristics extracted from the convolutional layer of the
CNN were another critical feature that contained highly abstract
image features. It is generally assumed that there is a closer
spatial connection between local pixels than the counterparts
between pixels at a greater distance. Thus, each neuron only
needs to perceive the local areas of the image and not the
global image. Consequently, the global information is obtained
by combining the local information at a higher level. A variety
of CNNs have been applied to various medical image processing
tasks, such as ResNet, VGG, and DenseNet, and thus, the
DL features also differ from each other. Because of the black
box property of DL features (Guidotti et al., 2018), different
CNNs were selected to form the backbone of the proposed
network to explore the optimal classification performance of
spinal TB CT images.

Figure 2 shows the procedure for extracting DL features.
Because the TB image dataset was small, the models that
had more or fewer parameters tended to overfit or underfit,
respectively; that is, the neural networks with different
numbers of layers, ResNet-18 and ResNet-50, VGG-11 and
VGG-16, DenseNet-121, and DenseNet-161, were selected as
the backbone of the proposed network to avoid overfitting
or underfitting.

Feature Preprocessing
The elaborate features should be preprocessed for dimensional
consistency between different features. The identical hand-
crafted features of each slice were stacked vertically into one

larger characteristic set. Subsequently, we used two algorithms,
BoW and TF-IDF, to handle the low-dimension characteristic
set extracted from the single-scale image. BoW adopted the
K-means clustering method for unsupervised clustering of
a large number of extracted SIFT, SURF, and ORB key
points. The features with strong similarities were classified
into the same clustering category. TF-IDF is the product of
term frequency (TF) and IDF; it indicates the weight vector
of features, where TF is the frequency of occurrence of a
feature among all features, and IDF represents the uniqueness
of a feature. Figure 3 shows a flowchart illustrating the
preprocessing of features. First, we used the key points feature
descriptor of SIFT, SURF, and ORB from the training sets
to build CodeBook using BoW. The clustering features were
the statistics on the number of occurrences of each category
after clustering in the feature descriptors by searching the
CodeBook. The number of categories was set to 50 after several
pretraining experiments with individual features. Second, a
new data augmentation algorithm was proposed to improve
the generalization of small datasets, and the Algorithm 1
describes the data augmentation methods, which were only
applicable to the cluster features processed by the BoW model.
Specifically, the clustering information of each feature point
was calculated using CodeBook, and the perturbation noise
that obeys the normal distribution was used to jitter the
clustering information for data augmentation, which increased
the generalizability of the dataset. Finally, TF-IDF implemented
feature weighting, which counted the frequency information
of each feature vector appearing in the augmented feature
sets. None of the augmented feature vectors existed in real
TB images; that is, only the virtual key points of SIFT, SURF,
and ORB existed.

ALGORITHM 1 | Data augmentation.

Input: Cluster Features Set: C = {c1, c2, · · · , cm}

Output: Augmented Features Set:
C = {a11, · · · , a1n, a21, · · · , a2n · · · am1, · · · , amn}

fori ∈ [1, 2, · · · , n] do

Initialize gij = {empty}

for j∈ [1, 2, · · · , m] do

gij ∪ dtempe → gij,∀ temp ∼ N (0, 3)

end

Gi = gijC

end

C ∪
⋃n

i=1Gi → A

Fusion Convolutional Neural Network
Construction
After comprehensively considering the characteristics of
vertebral morphology, we extracted four features from slice
images, including the SIFT, SURF, and ORB vectors, and
CNN features. Although the extracted handcrafted and
DL features cover a wide range of valuable information
involving both the local tissue and global slice, an
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FIGURE 1 | Process of extracting local features of tuberculosis images.

FIGURE 2 | Process of extracting the deep learning features of tuberculosis images. The series of images on the left are the raw CT data, the series of images on the
right are the feature maps of the convolution layer of the CNN, and the middle represents the common CNNs.

effective method is imperative to fuse these features
from different scales to improve prediction accuracy
such that it is superior to the corresponding figures of
any single feature.

As shown in Figure 4, the proposed network consists of
four phases: the matching network that adjusts handcrafted
features, backbone (i.e., different common CNNs) for processing
all features, fallen network for dimension reduction, and fusion
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FIGURE 3 | Virtual augmentation model with bag of words (BoW) and term frequency–inverse document frequency (TF-IDF).

FIGURE 4 | Proposed network for classifying tuberculosis images. The middle three histograms are the SIFT, SURF, ORB vectors with length of 50 extracted from
raw CT images, and the green, blue, and orange block represent the matching network, backbone, and fallen network, respectively. The matching network and
fallen network are illustrated in Figures 5A,B, respectively, and the last block is the fusion network, which is illustrated in Figure 5C.

network for blending different characteristics. Each network is
explained in the following sections.

Matching Network
Inconsistencies were present in the characteristic dimensions
between the handcrafted and the DL features. Specifically, all
handcrafted features were stacked into one-dimensional features
with a size of 1× 50, which was inconsistent with the dimensions
of the DL features. Therefore, a matching network was required
to reconcile the contradictions in the feature sizes between
handcrafted and DL features, that is, to convert one-dimensional
vectors into two-dimensional ones.

The matching network consisted of nine convolutional blocks,
with each block including a fractionally strided convolution,
batch normalization, and ReLU activation function. The detailed
architecture of the matching network is shown in Figure 5A.

The one-dimensional feature with size 1 × 1 × 50 was mapped
to a two-dimensional vector of size 224 × 224 × 3, which is
similar to the common input size of CNN architectures such as
ResNets and to the two-dimensional space of the DL features.
Hence, it is easier to tune hyperparameters and fuse handcrafted
and DL features.

Fallen Network
After the matching network, the handcrafted image features
were transformed into the same dimensional space as that
of the DL features. Subsequently, a common network was
employed to hybridize these different vectors including
handcrafted and DL features. This integrated network
includes two foundational networks: a backbone network
and fallen network. Various CNNs, such as ResNet (He
et al., 2016), DenseNet (Huang et al., 2017), and VGG-Net
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FIGURE 5 | Architecture of the proposed network: (A) matching network, (B) fallen network, and (C) gated information fusion network. The upper right corner of
panel (C) is the Kronecher space of interactions among three features H1, H2, and H3.

(Simonyan and Zisserman, 2015), serve as the backbone, and
they have exhibited outstanding performance in different
applications. The fallen network includes two convolutional
operations and one average pooling, as shown in Figure 5B. It
was used to refine the output characteristics of the backbone
by mapping the outputs into a low-dimensional space, that
is, a two-dimensional space with a size of 7 × 7 fell into a
one-dimensional space with a size of 1 × 1 in detail. Essentially,

we obtained a series of one-dimensional feature vectors for the
subsequent processing of the fusion network.

Gated Information Fusion Network
All image features, including the handcrafted and DL features,
were eventually converted into one-dimensional vectors of length
128 after the fallen network was processed. There was high
collinearity between the handcrafted and DL characteristics;
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FIGURE 6 | Accuracy and loss curves with different backbones: (A) ResNet-18, (B) ResNet-50, (C) VGG-11, (D) VGG-16, (E) DenseNet-121, and
(F) DenseNet-161.

therefore, an early fusion method that gates the weight
contribution of the different tensors at the feature level was used
to blend the aforementioned four image features before making a
pathological diagnostic evaluation for the final classification.

The structure of the gated fusion network is shown in
Figure 5C. For each feature tensor from SIFT, SURF, ORB, and
CNN, the dimensions of the input vectors F1, F2, F3, and FC,
respectively, are gradually reduced through the fully connected

layer network with a dropout rate of 0.5. For the same dimension,
because of the connection between individual captured features,
the feature expressions of each handcrafted tensor are weighted
by the gated mechanism via a combination with DL features
to reduce the size of the feature space. The gated mechanism
consists of two pathways: one is a one-dimensional vector Fi
with a size of 128 × 1 after the ReLU activation function, and
the other vector ωi of length 128 is the output of the bilinear
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TABLE 2 | Performance of the proposed network with different backbones.

Backbone Accuracy Specificity Sensitivity AUC

ResNet-18 0.9817 0.9800 0.9833 0.9960

ResNet-50 0.9733 0.9700 0.9767 0.9967

VGG-11 0.9833 0.9833 0.9833 0.9984

VGG-16 0.9783 0.9833 0.9783 0.9983

DenseNet-121 0.9767 0.9767 0.9767 0.9976

DenseNet-161 0.9767 0.9867 0.9667 0.9971

The bold figures represent the maximum value of each evaluation index.

transform between Fi and CNN features FC, which evaluates
the importance of each feature Fi relative to the more precise
CNN features by this non-linear correlation. Subsequently, the
Kronecher product, which models the interaction of different
features across modalities, constructs a threefold Cartesian space
defined by H1, H2, and H3, that is, SIFT, SURF, and ORB,
respectively. It also captures the trimodal interactions of all
possible unimodal combinations, as shown in the upper right
corner of Figure 5C. Finally, the predicted vectors, with a size
of 96, and FC, with a size of 128, are vertically stacked into a
larger one-dimensional vector with a length of 224. Subsequently,

the predicted values of classification for the TB images are
obtained after the fully connected layer operating on the former
concatenated one-dimensional vector.

The detailed operations above are summarized as shown
below.

ωi = σ (Fi, FC) , i = 1, 2, 3 (1)

Hi = RELU
(
f
(
Fi
⊙

ωi

))
, i = 1, 2, 3 (2)

Hm = H1
⊗

H2
⊗

H3 (3)

Hk = RELU
(
f
(
H1
⊗

H2
⊗

H3

))
(4)

HC = RELU
(
f ([Hk, FC])

)
(5)

where,
[
x, y

]
denotes the concatenation of x and y, and

σ
(
x, y

)
= xAy+ b (6)

f
(
x, y

)
= xAT

+ b (7)

FIGURE 7 | ROCs of the proposed network with different backbones: ResNet-18, ResNet-50, VGG-11, VGG-16, DenseNet-121, and DenseNet-161.
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FIGURE 8 | Confusion matrix of the proposed network with different backbones: (A) ResNet-18, (B) ResNet-50, (C) VGG-11, (D) VGG-16, (E) DenseNet-121, and
(F) DenseNet-161. The number on each sub-block represents the number of predictions, and the bars on the right of each block represent the heat value chart of
the predicted numbers.

FIGURE 9 | Performance difference between the proposed augmentation and image augmentation.
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FIGURE 10 | Correlation between model size and training accuracy.

FIGURE 11 | Performance of single features and fusion features.

RESULTS

Convergence of the Proposed Model
With Different Backbones
A total of 3,000 spinal TB CT images were obtained and
subsequently divided into two 1,500 datasets of positive and

negative CT slices. For each type of CT image, 900, 300, and 300
slices were randomly selected as the training, validation, and test
sets from the small TB dataset, respectively. In terms of training
parameters, the optimizer was stochastic gradient descent (SGD)
with a momentum of 0.9 and weight decay of 0.001, the learning
rate was set to 0.01, which decayed by 0.1 every 7 epochs, and
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FIGURE 12 | Visualization of the handcrafted features through T-SNE. (A,C,E) Virtual data augmentation of SIFT, SURF, and ORB, respectively; (B,D,F) real image
augmentation of SIFT, SURF, and ORB, respectively.

the loss function was a cross-entropy loss function describing
the distance between two probability distributions. In addition,
three different common deep CNNs (DCNNs) were used as the
backbone: ResNet, VGG, and DenseNet. For each DCNN, two
main networks with different numbers of layers were used to train
on our small TB dataset to generate different sizes of models: 18
vs. 50 layers for ResNet, 11 vs. 16 layers for VGG, and 121 vs.
161 layers for DenseNet. The running environment was Pytorch
1.8.0, CUDA 11.1, and Python 3.7.1 based on Windows 10 with an
advanced hardware configuration in terms of the GPU and CPU,
i.e., GeForce RTX 3090 and Intel Xeon W-2255, respectively.

The accuracy and loss curves of the training, validation,
and test sets are shown in Figure 6. The accuracy curves
clearly appear to level off, and the loss curves converge
to equilibrium with slight fluctuations starting at epoch 10.
Specifically, the test loss curve of ResNet-50 is above the
ResNet-18 loss curve, which indicates that the corresponding
accuracy curve has a lower position compared with that of
ResNet-18. Although there are few differences between the loss
curves of VGG-11 and VGG-16, the accuracy is the same as
that of ResNet, that is, the more layers in the network, the
lower is the test accuracy value. However, there was a slight
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FIGURE 13 | Heatmap of the convolution layer weight visualization based on Grad-CAM++. The left column contains the original CT images, the middle column
contains the heatmap generated by common VGG-11, and the right column contains the heatmap generated by backbone VGG-11 of the proposed network.

difference between DenseNet-121 and 161. These phenomena
are explained in the Discussion, and the evaluation indicators
of these three backbones, including accuracy, specificity,
sensitivity, and area under the curve (AUC), are discussed in
the next section.

Performance of the Proposed Network
With Different Backbones
There are four different quantitative indicators, namely accuracy,
specificity, sensitivity, and AUC, that illustrate the predictive
performance on 600 test images, as shown in Table 2. The variates
of accuracy, specificity, and sensitivity reflect the proportion
of all samples with correct predictions, all negative samples
with correct predictions, and all positive samples with correct
predictions for all actual samples, all actual positive samples,
and all actual negative samples, respectively. The AUC is the
area enclosed by the coordinate axis under the receiver operating

characteristic (ROC) curve. The proposed model with the
backbone VGG exhibited the best performance compared with
the other models, particularly VGG-11 achieved an accuracy
of 98.33%, specificity of 98.33%, sensitivity of 98.33%, and
AUC of 99.84%. Although the proposed model with ResNet-50
had the worst accuracy compared with the other models, the
AUC was higher than that of ResNet-18, which demonstrated
the existence of a superior classification threshold value for
ResNet-18. For DenseNet, there were few significant differences
between DenseNet-121 and DenseNet-161, both of which had an
acceptable performance with an accuracy of 97.67%. Specifically,
DenseNet-121 effectively predicted positive samples, whereas
DenseNet-161 accurately predicted negative samples. This is
due to the higher sensitivity of the former and the higher
specificity of the latter.

We also drew the ROC curves and calculated the AUC of the
proposed model with different backbones, as shown in Figure 7
in which the above quantitative indices (including specificity,

Frontiers in Microbiology | www.frontiersin.org 14 February 2022 | Volume 13 | Article 823324

https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/microbiology#articles


fmicb-13-823324 February 17, 2022 Time: 16:14 # 15

Li et al. Features Fusion of Spinal Tuberculosis

sensitivity, and AUC) are visualized as the false positive rate, true
positive rate, and AUCs. It provides a more intuitive comparison
of the differences among these networks when focusing on the
upper left area. VGG11 (yellow line) was closest to the perfect
classification point in the upper left corner, where the anticipated
true positive rate and false positive rate were under different
classified threshold values. More importantly, we provide the
confusion matrix for each network in Figure 8, in which we can
observe the number of correct identifications and the number of
incorrect identifications for each category in detail. There was
a total of 600 CT images, including 300 positive samples and
300 negative samples. 295 true positives (TP) for VGG-11 and
ResNet-18 and 296 true negative (TN) for DenseNet-161 were
the maximum of all correctly classified sample volumes, which
represents the recognition capability for health and disease.
Similarly, the five false positives (FP) for VGG-11 and ResNet-
18 and four false negatives (FN) for DenseNet-161 were the
minimum of all incorrectly classified sample volumes. Overall,
VGG-11 had the highest TP and comparatively higher TN
and relatively lower FN, and there was a balanced capacity in
predicting negative and positive samples, which demonstrated
that VGG-11 was the optimal selection.

Overall, we recommend VGG-11 as the backbone of the
proposed deep network for the auxiliary diagnosis of TB CT
images based on accuracy, stability, and convergence of the
loss function among the six backbones. The subsequent section
discusses the analysis conducted on VGG-11.

Data Augmentation for Handcrafted
Features
The image augmentation was similar to the real data distribution
in the feature space. In this study, a new data augmentation
method was proposed to simulate a real data distribution.
The performance of spinal TB classification with the proposed
augmentation and image augmentation is shown in Figure 9,
highlighting the strength of the proposed augmentation
algorithm. The accuracy, specificity, and AUC of the proposed
augmentation were all slightly higher than those of image
augmentation, and the sensitivity of the former was slightly
lower than that of the latter. Generally, the radar map of image
augmentation was surrounded by the proposed augmentation;
therefore, the proposed method showed significant superiority
over direct augmentation on images.

DISCUSSION

Model Size vs. Accuracy
We employed ResNet, VGG, and DenseNet as the backbones.
The model layers influenced the classification accuracy, as
shown in Figure 6. Figure 10 shows a strong correlation
between the number of parameters owned in the selected
DCNN models and the prediction accuracy of test sets, which
caused underfitting or overfitting when the DL model was too
simple or complex to make accurate predictions for unrelated
features from the small dataset. For ResNet and VGG, a decline
was observed with the increase in parameters, as shown in

Figure 10, demonstrating that the excessive number of network
layers in DCNN leads to model overfitting. By contrast, the
model size had no impact on the accuracy of DenseNet, and
the short paths from the initial layers to subsequent layers
of DenseNet alleviated the vanishing gradient problem, which
ensured maximum information transmission between layers
in the network. Essentially, VGG exhibited optimal training
performance. In particular, VGG-11 had a superior test accuracy
of 98.33% compared with others.

Individual Features vs. Fusion Feature
The four main characteristics were extracted from the CT images
to identify spinal TB, namely three handcrafted features and one
DCNN feature, i.e., SIFT, SURF, ORB of the local features, and
deep features. As illustrated in Table 2, accurate classification
performances were obtained by fusing the four different
features based on different backbones, particularly for VGG-11.
A thorough investigation was conducted to show the significant
influence of individual features on the proposed network. As a
comparison of the fusion feature, we analyzed the performance
of each feature separately based on the proposed network
with backbone VGG-11 in Figure 11. Diverse performances
were obtained from various characteristics. A common trait
was that not all handcrafted features outperformed the deep
feature. Furthermore, the four evaluation indicators, namely
accuracy, sensitivity, specificity, and AUC, were significantly
different in one individual; however, none of them exceeded
90%. This shortcoming was effectively addressed when these
different handcrafted features and deep features were fused by
the proposed DCNN with the backbone VGG-11, as depicted
in the last block of Figure 11. Specifically, the accuracy, AUC,
sensitivity, and specificity of deep features improved from
85.17%, 91.53%, 89.00%, and 81.33–98.33%, 99.84%, 99.33%,
and 98.33%, respectively, with assistance from the other three
handcrafted features.

Real Image Augmentation vs. Virtual
Data Augmentation
A new data augmentation method for handcrafted features
was proposed based on the algorithm, as described in
section “Data Augmentation for Handcrafted Features.” The
direct augmentation of images is a common method of data
amplification and can produce an augmented feature dataset
after extracting the handcrafted features from augmented images.
Moreover, it has an identical data scale as the proposed
augmentation algorithm. Figure 9 illustrates an intuitive
comparison of these two augmentation schemes using a radar
map from the four indices. In this study, we conducted
a visual analysis of the retained original information in a
low-dimensional feature space through t-distributed stochastic
neighbor embedding (T-SNE), as shown in Figure 12. In column
b, that is, the T-SNE visualization of image augmentation, there
are irregular gaps within the same category and considerable
overlap among neighboring data points. This demonstrates that
the CT slices obtained from image augmentation do not fully
represent the real data distribution. By contrast, the binary data
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distribution (i.e., the red and green points) of the proposed
augmentation (column a) is more uniform than that of image
augmentation (column b), except for several outliers. This proves
that the newly generated feature points can effectively fill the
missing data in the spatial distribution.

Comparison of Heatmap Between
Common Convolutional Neural Networks
and the Proposed Network
In Figure 11, a significant improvement can be observed
when the CNN features from VGG-11 fused three different
handcrafted features. The accuracy increased from 85.17% to
98.33%. Compared with the direct classification of VGG-11 on
CT images, some changes were observed in the region of interest
for the proposed fusion model with VGG-11 as the backbone.
To explore the differences in the area of interest between these
two models, Grad-CAM++ (Chattopadhay et al., 2018) was used
to generate a heatmap++, as shown in Figure 13. Significant
differences can be observed between these two methods on the
heatmap of model concerns. VGG-11 focused on the vertebral
foramen region in the TB images, regardless of negative or
positive cases, which created a significant distraction for the
classified judgment. By contrast, the proposed fusion model
focused on the areas of destruction of vertebral bodies, even
though some unrelated regions received little attention from
the fusion models, which had less of an adverse effect on the
final classification.

CONCLUSION

This study proposes a novel DL-based classification model by
fusing four image features, including three handcrafted features
and one CNN feature—SIFT, SURF, ORB, and the CNN feature.
During the feature engineering phase, the BoW and TF-IDF
algorithms combined with a new data augmentation algorithm
were used to extract the three handcrafted features, and the deep
features were extracted from the convolution layers of common
DCNNs, including ResNet, VGG, and DenseNet. The proposed
network consists of four main sections: matching network,
backbone, fallen network, and fusion network. Specifically, the
matching network is used to adjust the dimensions of handcrafted
features to match the image size, the fallen network integrates
and processes each single feature from two-dimensional into
one-dimensional vectors, and the fusion network is composed
of a gated information fusion network and Kronecher space,
which realizes the effective fusion of different characteristics and
outputs the final classification results of TB images. Experimental
results were obtained using different backbones: ResNet-18/50,
VGG-11/16, and DenseNet-121/201. The results demonstrated
that VGG-11 achieved the optimal performance in terms of
accuracy, AUC, specificity, and sensitivity. Furthermore, we
analyzed the performance of the individual features, the proposed
augmentation algorithm, the model stability, and the model-
focused heatmap to prove the advancement of the proposed
network. The proposed method is interpretable in multimodal
feature fusion and can be extended to more medical scenarios,

which may aid clinical radiologists, particularly grassroots
physicians. It has promising potential, although our research was
limited to the positive and negative classification of spinal TB CT
images. In subsequent studies, the patient clinical data, including
gender, age, and medical history, have a strong relationship for
the classification of spinal TB, it is worth adding this personal
feature into the fusion networks. In addition, we aim to extend
the proposed method to CT images that include all types of
spines, such as thoracic, sacral, cervical, and lumbar vertebrae.
Further exploration will be conducted for DR images based
on spinal TB CT images, which can form a more complete
auxiliary diagnosis system applicable to grassroots hospitals
in Tibet, China.
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