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Summary

Likelihood factors that can be disregarded for inference are termed ignorable. We demonstrate that 

close ties exist between ignorability and identification of causal effects by covariate adjustment. A 

graphical condition, stability, plays a role analogous to that of missingness at random, but is 

applicable to general longitudinal data. Our formulation of ignorability does not depend on any 

notion of missing data, so is appealing in situations where missing data may not actually exist. 

Several examples illustrate how stability may be assessed.
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1 Introduction

We consider the analysis of longitudinal data. For each of a set of subjects, a sequence of 

observations is recorded, corresponding to the same property or feature of the subject 

evaluated at different times. Longitudinal data are common in scientific investigations, and 

their analysis has received much attention (Lindsey, 1999; Diggle et al., 2002; Molenberghs 

& Verbeke, 2006).

Longitudinal studies typically propose a schedule of measurement times in advance. 

Nevertheless, even in carefully designed experiments, the precise number and timings of 

observations are rarely completely determined by the investigator. Most obviously, a subject 

who dies during the course of a study can give rise to no further observations, scheduled or 

otherwise. In panel studies, a subject may fail to present for evaluation at an intermediate 

wave, but then return for final assessment at a later date. More generally, measurements may 

be recorded on quite arbitrary occasions and determined by convenience to the particular 

subject, availability of the investigator, or external factors such as weather conditions and 

public holidays.
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In addition to external circumstances, observation times may be influenced by internal, 

subject-specific factors. Mood, medical intervention or indeed the biological processes 

underlying the longitudinal assessments can all affect the likelihood of recording an 

observation. An important special case is informative drop-out, where attrition relates to 

health (Sun et al., 2012).

Dependence between timings and observations may still be ignorable, in the sense that 

certain likelihood-based analyses are equivalent under such dependence. Ignorability is 

ordinarily described within a missing data framework, which presupposes that the missing 

data actually exist (Little & Rubin, 2002, p. 8). Especially for longitudinal data, this is only 

very rarely the case; more usually, missing data constitute a convenient and sometimes 

compelling fiction.

We argue that this fiction is not needed. Instead, we provide an alternative characterization 

of ignorability for general longitudinal data that does not depend on any notion of missing 

data. We do so by applying the machinery of causal inference (Pearl, 2009; Dawid & 

Didelez, 2010) to the components of a marked point process (Jacobsen, 2006). We caution 

that suppression of the usual missing data machinery does not absolve the analyst of 

attention to closely related matters, the challenges of which are perhaps even more starkly 

obvious within our causal formulation.

For concreteness, consider the longitudinal measurement of foetal size. In early pregnancy, 

foetal growth is often monitored using the crown-rump length, assessed electronically from 

an ultrasound image. Crown-rump length could in principle be measured at any point after 

conception. We stress, however, that crown-rump length does not actually exist at every 

point after conception. This is most obvious following birth, when it is no longer meaningful 

to measure crown-rump length by ultrasound. However, our argument is more general: no 

unambiguous, unique definition of crown-rump length can be made except on those 

occasions when it is actually measured. Certainly, a healthy foetus has a shape and size that 

is complex and growing more or less continuously, but crown-rump length is not simply a 

one-dimensional slice of this high-dimensional, continuous-time process; it is an external 

procedure subject to many influences apart from foetal size, including the skill of the 

sonographer, the resolution of the ultrasound, and the cooperation of the foetus. 

Consequently, crown-rump length only exists in a meaningful way on precisely those 

occasions when it is measured. To fix ideas, we refer to this example throughout.

2 Notation

We omit subject-specific subscripts i, and let (t, y) be a marked point process (Jacobsen, 

2006, p. 10) representing the longitudinal data arising from a particular subject. The 

increasing sequence t = (t1, t2, …) is a standard point process, and records the observation 

times for this subject. The sequence y = (y1, y2, …) contains the corresponding longitudinal 

measurements. We resist the temptation to define for each of the n subjects an underlying 

continuous or complete measurement process; the existence or otherwise of this complete 

measurement process, however it might be defined, is irrelevant in our subsequent 

development.
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Following Jacobsen (2006), we allow only finitely many longitudinal measurements in any 

finite time interval, and define tj = ∞ if fewer than j events occur altogether; drop-outs 

require no special handling. If tj = ∞, we assign to the corresponding yj the irrelevant mark 

∇. Defining m = max{j : tj < ∞}, we formally admit the possibility that m = 0 and no 

measurements are made on a particular subject, but this case is usually of little interest. In 

our crown-rump length example, an idealized realization (t, y) of the marked point process 

in which m = 2 might comprise the elements t = (12, 20, ∞, ∞, ∞, …) weeks and y = (54, 

164, ∇, ∇, ∇, …) millimetres.

There is a fundamental dependence between the marks y and the time-points t at which they 

are observed, for they arise together and neither can exist without the other. Dependence can 

also be associational and dynamic: writing t̄j for (t1, … , tj) and ȳj for (y1, … , yj), a standard 

construction of marked point processes (Jacobsen, 2006, p. 22) specifies the conditional 

distributions (tj | t̄j−1, ȳj−1) and (yj | t̄j, ȳj−1) sequentially for j ⩾ 1.

We use directed acyclic graphs to summarize possible dynamic dependencies between t and 

y. Pearl (2009) demonstrates how such graphs may be given a causal interpretation; in 

addition to conveniently summarizing conditional independence statements that apply across 

a system of random variables, causal graphs also encode rules for transforming the 

probability measure describing the observed data into different measures that would apply 

under specific external interventions. Here, we use the related concept of influence diagrams 

(Dawid & Didelez, 2010). Influence diagrams contain a special node, σ, a parameter that 

governs the behaviour of the system. This σ indicates if the system is operating in its 

original, observed state (σ = o) or, when σ takes different values, whether particular 

interventions into the system are being considered. Under σ = o, probability functions are 

written pr(·; σ = o) or just pr(·). In general, arrows from σ into other nodes indicate that their 

stochastic behaviour may be altered under different regimes. We consider the specific case 

where arrows emanate from σ to every tj, and only to the tj. For a specific example, see Fig. 

1. Our σ is equivalent to the F used in the appendix of Pearl (1995).

Our influence diagrams will contain nodes representing tj and yj for every j. Other nodes will 

usually appear; we shall write observed baseline covariates generically as x, with u denoting 

random variables whose realized values are not observed. Whatever the larger picture of 

dependence between u, x, t and y, the influence diagram should contain, for every j, the 

subgraphs tj → yj, in which a directed arrow from tj to yj formalizes the notion that yj comes 

into existence at time tj and that if tj is changed, so too is yj.

3 Ignorability

If dependence between t and y is indeed inherent in a marked point process, then it can never 

be dismissed entirely. Instead, we may ask when this dependence can safely be ignored. A 

popular approach to the analysis of longitudinal data (see, for example, Diggle et al., 2002) 

is based on generic multivariate models. To this end, and whether or not this is actually the 

case, it is customary to imagine that the occasions t on which we observe the sequence of 

measurements y are fixed by design (Molenberghs & Verbeke, 2006, p. 482). In the 

language of causal graphs and using the notation of Pearl (2009), this amounts to an 
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interventionist view: instead of allowing t to evolve stochastically, we have intervened to 

enforce a particular pattern of observations do(t1), do(t2), … , or simply do(t). 
Circumstances in which the presence, σ = do(t), or absence, σ = o, of such intervention is 

irrelevant to inference might be deemed ignorable, and we make this our definition.

DEFINITION 1. The point process t is ignorable for inference based on y if pr(t, y) ∝ pr{y; 

do(t)} with respect to some parameter of interest. More generally, the point process t is 
ignorable for inference based on y, conditional on x, if pr(t, y | x) ∝ pr{y | x; do(t)} with 
respect to some parameter of interest.

If the two objects are indeed proportional, then they may be used interchangeably for 

likelihood-based inference. Establishing general conditions under which this proportionality 

holds is precisely the question addressed by Rubin (1976). To see this, consider Rubin’s 

statement (Rubin, 1976, p. 584):

Ignoring the process that causes missing data means proceeding by: (a) fixing the 

[missing data indicator] at the observed pattern of missing data […], and (b) 

assuming that the values of the observed data […] arose from the marginal density 

of the [observed data].

This refers to a derived, interventional, distribution. We interpret Rubin’s statement as an 

intent to employ pr{y; σ = do(t)} as the likelihood upon which inference is to be based. An 

immediate advantage of the causal formulation is that it provides the informative label pr{y; 

σ = do(t)}, or more simply pr{y; do(t)}, for the nameless integral construction that Rubin 

(1976) calls a marginal density. While pr{y; do(t)} is indeed a marginal probability function, 

it is computed with respect to the interventional regime σ = do(t) and is quite distinct from 

both the conditional pr(y | t) = pr(y | t; σ = o) and the more complicated marginal pr(y) = pr 

(y; σ = o).

Rubin answers the question of when proportionality between pr(t, y) and pr{y; do(t)} may 

be inferred through his condition known as missingness at random. However, because within 

a marked point process formulation there are no missing data, we require an analogous 

condition that does not employ notions of complete, observed and missing data. Like 

missingness at random, our contender, stability, is a simple, general, sufficient condition 

under which ignorability may be shown to hold. However, also like missingness at random, 

stability is not a necessary condition for ignorability; we return to this point in our 

discussion.

DEFINITION 2 (Dawid & Didelez, 2010). The marked point process (t, y) exhibits simple 
stability if yj ⫫ σ | (x, t̄j, ȳj−1).

Here ⫫ denotes independence. While simple stability can be verified on an influence 

diagram by checking the relevant graphical separation, the fact that σ only has directed 

edges into the tj allows the following equivalent graphical check where σ is omitted from the 

graph: the marked point process is stable if there are no unblocked back-door paths between 

tj and yj, i.e., paths between tj and yj, with an arrow into tj, that are not blocked by any of (x, 

t̄j−1, ȳj−1) in the sense of d-separation (Pearl, 2009).
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THEOREM 1. If the marked point process (t, y) is stable, then

(1)

COROLLARY 1. If the marked point process (t, y) is stable, then maximizations over 
parameters occurring in only one of its two likelihood factors may equivalently be 
performed over either the full likelihood pr(t, y | x) or the relevant factor. In particular, any 

parameters that occur only in pr{y | x; do(t)} may be maximized over this simpler 
likelihood.

Proof. The standard decomposition for the likelihood of a marked point process is

Since (t, y) is stable, pr(yj | x, t̄j, ȳj−1; σ = o) = pr{yj | x, t̄j, ȳj−1; σ = do(t)}, whence

But under σ = do(t), the tj are deterministic, so

The infinite product ∏ pr{yj | x, ȳj−1; do(t)} telescopes to yield the required factorization.

If the marked point process (t, y) is stable, likelihood inference may proceed solely on the 

basis of pr{y | x; do(t)}, provided that the parameters of ∏ pr(tj | x, t̄j−1, ȳj−1) are suitably 

distinct from the parameters of interest in pr{y | x; do(t)}. It is possible, though unusual, that 

stability may plausibly be assumed to hold but the parameters of ∏ pr(tj | x, t̄j−1, ȳj−1) and 

pr{y | x; do(t)} are not thought to be distinct. To see that this need not affect consistency of 

estimation, consider the following argument, due to Peter Diggle. Since parameterization is 

essentially a modelling decision, in this case we may consider the larger model in which any 

parameters in common are replaced by two variation-independent sets of parameters, one for 

each of the two likelihood factors. Providing parameters are replaced throughout any given 

conditional probability, the product of these conditional probabilities remains a probability 

measure that is consistent with the data-generating mechanism. It is then clear that 

estimation of the parameters of pr{y | x; do(t)} will still be consistent based only on 

maximizing over this component of the likelihood, albeit with some loss of efficiency 

relative to using the full likelihood pr(t, y).
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The likelihood factorization of Theorem 1 is an example of G-computation (Robins, 1986). 

Indeed, rewriting (1) as

illustrates the close connection between ignorability and the identification of causal 

quantities such as pr{y | x; do(t)}, in particular with their identification via adjustment for 

previous observations through so-called inverse probability weighting. Philosophically, we 

find it preferable to frame problems of ignorability in terms of causal inference, without 

reference to counterfactual missing data. In the next section, we argue also for the practical 

importance of this approach, particularly in assessing the plausibility of assumptions 

required for ignorability.

4 Working Example Revisted

Like missingness at random, stability is not nonparametrically testable (Molenberghs et al., 

2008); that is, stability cannot be assessed solely on the basis of an empirical joint likelihood 

function of observed random variables. However, this need not be the end of the story; Pearl 

(2009, p. 40) distinguishes sharply between statistical and causal concepts, and would 

classify stability as an essentially causal assumption precisely because it cannot be discerned 

from a joint distribution. To assess such a causal assumption requires formal consideration 

of at least two regimes, σ = o and σ = do(t), perhaps by way of a causal graph or an 

influence diagram. This gives expert judgement a formal place in analysis, and here we give 

some examples to illustrate how an expert, loosely defined, might go about assessing the 

plausibility of stability within our working example of foetal crown-rump length.

Example 1. Consider an antenatal clinic in which the next recommended ultrasound scan 

date tj is set on the basis of foetal length measurements ȳj−1 from previous scans. For 

instance, pregnancies falling within reference ranges for foetal length might follow a 

standard scan schedule, while those showing unusually slow or rapid foetal growth might be 

invited to attend more frequently. There may also be privately scheduled, parent-initiated 

scans, perhaps because of underlying anxiety or a particular concern, summarized by ut in 

Fig. 1.

Any lack of adherence to these appointments is then assumed to arise from external factors 

that play no discernible role in determining the foetal length measurements, for example 

school holidays or local traffic conditions. In this way an observation time tj depends 

structurally on previous observations times t̄j−1, previous observations ȳj−1 and underlying 

parental influences ut but, given these, is independent of other past factors or processes, and 

in particular of uy.

Covariance between scan measurements y may be incorporated in the usual way, by means 

of shared random effects uy. This can be thought of as capturing the underlying physical 
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characteristics of the unborn child; but, crucially, these underlying characteristics are only 

thought to influence scan dates indirectly, by way of their influence on the measurements y.

This is our canonical example of stability. Because ut and uy are marginally independent, it 

is straightforward to show from first principles that pr(t, y) equals

The latter factor is precisely pr{y; do(t)}, and its form is the usual mixture distribution 

arising when random effects are integrated out of a likelihood function, as in Laird & Ware 

(1982) for example. Stability would be lost if uy had an arrow directly into any tj.

Example 2. The assumption that parental influences on the timings of antenatal 

measurements are independent of their unborn child’s growth is arguably a strong one. In 

particular, it seems at least plausible that a mother’s health, u* say, could play some role in 

determining both her levels of antenatal anxiety ut and the growth of her child uy; such 

dependence is depicted in Fig. 2.

The marked point process (t, y) is now no longer stable: the likelihood function takes the 

form

and no reduction to pr{y; do(t)} is possible. The timings t are not ignorable for inference 

about y, and inferences based on pr{y; do(t)} will in general be biased. Stability may be re-

established if ut can be replaced by a set of measurements x assessing antenatal anxiety, 

assuming for the sake of argument that this can be done without appreciable error in 

measurement. Conditioning on this x breaks the dependency between t and y, and allows us 

to write pr(t, y | x) as

An important difference from the factorization in Example 1 is the conditioning on x in the 

mixing distribution pr(u* | x). The second factor does, of course, reduce to pr{y | x; do(t)}.

Example 3. Our final scenario gives rise to a more surprising example of stability. Suppose 

that clinic visits are scheduled for 12 and 20 weeks’ gestation, but if, at such a visit, the 

sonographer perceives the ultrasound equipment to be behaving unreliably, an additional 
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measurement is arranged for the following week. No record is kept of equipment failure, so 

these enter the influence diagram as unobserved uj, as in Fig. 3. Failures are assumed to 

occur independently of any previous failures and of all other aspects of the system. Since 

equipment failure might perhaps make crown-rump length measurements larger, say, or 

more variable, uj influences yj in addition to affecting the subsequent tj+1.

Despite unobserved common causes between t and y, the marked point process (t, y) remains 

stable because the unobserved factor uj affecting yj influences only the future tj+1, not the 

current tj. Stability is immediately lost if equipment failures are not independent of one 

another.

Also important for stability in this case is the assumed autoregressive dependence structure 

of the yj. Stability would also be lost if this were replaced by the random effects uy of the 

previous two examples, a scenario that we find much more plausible.

5 Discussion

We contend that missing data are not nearly so widespread as their prominence in the 

statistical literature would imply. It is, of course, sensible to formulate stochastic systems in 

terms of unobserved random variables. However, describing such unobserved variables as 

data seems to us appropriate only when they were at some time, by some means, given a 

specific value that could in principle have been observed, even if that value has subsequently 

become lost to us. This perspective can be traced back to the dawn of the missing data 

literature, as Rubin (2014, p. 598) recollects:

[David Cox, then editor of Biometrika] mentioned that he really wasn’t fond of the 

title of the already accepted Rubin (1976) because something that’s missing can’t 

be “given” – the Latin meaning of data.

It seems to us that the missing data label might reasonably be applied if data were actually 

gathered but subsequently lost. An obvious example would be clinical data lost when a 

laptop computer disappears from a crowded train. In this rather specific sense, missing data 

do sometimes exist.

Formulations of ignorability that rely on missing data require the user to assign meaning to 

these quantities in order that the plausibility of assumptions concerning the missing data can 

be assessed. Little and Rubin observed that the ability to assign such meaning formally 

underpins the majority of their influential book (Little & Rubin, 2002, p. 8, Assumption 1.1) 

and most related work: ‘missing indicators hide true values that are meaningful for analysis’. 

We believe that removing reliance on assigning meaning to missing data makes our 

assumptions easier to understand and evaluate.

Often missing data are given a counterfactual interpretation, especially in the longitudinal 

setting. It is widespread practice to employ a notional variable yj recording the value that 

would have been observed had a measurement taken place at time tj. In some instances it 

may be possible to make such notions concrete, particularly if errors in measurement are 

negligible. However, such a formulation requires some understanding of why these 

hypothetical measurements took place: did the subject become sufficiently well, or unwell, 
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to allow or require measurement? How ought we to allow for the multiplicity of reasons for 

which a measurement might have taken place but in fact did not occur? In order to assess a 

condition such as missingness at random, dependence of the missingness mechanism on 

these infinite-dimensional, vaguely defined counterfactuals must be examined, which is 

arguably a daunting task.

Shpitser et al. (2015) also argued for causal reasoning about questions of ignorability, and 

the forthcoming book by Hernan & Robins (2017) employs inverse probability weighting to 

address closely related problems. Both theories, though, are based on counterfactual missing 

data. Our view is that inverse probability weighting becomes even more natural when 

weighting is done not in order to restore fictitious missing data, but by the probability that 

the observed data arise as they do.

Our unobserved nodes u play an important role in assessing stability. We might variously 

choose to think of these as infinite-dimensional objects summarizing the entire trajectory of 

an unobserved, possibly highly multivariate, stochastic process, or alternatively as very low-

dimensional objects, for instance a random intercept and slope. The former perspective is 

useful in assessing assumptions, while the latter is more suited to applied statistical 

modelling. Dawid & Didelez (2010) extended the notion of simple stability to a similar, but 

weaker, assumption that involves conditioning on such unobserved nodes. This weaker 

version may then be combined with other assumptions to regain simple stability, while in 

other cases simple stability fails but adjustment is still possible, and hence proportionality of 

likelihoods may still be shown to hold. We reiterate that, as with missingness at random, 

stability is not necessary for ignorability.

Dawid & Didelez (2010) also admit what might be called time-varying covariates. This 

extension is possible here, too, but would require that similar consideration be given to the 

occasions and reasons that such covariates were measured.

We have argued that it is useful to think of longitudinal data in terms of marked point 

processes, especially when there may be dependence between points and marks. Even in the 

absence of such dependence, it seems to us quite natural to base inference within a 

stochastic process setting. Most fundamentally, time is given a central role (Aalen, 2012), 

which is especially important in causal reasoning. This is in contrast to the usual multivariate 

modelling of longitudinal data, where although time may be given a conspicuous notational 

presence, its inferential role is often restricted to forming suitable covariance structures. 

Other advantages of marked point process models for longitudinal data include elegant 

martingale decompositions analogous to those in widespread use in event-history analysis 

(Martinussen & Scheike, 2007).

In the context of longitudinal data, missingness at random has been defined in various ways 

and with varying degrees of formality. Many authors employ informal notation such as yobs 

and ymis to refer to observed and unobserved components, and data are said to be missing at 

random if pr(t | yobs, ymis) = pr(t | yobs). Since we have avoided defining complete data, we 

could not use this notation here. This is no bad thing, as the yobs, ymis notation is at best 

ambiguous and at worst confusing (Seaman et al., 2013; Mealli & Rubin, 2015); taken 
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literally, yobs must at least encode the value of m and, in balanced monotone drop-out cases, 

actually determines t completely.

Many variants of missingness at random, such as covariate-dependent missingness at 

random (Little, 1995) or sequential missingness at random (Robins et al., 1995; Hogan et al., 

2004), are subsumed within the general approach outlined here. Although we have focused 

on longitudinal data, the formulation of ignorability given in the present paper also applies 

in other settings: for instance, spatial point processes may raise similar questions of 

informative sampling. Censoring, and more generally coarsening (Heitjan, 1994), could also 

be formulated in these terms. We emphasize again the advantage of making explicit the 

observational and interventional likelihoods whose proportionality is in question.
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Fig. 1. 
Influence diagram for Example 1: stable, because the observation time tj depends on 

previous times tj−1 and marks ȳj−1, but not the unobserved uy that influence y.
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Fig. 2. 
Influence diagram for Example 2: not stable, because t and y have correlated, unobserved 

parents ut and uy.
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Fig. 3. 
Influence diagram for Example 3: stable, because the unobserved uj−1 influences yj−1 and tj 
but not yj.
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