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Abstract: In this work, a new fractional-order chaotic system with a single parameter and four
nonlinearities is introduced. One striking feature is that by varying the system parameter, the fractional-
order system generates several complex dynamics: self-excited attractors, hidden attractors, and the
coexistence of hidden attractors. In the family of self-excited chaotic attractors, the system has four
spiral-saddle-type equilibrium points, or two nonhyperbolic equilibria. Besides, for a certain value
of the parameter, a fractional-order no-equilibrium system is obtained. This no-equilibrium system
presents a hidden chaotic attractor with a ‘hurricane’-like shape in the phase space. Multistability is also
observed, since a hidden chaotic attractor coexists with a periodic one. The chaos generation in the new
fractional-order system is demonstrated by the Lyapunov exponents method and equilibrium stability.
Moreover, the complexity of the self-excited and hidden chaotic attractors is analyzed by computing their
spectral entropy and Brownian-like motions. Finally, a pseudo-random number generator is designed
using the hidden dynamics.

Keywords: hidden attractor; self-excited attractor; fractional order; spectral entropy; coexistence;
multistability

1. Introduction

Since Leonov et al. published their seminal paper [1], the attractors in dynamical systems
have been categorized as self-excited attractors and hidden attractors. A self-excited attractor has
a basin of attraction that is associated with an unstable equilibrium, the most of common examples of
integer-order chaotic flows showing self-excited attractors are Lorenz, Chen, Rössler, and Lü systems,
among many others [2–5]. Conversely, an attractor is called hidden if its basin of attraction does
not intersect with small neighborhoods of the unstable equilibrium [6]. Additionally, the attractors
in dynamical systems with no-equilibrium, with curves and surfaces of equilibria, and with stable
equilibria also belong to the category of hidden attractors [1,6]. Hidden attractors are very important
in engineering applications because they allow the study and understanding of the unexpected and
potentially disastrous responses of the dynamical systems to perturbations, for instance, in mechanical
structures, like a bridge or airplane wings [7–9], aircraft control systems [10], PLL circuits [1],
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drilling systems with induction motors [11], and secure communication schemes [1,12]. Hence,
numerous integer-order chaotic flows with hidden attractors have been proposed [7,13–24].

However, it should be noted that most of the studies about hidden attractors have mainly
concentrated on continuous-time dynamical systems of integer-order. In recent years, fractional
calculus has received much attention due to fractional derivatives providing more accurate models
than their integer-order counterparts. Many examples have been found in different interdisciplinary
fields [25], ranging from the description of viscoelastic anomalous diffusion in complex liquids,
D-decomposition technique for control problems, chaotic systems; to macroeconomic models with
dynamic memory, forecast of the trend of complex systems, and so on [26–34]. Those works have
demonstrated that fractional derivatives provide an excellent approach to describing the memory and
hereditary properties of real physical phenomena.

Therefore, the research effort oriented to hidden attractors in fractional-order dynamical systems is
vital to understand this exciting and still less-explored subject of importance. In the literature, few works
have reported hidden attractors in fractional-order dynamical systems with one stable equilibrium [35,36],
with no-equilibria [37–40], with a line or surfaces of equilibria [41,42], or even in fractional-order
hyperchaotic systems [43,44]. However, those fractional order systems generate only one family of
hidden attractors, i.e., line, surface, stable, and without equilibrium. A remaining research question
is whether fractional-order dynamical systems whose dynamics can generate both self-excited and
hidden attractors could exist. The first response was recently proposed by Rajagopal et al. [45] through
a dynamical system and its fractional-order form, which changes from hidden to self-excited attractors
and vice versa by modifying two system parameters.

Motivated by the aforementioned discussion, in this paper, we propose a new fractional-order
dynamical system with four nonlinearities and a single system parameter. One salient feature of
this fractional-order system is that it generates different families of self-excited and hidden attractors
as a function of only one parameter. This parameter performs as a constant controller to select the
required dynamics. More specifically, the proposed system exhibits a typical self-excited chaotic
attractor with four equilibrium points of the type spiral saddle index 1 and index 2. Moreover,
the proposed system has a self-excited chaotic attractor coexisting with two nonhyperbolic equilibrium
points. A nonhyperbolic type of chaos is unusual because it does not satisfy the Shilnikov theorems.

Surprisingly, the proposed fractional-order system also has a hidden chaotic attractor without
equilibria. Unlike other approaches, the resulting hidden attractor can be observed in a fractional
order as low as 0.95. Finally, the multistability phenomenon was also found in the fractional-order
no-equilibrium system. Multistability leads to different qualitative behavior in a given nonlinear
dynamical system for the same parameter values. In the proposed system, a hidden chaotic attractor
coexist with a periodic attractor. Since the system equations contain no unnecessary terms and the
system parameter has a minimum of digits, the proposed fractional-order system can be considered
elegant in the sense of Sprott [46]. Moreover, the criterion (iii) in [47] for reporting a new chaotic system
is also satisfied. The multiple complex dynamics of the proposed system were studied by applying
a numerical simulation approach to compute the Lyapunov exponents, basins of attraction, bifurcation
diagrams, and phase portraits. Additionally, the 0–1 test was employed to detect a Brownian-like
motion in the fractional-order system.

The complexity measure is an important property to characterize the dynamics of a chaotic
system; it can also be used as the core in many applications of information security. The complexity
is obtained using the spectral entropy for both self-excited and hidden attractors. From the spectral
entropy analysis, the time series of the hidden attractor is used to design a pseudo-random number
generator (PRNG).

The rest of this paper is organized as follows. Section 2 provides the mathematical background
related to fractional calculus. Section 3 presents the new fractional-order system, along with the
mechanism employed to get the hidden and self-excited attractors. Section 4 shows the results of
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the 0–1 test algorithm and spectral entropy. Section 5 reports the design of PRNG. Finally, Section 6
summarizes the conclusions.

2. Mathematical Background

In this section, we provide the background to support our main results. The integro-differential
operator, denoted as aDq

t , is a combined differentiation and integration operator commonly used
in fractional calculus. This operator is a notation for taking both the fractional derivative and the
fractional integral of a function, combining them into a single expression that can be formally defined as

aDq
t f =


dq f
dtq , q > 0,

f , q = 0,∫ t
a f (dτ)q, q < 0,

(1)

where f is a function of time, a and t are the limits of the operation, and q ∈ R is the fractional
order. As we know now, there are several different definitions for the fractional differential operator
that can be adopted for (1). Hereafter, we consider the fractional derivative operator dq/dtq,
with m− 1 < q ≤ m ∈ N, to be Caputo’s derivative [48], with starting point a = 0, defined by

Dq
t f (t) =

1
Γ(m− q)

∫ t

0

f (m)(τ)

(t− τ)q+1−m dτ, (2)

where m is an integer number and Γ(·) is the gamma function. Caputo’s derivative of order q is
a formal generalization of the integer derivative under the Laplace transformation, and it is widely
used in engineering [49].

2.1. Predictor–Corrector Scheme

The numerical method used in this work to compute the solution of the fractional-order
system is the Adams–Bashforth–Moulton (ABM) predictor–corrector scheme, reported in [50–52].
The predictor–corrector scheme is based on the Caputo fractional differential operator (2), which allows
us to specify both homogeneous and inhomogeneous initial conditions.

Consider the following fractional differential equation:

Dqy(t) = f (t, y(t)), 0 ≤ t ≤ T;

y(k)(0) = y(k)0 , k = 0, 1, . . . , n− 1.
(3)

The solution of (3) is given by an integral equation of Volterra type as

y(t) =
dqe−1

∑
k=0

yk
0

tk

k!
+

1
Γ(q)

∫ t

0
(t− z)q−1 f (z, y(z))dz. (4)

As it is shown in [50], there is a unique solution of (3), within an interval [0, T], thence we are
interested in a numerical solution on the uniform grid {tn = nh|n = 0, 1, . . . , N} with an integer N
and stepsize h = T/N. Then, (4) can be replaced by a discrete form to get the corrector, as follows

yh(tn+1) = ∑
dqe−1
k=0 yk

0
tk

k! +
hq

Γ(q+2) f
(

tn+1, yp
h(tn+1)

)
+ hq

Γ(q+2) ∑n
j=0 aj,n+1 f

(
tj, yh(tj)

)
,

(5)
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where

aj,n+1 =


nq+1 − (n− q)(n + 1)q, j = 0,
(n− j + 2)q+1 + (n− j)q+1

−2(n− j + 1)q+1, 1 ≤ j ≤ n,
1, j = n + 1,

(6)

Moreover, the predictor has the following structure

yp
h(tn+1) =

dqe−1

∑
k=0

yk
0

tk

k!
+

1
Γ(q)

n

∑
j=0

bj,n+1 f (tj, yh(tj)), (7)

with bj,n+1 defined by

bj,n+1 =
hq

q
((n + 1− j)q − (n− jq)). (8)

The error of this approximation is given by

max
j=0,1,...N

|y(tj)− yh(tj))| = O(hP), (9)

where P = min(2, 1 + q).

2.2. Stability of Fractional-Order Systems

This subsection presents several definitions for the stability of fractional-order autonomous systems.
Starting from Equations (1) and (2), it is possible to study the stability of fractional-order systems.
A fractional-order differential equation with 0 < q < 1 typically presents a stability region that is larger
than that of the same equation with integer order q = 1.

Definition 1. The roots of the equation f(x) = 0 are called the equilibria of the fractional-order differential
system Dqx = f(x), where x = (x1, x2, . . . , xn)T ∈ R, f(x) ∈ R and Dqx = (Dq1 x1, Dq2 x2, . . . , Dqn xn)T ,
qi ∈ R+, i = 1, 2, . . . , n.

Theorem 1. Consider a commensurate-order system described by

Dqx = Ax, x(0) = x0 (10)

with 0 < q < 1, x ∈ Rn and A ∈ Rn×n. It has been shown [53–58] that this fractional order system is
asymptotically stable if and only if the following condition is satisfied

| arg(λ)| > qπ/2, (11)

where | arg(λ)| represents all eigenvalues of A. Besides, the critical eigenvalues of A satisfying | arg(λ)| = qπ/2
must have a geometric multiplicity of one, which stands for the dimension of subspace of v for Av = λv.

Theorem 2. Consider an incommensurate-order system described by

Dqx = Ax, x(0) = x0 (12)

where x = (x1, x2, . . . , xn)T ∈ R, Dqx = (Dq1 x1, Dq2 x2, . . . , Dqn xn)T, qi ∈ R+, i = 1, 2, . . . , n, 0 < qi < 1,
and A = (aij) ∈ Rn×n, i = 1, 2, . . . , n, j = 1, 2, . . . , n. By assuming w as the lowest common multiple of the
denominators ui of qi, where qi = vi/ui, (ui, vi) = 1, ui, vi ∈ Z+ for i = 1, 2, . . . , n, the characteristic matrix
of (12) is defined by
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∆(λ) =


λwq1 − a11 −a12 . . . −a1n
−a21 λwq2 − a22 . . . −a2n

...
...

. . .
...

−an1 −an2 . . . λwqn − ann

 . (13)

Then, the system (12) is globally asymptotically stable in the Lyapunov sense if all roots λ of its characteristic
polynomial, given by equation det(∆(λ)) = 0, satisfy | arg(λ)| > π/2w [53–58].

Theorem 3. The equilibrium point E∗ is asymptotically stable if and only if the instability measure

ρ = (π/2w)−min
i
{arg(λi)} (14)

is strictly negative, where the λi parameters are roots of equations: det(diag([λwq1 λwq2 . . . λwqn ]) −
∂ f /∂x|x=E∗) = 0, ∀E∗ ∈ Ω [57,58]. If ρ ≥ 0 and the critical eigenvalues satisfying ρ = 0 have the
geometric multiplicity one, then E∗ is stable.

Remark 1. If ρ is positive, then E∗ is unstable and the system may exhibit chaotic behavior [57,58].

3. A New Three-Dimensional Fractional-Order Chaotic System

Recently, Munoz-Pacheco et al. [59] proposed a fractional-order dynamical system with a line,
lattice, and 3D grid of boostable variables. The chaotic attractors of that system are self-excited.
Inspired from that work, we propose a new fractional-order chaotic system given by

Dq1 x = yz + x(y− a),

Dq2 y = 1− |x|, (15)

Dq3 z = −xy− z,

where a is a real parameter, (q1, q2, q3) ∈ [0, 1] are the fractional-order derivatives, and x, y, z are
the states’ variables. In the fractional-order system (15), the Caputo definition of fractional-order
derivative (2) is used. The fractional-order system (15) presents a unique characteristic. The parameter
a behaves as a controller of the diverse complex dynamics generated by the system, such as hidden
and self-excited attractors. Therefore, the fractional-order system (15) belongs to different classes of
dynamical systems, i.e., a new class of systems without equilibrium, a new class of systems with
multistability, a subclass of systems with nonhyperbolic equilibria, and the well-known class of
systems of the hyperbolic type. To the best knowledge of the authors, this is the first time reporting
a fractional-order chaotic system that presents the unique characteristic of switching from self-excited
chaotic attractors to hidden chaotic attractors, and the coexistence of hidden attractors which arise by
varying just one single parameter. Also, the hidden chaotic attractor can be observed with a fractional
order as low as q = 0.95.

In this manner, the study conducted herein could be straightforwardly expanded to find other
fractional-order systems, with one single parameter generating different families of hidden and
self-excited attractors, by applying a systematic computer search similar to [7,16].

3.1. Self-Excited Chaotic Attractor: Spiral Saddle Type of Equilibrium Points

In order to obtain the equilibrium points of the system (15), the left-hand side of the system is
kept at zero, so the system’s equations can be written as

0 = yz + x(y− a),
0 = 1− |x|,
0 = −xy− z.

(16)
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The equilibria E∗ = (x∗, y∗, z∗) of the system (16) are

E1 = (1, (1 +
√

1− 4a)/2,−(1 +
√

1− 4a)/2),
E2 = (−1, (1−

√
1− 4a)/2, (1−

√
1− 4a)/2),

E3 = (1, (1−
√

1− 4a)/2,−(1−
√

1− 4a)/2),
E4 = (−1, (1 +

√
1− 4a)/2, (1 +

√
1− 4a)/2).

(17)

As can be seen from (17), the system parameter a is a controller for the kind of equilibria, i.e.,
the parameter a is also known as a bifurcation parameter. In this case, a self-excited attractor can
be observed when a < 1/4. Let a = −1, then the equilibrium points E∗ are as given in Table 1.
For investigating the stability and type of these equilibrium points, the Jacobian matrix of system (16)
is defined by

J =

 y + 1 x + z y
−sign(x) 0 0
−y −x −1

 , (18)

where the resulting eigenvalues evaluated at E∗ are as shown in Table 1. Therefore, the fractional-order
system (16) has four hyperbolic equilibrium points of the type spiral saddle index 1 and index 2,
where the index is the number of eigenvalues with a positive real part, respectively. According to
Theorem 1, the fractional-order system is asymptotically stable if q < 0.9010.

Lemma 1. When q = 0.93 and a = −1, the system (15) exhibits a self-excited chaotic attractor.

Proof. In order to generate a chaotic behavior in the system (15), the instability measure ρ defined in
Theorem 3 must be positive. By selecting q = 0.93, a = −1, and w = 100, the characteristic equation of
the equilibrium points E1 and E4 is

λ279 − 1.6180λ186 − 0.6180λ93 − 2.2360, (19)

with unstable root λ = 1.0090, while the characteristic equation at the equilibria E2 and E3 is

λ279 + 0.6180λ186 + 1.6180λ93 + 2.2360, (20)

with unstable roots λ1,2 = 1.0039 ± 0.0153i. Then, the instability measure of the system is
ρ = (π/2m)− 0.0152 > 0. Therefore, the fractional-order system (15) satisfies the necessary condition
for exhibiting a self-excited chaotic attractor when q = 0.93 and a = −1.

Numerical simulation results in Figure 1 illustrate the existence of a chaotic attractor for
the given fractional order. All numerical analyses presented herein were obtained by the
Adams–Bashforth–Moulton predictor–corrector scheme of Section 2.1, with h = 0.01.

(a) (b) (c)

Figure 1. Self-excited attractor of the system (15) considering a = −1 and q = 0.93. (a) x–y plane;
(b) x–z plane; (c) y–z plane.
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To verify whether the system (15) is chaotic in the classical sense, its Lyapunov exponents are
calculated. The Lyapunov exponents (LEs) are indicated by LE1, LE2, and LE3 in Table 1. As is
well known, a system is considered chaotic if LE1 > 0, LE2 = 0, LE3 < 0 with |LE1| < |LE3|.
Time series-based LEs calculation methods, like Wolf algorithm [60], Jacobian method [61], and neural
network algorithm [62], are popular known ways of calculating Lyapunov exponents for integer and
fractional-order systems. The Wolf algorithm [60] is used herein to calculate the LEs.

Table 1. Equilibria, eigenvalues, and Lyapunov exponents of the fractional-order chaotic system (15).

New System Parameters FO Equilibria Eigenvalues x0, y0, z0 LEs

Self-excited

a = −1; q = 0.93 (1, 1.6180,−1.6180) 2.3064,−0.3442± 0.9225i (1, 1, 1) LE1 = 2.957
(−1,−0.6180,−0.6180) −1.0666, 0.2243± 1.4304i LE2 = 0.01
(1,−0.6180, 0.6180) −1.0666, 0.2243± 1.4304i LE3 = −5.765
(−1, 1.6180, 1.6180) 2.3064,−0.3442± 0.9225i

Non-hyperbolic
a = 0.25; q = 0.99 (1, 1

2 ,− 1
2 ) 0,−0.3750 + 0.5994i (1, 1, 1) LE1 = 1.27

(−1, 1
2 , 1

2 ) 0,−0.3750 + 0.5994i LE2 = 0.010
LE3 = −1.72

Hidden
a = 0.35; q = 0.97 no-equilibria (1, 1, 1) LE1 = 14.735

LE2 = 0.010
LE3 = −18.350

Coexistence a = 0.35; q = 0.996 no-equilibria (1, 1, 1) LE1 = 11.066

Chaotic LE2 = 0.080
LE3 = −13.161

Coexistence a = 0.35; q = 0.996 no-equilibria (0, 75,−50) LE1 = 0

Periodic LE2 = −3.695
LE3 = −3.705

3.2. Degenerate Case: Self-Excited Chaotic Attractor with Nonhyperbolic Equilibria

A nonhyperbolic equilibrium point has one or more eigenvalues with a zero real part. In three-
dimensional systems, 11 combinations can be determined [63]. Among them, six have only real
eigenvalues, five present eigenvalues with a complex conjugate pair and one real part, and only
two do not have nonzero real eigenvalues. Therefore, the stability of systems with nonhyperbolic
equilibria cannot be obtained from their eigenvalues, because there is not an eigenvalue with a positive
real part. Such systems can have neither homoclinic nor heteroclinic orbits, and thus the Shilnikov
method cannot be used to verify the chaos [64]. Very few examples of fractional-order systems with
nonhyperbolic equilibria have been previously reported.

As given in Table 1, the proposed fractional-order system (15) has two nonhyperbolic equilibrium
points when parameter a = 1/4. The equilibria have a zero real eigenvalue and two complex conjugate
eigenvalues with a negative real part. Therefore, the resulting self-excited attractor is of a nonhyperbolic
type of chaos. Figure 2 shows the phase portraits.
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Figure 2. Chaotic attractor of the system (15) with nonhyperbolic equilibrium points, a = 0.25 and
q = 0.99. (a) x–y plane; (b) x–z plane; (c) y–z plane.
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Figure 3a shows the Lyapunov exponents spectrum when the fractional-order system (15) is
nonhyperbolic. The positive Lyapunov exponent indicates a chaotic behavior. Additionally, the dynamical
behavior of the system (15) can also be illustrated by the bifurcation diagram in Figure 3b. Due to
system (15) having only one parameter, which must be a = 1/4 to present nonhyperbolic equilibrium
points, it is interesting to analyze its dynamical behavior when a is fixed and the fractional-order q is
varied. The bifurcation diagram in Figure 3b demonstrates a period-doubling route to chaos.
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Figure 3. (a) Lyapunov exponents spectrum, and (b) bifurcation diagram of the fractional-order
nonhyperbolic system (15) when a = 1/4.

3.3. Hidden Chaotic Attractor Localization in the Fractional-Order System without Equilibria

Most familiar examples of low-dimensional chaotic flows occur in systems having one or more
saddle points. However, further studies showed that the self-excited periodic and chaotic oscillations did
not give exhaustive information about the possible types of oscillations, i.e., “hidden oscillations” and
“hidden attractors”. So, this class of attractors should be introduced according to the following definition:

Definition 2. An attractor is called a self-excited attractor if its basin of attraction intersects with any open
neighborhood of an equilibrium, otherwise it is called a hidden attractor [1,6].

With equilibrium, we are stating the equilibrium points of the state variables. Definition 2 also
includes fractional-order dynamical systems with no-equilibria, line and surfaces of equilibria, and
stable equilibria [35–42].

Similar to aforementioned scenarios, the parameter a is a controller of the dynamical behavior
of the proposed system (15). In this case, if a > 1/4, a fractional-order system without equilibrium
points is obtained. Hence, the resulting attractor is hidden using Definition 2. By selecting a = 0.35,
and the fractional-order q = 0.97, the proposed system (15) generates the hidden chaotic attractor
shown in Figure 4. It is important to note that the shape of the chaotic attractor in the x–z plane is
similar to a hurricane. Moreover, the chaos generation is demonstrated by the Lyapunov exponents
spectrum given in Figure 5a. As stated in Table 1, the largest Lyapunov exponent LE1 is positive, and
|LE1| < |LE3|, indicating a chaotic behavior.

By using the fractional-order q as bifurcation parameter, the bifurcation diagram of system (15) when
it generates a hidden attractor (a > 1/4) is illustrated in Figure 5b. As can be seen from the bifurcation
diagram, there are three regions where the chaotic behavior emerged, i.e., for 0.9285 < q < 0.931,
0.962 < q < 0.973, and q > 0.9955, a hidden attractor can be observed. This result indicates that the
hidden chaotic attractor depends on the selected fractional order.
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Figure 4. Hidden attractor of the system (15) considering a = 0.35, q = 0.97, and initial conditions
(x(0), y(0), z(0)) = (1, 1, 1). (a) x–y plane; (b) x–z plane; (c) y–z plane.

0 50 100 150 200 250 300

t(s)

-150

-100

-50

0

50

100

L
y
a

p
u

n
o

v
 E

x
p

o
n

e
n

ts

1
= 14.7355

2
= 0.01327

3
= -18.3504

(a)

0.9 0.92 0.94 0.96 0.98 1

q

0

2

4

6

8

10

r

(b)

Figure 5. (a) Lyapunov exponents spectrum, and (b) bifurcation diagram of the fractional-order
no-equilibrium system (15), when a > 1/4.

3.4. Coexistence of Hidden Attractors Regimes in the Fractional-Order System without Equilibria

The coexistence of attractors means that two or more different attractors are generated in
a dynamical system from different initial conditions, which is an important and interesting nonlinear
phenomenon [18,65]. In this subsection, we focus on studying the coexisting hidden attractors of the
fractional-order no-equilibrium system (15). A necessary tool for analyzing the coexistence of attractors
is the basin of attraction. All attractors, whether they be stable equilibria, limit cycles, attracting tori,
or hidden strange attractors, are surrounded by a basin of attraction representing the set of initial
conditions in the state space whose orbits approach and map out the attractor as time approaches
infinity [66].

Figure 6 shows the basins of attraction of the system (15) for the cross-section in the y–z plane at
x = 0 with a = 0.35 and q = 0.996. We found that the initial conditions inside of the yellow region
converge to a hidden chaotic attractor, as shown in Figure 7, whereas the initial conditions belonging
to the blue region lead to a hidden periodic attractor, as shown in Figure 8. This result confirms that
there are two different hidden attractors coexisting in the proposed fractional-order chaotic system (15).
Both coexisting attractors are also shown in Figure 7. Besides, this behavior also indicates multistability,
because different initial conditions converge to different hidden attractors.

Table 1 gives the Lyapunov exponents spectrum for both hidden chaotic and periodic attractors,
respectively. The positive, zero, and negative Lyapunov exponents of the hidden chaotic attractor
indicate chaotic behavior, while a zero and two negative Lyapunov exponents point out a hidden
periodic attractor.
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Figure 6. Cross-section of the basins of attraction of the two coexisting attractors in the y–z plane at
x = 0 for the fractional-order chaotic system without equilibrium (15) when a = 0.35 and q = 0.996.
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Figure 7. Coexistence of hidden chaotic and periodic attractors of the system (15) considering a = 0.35
and q = 0.996. (a) x–y plane; (b) x–z plane; (c) y–z plane.
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Figure 8. Hidden periodic attractor of the fractional-order system (15) with a = 0.35, q = 0.996, and
initial conditions (x(0), y(0), z(0)) = (0, 75,−50). (a) x–y plane; (b) x–z plane; (c) y–z plane.

3.5. Mechanism of the Different Dynamics

The mechanism of generating several types of equilibria in the proposed fractional-order
system (15) is simple and intuitive. The basic idea consists of varying the single system parameter a in
a range from negative to positive values, similar to the bifurcation analysis for integer-order systems.



Entropy 2018, 20, 564 11 of 18

By analyzing the symbolic equation of the equilibrium points (17), we realized that the number and
stability of equilibria can be changed with the parameter a. One can easily see that system (15) has
four unstable equilibrium points (spiral saddle index 1 and index 2) when a < 1/4. As a result,
the fractional-order system (15) can be defined into a class of fractional-order chaotic systems with
hyperbolic equilibrium points, which is the most typical form obtained for a chaotic attractor.

Next, with a = 1/4, the fractional-order system (15) degenerates, in the sense that their Jacobian
eigenvalues at the equilibria consist of one zero eigenvalue and a complex conjugate pair with
a negative real part. Clearly, the corresponding two equilibria are nonhyperbolic. Hence, the system
(15) belongs to a subclass of fractional-order chaotic systems with nonhyperbolic equilibrium points.

Finally, the fractional-order system (15) has no-equilibrium points when a > 1/4. In this scenario,
the resulting system can be categorized into a class of fractional-order no-equilibrium chaotic systems.
It is interesting that if there are no-equilibrium points, the system (15) also presents multistability,
since two distinct attractors are observed for different initial conditions. It is straightforward to observe
that we added the simple constant control parameter a to the fractional-order chaotic system (15),
trying to change the stability of its equilibria while preserving its chaotic dynamics. With the aim
to analyze the relationship between the parameter a and the fractional-order q, we introduce the
bi-dimensional map, that it is essentially a bifurcation diagram of two parameters, shown in Figure 9.

Figure 9. Bi-dimensional map for the different dynamical behaviors of the fractional-order system (15)
as a function of the parameter a and order q. The white region leads to a chaotic attractor, the black
region evolves to periodic attractors, and the orange region converges to unbounded orbits. Self-excited,
nonhyperbolic, and hidden chaotic attractors for a < 1/4, a = 1/4, and a > 1/4, respectively.

This map indicates the type of equilibrium and the resulting dynamical behavior for a given a
and q. The white, black, and orange regions evolve in chaotic, periodic, and unbounded behavior,
respectively. From Figure 9, the minimal fractional order can be also determined. For instance,
when a = −1, we observe that the chaotic attractor can appear for q > 0.9010, as was demonstrated
in Section 3.1. However, unbounded trajectories are obtained if q ≤ 0.9010, but a chaotic behavior
can be detected for fractional orders as low as q = 0.8 when a = −2.5. Similarly, the chaotic attractor
from nonhyperbolic equilibria is found for q > 0.997. For the case of a no-equilibria system (a > 1/4),
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we observed that the minimal fractional order wherein hidden chaotic attractors can emerge is about
q = 0.955. For lower orders, the system only generates hidden periodic attractors.

To the best knowledge of the authors, this is the first time reporting a fractional-order chaotic
system without equilibrium points and with the coexistence of hidden attractors.

4. Test 0–1 for Chaos

Gottwald and Melbourne [67] proposed a reliable and effective binary test method for testing
whether a nonlinear system has chaotic behavior, which is called the “0–1 test”. The test consists of
creating a random dynamic process for the data and then studying how the scale of the stochastic
process changes with time [67–69]. This test has been widely adopted as a suitable tool to confirm
the chaotic behavior in fractional-order dynamical systems [26,33,40] because it is binary (minimizing
issues of distinguishing small positive numbers from zero); the nature of the vector field, as well
as its dimensionality, does not pose practical limitations; and it does not suffer from the difficulties
associated with phase space reconstruction.

In this manner, the “0–1 test” is applied directly to the time series data of the fractional-order
system (15). Since the test does not require phase space reconstruction, the dimension and origin
of the system (15) are irrelevant. Let us consider a set of discrete data φ(n) with n = 1, 2, . . . , N,
representing a one-dimensional observable dataset obtained from the underlying dynamics of the
system (15). For c ∈ (0, π), we compute the translation variables p1(n) = ∑n

j=1 φ(j) cos(jc), and
p2(n) = ∑n

j=1 φ(j) sin(jc). Next, the diffusive or non-diffusive behavior of p1 and p2 is obtained by the mean

square displacement M(n) = limN→∞
1
N ∑N

j=1
(
[p1(j + n)− p1(j)]2 + [p2(j + n)− p2(j)]2

)
, for n� N.

Finally, the asymptotic growth rate K of M(n) is given by

K = lim
n→∞

log M(n)
log n

. (21)

When M(n) is bounded, the dynamics of the system (15) evolves in a periodic or quasi-periodic
behavior. On the other hand, a chaotic behavior is detected if M(n) grows linearly, similar to
a Brownian motion. Moreover, a quantitative measure of the dynamics of the system (15) is given by K.
For K close to 1, a chaotic behavior is observed, whereas for K close to 0, a regular behavior is obtained.

Detecting Chaos in the Proposed Fractional-Order System

In order to determine the chaotic and regular behaviors in the fractional-order system (15),
we apply the “0–1 test” to the time series data obtained from the different scenarios in Section 3.
The time series data were obtained by the ABM scheme with a time-step size h = 0.01.

Case 1: Self-excited attractor: When q = 0.93 and a = −1, the translation components (p1, q1)

are as shown in Figure 10a. The unbounded behavior points out that the dynamics of the system (15)
with unstable equilibria is chaotic. Also, the asymptotic growth rate K approaches one, with a value
K = 0.9988, indicating the presence of chaotic dynamics. This result agrees with the self-excited chaotic
attractor shown in Figure 1.

Case 2: Hidden chaotic attractor: When q = 0.97 and a = 0.35, a hidden chaotic attractor is
localized, as shown by the phase portraits in Figure 4. In this case, the asymptotic growth rate of
the time series of the system (15) with no-equilibrium is K = 0.9985. Additionally, the translation
components (p1, p2) are shown in Figure 10b. The Brownian-like motion indicates chaotic behavior.

Case 3: Coexistence of hidden attractors: When q = 0.996, a = 0.35, and initial conditions [1, 1, 1]T ,
we localize a hidden chaotic attractor, as shown in Figure 7. By applying the “0–1 test”, K = 0.9975.
Besides, the translation components (p1, p2), shown in Figure 11a, behave as Brownian-like motion.
When the initial conditions are chosen as [0, 75,−50]T , and the parameters a, q maintain the same value,
the translation components (p1, p2) are now bounded, as shown in Figure 11b. Besides, the asymptotic
growth rate is K = 0.0364. Therefore, the hidden attractor is periodic.
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From Case 1 to Case 3, the “0–1 test” proved that three different dynamics can arise in the
fractional-order system (15), i.e., a self-excited chaotic attractor, a hidden chaotic attractor, and the
coexistence of hidden attractors.
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Figure 10. Dynamics of the translation components (p1, p2) of the fractional-order system (15):
(a) Self-excited chaotic attractor (q = 0.93, a = −1) with an asymptotic growth rate K = 0.9988;
(b) hidden chaotic attractor (q = 0.97, a = 0.35), with K = 0.9985.
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Figure 11. Dynamics of the translation components (p1, p2) of the fractional-order system (15):
(a) Coexisting hidden chaotic attractor (q = 0.996, a = 0.35, (x, y, z) = (1, 1, 1)) with an asymptotic
growth rate K = 0.9975; (b) coexisting hidden periodic attractor (q = 0.996, a = 0.35,
(x, y, z) = (0, 75,−50) with K = 0.0364.

5. Spectral Entropy Analysis

Complexity measures are an important way to characterize the complex behavior of a chaotic
system. In information security, the complexity can reflect the security of a system [32]. Currently,
there are several methods to measure the complexity of a time series [70]. In this sense, the complexity
of chaotic sequences can be divided into behavior complexity and structural complexity. The former
measures the size of the probability of a new pattern for a short-time window, while the latter is
used to measure the complexity of a sequence by its frequency characteristic and energy spectrum
in the transformation domain. Compared with the behavior complexity, the structural complexity
has a global statistical significance, because it focuses on analyzing the energy characteristic based on
all but the local sequence [70]. At present, the algorithms to evaluate structural complexity include
spectral entropy (SE) and C0 entropy.

Herein, we choose the spectral entropy algorithm to calculate the corresponding Shannon entropy
value based on the Fourier transformation of the time series of the fractional-order system (15). By removing
the direct-current, the steps are as follows. Given the time series {xN(n), n = 0, 1, 2, . . . , N− 1} of
the system (15) with length N, let x(n) = x(n) − x̄, where x̄ is the mean value of the time series,
x̄ = 1

N ∑N−1
n=0 x(n). After that, the discrete Fourier transform (DFT) for the sequence x(n) is computed

with X(k) = ∑N−1
n=0 x(n)e−j2πnk/N = ∑N−1

n=0 x(n)Wnk
N , where k = 0, 1, 2, . . . , N− 1. Next, the relative power
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spectrum is derived with Pk =
|X(k)|2

∑N/2−1
k=0 |X(k)|2

. By using x(n), X(k), and Pk, the spectral entropy of the time

series of the system (15) for the scenarios in Section 3 can be determined by

SE =
∑N/2−1

k=0 |Pk ln Pk|
ln(N/2)

, (22)

where ln(N/2) is the entropy of a completely random signal.

5.1. Structural Complexity of the New Fractional-Order Chaotic System

The structural complexity of the self-excited and hidden attractors generated by the fractional-
order system (15) is analyzed by Equation (22). The SE is computed from the time series x(n) of
the system (15) with length N = 4.5× 104. Figure 12a shows the SE for the case of the self-excited
attractor, whereas Figure 12b displays the SE of the hidden attractor. The complexity of the self-excited
attractor is almost constant in the interval q ∈ [0.9, 1]. On the other hand, the SE of the hidden attractor,
as a function of fractional order, presents regions where the complexity is close to SE = 0.6, but other
regions have a low SE. Therefore, we must be aware of the selected fractional order in the hidden
attractor in order to have a relatively high structural complexity.
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Figure 12. Spectral entropy versus fractional-order q for the system (15): (a) Structural complexity of
the self-excited attractor in Figure 1 (a = −1); (b) structural complexity of the hidden chaotic attractor
in Figure 4 (a = 0.35).

5.2. Design of a PRNG Using Hidden Attractors

By considering the results of the structural complexity, we select the hidden attractor of the
system (15) to design a pseudo-random number generator (PRNG). More specifically, the chaotic
signals obtained from the system (15) with a = 0.35 and q = 0.97 are used to generate a bitstream
using the approach in [33,71]. In this manner, the chaotic signal x(t) of the system (15) is sampled
randomly to get samples γi with a suitable sample space. A ceil function is required to convert the
real value into an integer value. Next, from each sampled value, we obtain ge(o) of 4-bit resolution
composed of the four least-significant bits. As a post-processing operation, the output bits g(o) are
obtained XORing two consecutive ge(o).

The performance of the PRNG designed with the hidden dynamics is characterized by using the
NIST SP 800-22 battery of statistical tests [72]. By selecting a confidence level α = 0.01, the p-values are
determined for sequences of 1 Mbit. As is well known, a p-value ≥ 0.01 means that the sequence is
considered to be random with a confidence of 99%. Table 2 summarizes the results. As can be seen,
the resulting PRNG using the hidden attractor of the system (15) satisfies all statistical tests.
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Table 2. Results of NIST statistical tests for the bit sequences based on the system (15) when it presents
a hidden chaotic attractor.

Statistical Test p-Value Results

Frequency 0.654721 success
Block Frequency 0.420199 success
Cusum-Forward 0.600222 success
Cusum-Reverse 0.446686 success
Runs 0.220773 success
Long Runs of Ones 0.012522 success
Rank 0.254592 success
Spectral DFT 0.538167 success
Non-Overlapping Templates 0.615839 success
Overlapping Templates 0.102065 success
Universal 0.830304 success
Approximate Entropy 0.635119 success
Random Excursions 0.407574 success
Random Excursions Variant 0.444982 success
Linear Complexity 0.634990 success
Serial 0.301388 success

6. Conclusions

In this paper, a fractional-order dynamical system with different families of hidden and
self-excited attractors is introduced. As a function of only one parameter, the fractional-order system
can be defined without equilibrium points, with nonhyperbolic equilibria, and with hyperbolic
equilibria. A hidden chaotic attractor was identified in the proposed fractional-order system when
it has no-equilibrium points. Additionally, it was found that two different attractors coexist for
a determined fractional order, indicating multistability. Not only hidden dynamics were generated
by the new system, but also two distinct self-excited chaotic attractors were obtained. Lyapunov
exponents and the Brownian-like motion approach demonstrated the chaotic behavior of the system
for each scenario. Finally, the structural complexity of the hidden and self-excited dynamics were
evaluated using the spectral entropy. As an application, a PRNG with a suitable performance was
designed with the time series of the hidden chaotic attractor.

As consequence, a contribution to this new phenomenon and little-explored area is the description
of a fractional-order chaotic no-equilibrium system, along with the coexistence of hidden attractors.
Such nonlinear systems without equilibrium and with multistability are appropriate for practical
applications. Moreover, the fractional order is an extra parameter that permits the study of dynamical
behaviors with more accuracy.

Author Contributions: Conceptualization, J.M.M.-P.; Formal analysis, J.M.M.-P., E.Z.-S. and C.V.; Funding
acquisition, J.M.M.-P.; Methodology, J.M.M.-P.; Software, E.Z.-S., C.V., S.J. and K.R.; Validation, C.V., S.J. and J.K.;
Visualization, J.K. and K.R.; Writing—original draft, J.M.M.-P., E.Z.-S., C.V. and S.J.

Funding: This research was funded by Consejo Nacional de Ciencia y Tecnología (CONACyT/MEXICO) grant
number 258880.

Acknowledgments: J.M. Muñoz-Pacheco thanks CONACyT/MEXICO for the financial support to through Project
No. 258880 (Proyecto Apoyado por el Fondo Sectorial de Investigación para la Educación). E. Zambrano-Serrano
acknowledges SEP-PRODEP/MEXICO (Grant No. 511-6/18-1242) for the financial support to complete a postdoctoral
visit to the research group “Sistemas Fotónicos y Nanoóptica” at BUAP.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Leonov, G.A.; Kuznetsov, N.V. Hidden attractors in dynamical systems. From hidden oscillations in
Hilbert-Kolmogorov, Aizerman, and Kalman problems to hidden chaotic attractor in chua circuits. Int. J.
Bifurc. Chaos 2013, 23, 1330002. [CrossRef]

http://dx.doi.org/10.1142/S0218127413300024


Entropy 2018, 20, 564 16 of 18

2. Lorenz, E.N. Deterministic nonperiodic flow. J. Atmos. Sci. 1963, 20, 130–141. [CrossRef]
3. Chen, G.R.; Ueta, T. Yet another chaotic attractor. Int. J. Bifurc. Chaos 1999, 9, 1465–1466. [CrossRef]
4. Rössler, O. An equation for continuous chaos. Phys. Lett. A 1976, 57, 397–398. [CrossRef]
5. Lü, J.; Chen, G.R. Generating multiscroll chaotic attractors: Theories, methods and applications. Int. J.

Bifurc. Chaos 2006, 16, 775–858. [CrossRef]
6. Leonov, G.A.; Kuznetsov, N.V.; Vagaitsev, V.I. Localization of hidden Chua’s attractors. Phys. Lett. A 2011,

375, 2230–2233. [CrossRef]
7. Jafari, S.; Sprott, J.C. Simple chaotic flows with a line equilibrium. Chaos Solitons Fractals 2013, 57, 79–84.

[CrossRef]
8. Dudkowski, D.; Jafari, S.; Kapitaniak, T.; Kuznetsov, N.V.; Leonov, G.A.; Prasad, A. Hidden attractors in

dynamical systems. Phys. Rep. 2016, 637, 1–50. [CrossRef]
9. Leonov, G.A.; Kuznetsov, N.V.; Mokaev, T.N. Homoclinic orbits, and self-excited and hidden attractors

in a Lorenz-like system describing convective fluid motion. Eur. Phys. J. Spec. Top. 2015, 224, 1421–1458.
[CrossRef]

10. Andrievsky, B.R.; Kuznetsov, N.V.; Leonov, G.A.; Pogromsky, A.Y. Hidden oscillations in aircraft flight
control system with input saturation. IFAC Proc. Vol. 2013, 46, 75–79. [CrossRef]

11. Leonov, G.A.; Kuznetsov, N.V.; Kiselev, M.A.; Solovyeva, E.P.; Zaretskiy, A.M. Hidden oscillations in
mathematical model of drilling system actuated by induction motor with a wound rotor. Nonlinear Dyn.
2014, 77, 277–288. [CrossRef]

12. Yang, T. A Survey of Chaotic Secure Communication Systems. Int. J. Comput. Cognit. 2004, 2, 81–130.
13. Molaie, M.; Jafari, S.; Sprott, J.C.; Golpayegani, S.M.R.H. Simple chaotic flow with one stable equilibrium.

Int. J. Bifurc. Chaos 2013, 23, 1350188. [CrossRef]
14. Kingni, S.; Jafari, S.; Pham, V.-T.; Wuafo, P. Constructing and analyzing of a unique three-dimensional chaotic

autonomous system exhibiting three families of hidden attractors. Math. Comput. Simul. 2017, 132, 172–182.
[CrossRef]

15. Lai, Q.; Akgul, A.; Li, C.; Xu, G.; Cavusoglu, Ü. A new chaotic system with multiple attractors: Dynamics
analysis, circuit realization and s-box design. Entropy 2018, 20, 12. [CrossRef]

16. Jafari, S.; Sprott, J.C.; Golpayegani, S.M.R.H. Elementary quadratic chaotic flows with no equilibria.
Phys. Lett. A 2013, 377, 699–702. [CrossRef]

17. Escalante-Gonzalez, R.J.; Campos-Canton, E.; Nicol, M. Generation of multi-scroll attractors without
equilibria via piecewise linear systems. Chaos 2017, 27, 053109. [CrossRef] [PubMed]

18. Pham, V.-T.; Volos, C.; Jafari, S.; Kapitaniak, T. Coexistence of hidden chaotic attractors in a novel
no-equilibrium system. Nonlinear Dyn. 2017, 87, 2001–2010. [CrossRef]

19. Messias, M.; Reinol, A.C. On the formation of hidden chaotic attractors and nested invariant tori in the
Sprott A system. Nonlinear Dyn. 2017, 88, 807–821. [CrossRef]

20. Pham. V.-T.; Jafari, S.; Volos, C.; Gotthan, T.; Wang, X.; Hoang, D.V. A chaotic system with rounded square
equilibrium and with no-equilibrium. Optik 2017, 130, 365–371.

21. Jafari, S.; Sprott, J.; Molaie, M. A simple chaotic flow with a plane of equilibria. Int. J. Bifurc. Chaos 2016,
26, 1650098. [CrossRef]

22. Jafari, M.A.; Mliki, E.; Akgul, A.; Pham, V.-T.; Kingni, S.T.; Wang, X.; Jafari, S. Chameleon: The most hidden
chaotic flow. Nonlinear Dyn. 2017, 88, 2303–2317. [CrossRef]

23. Wang, C.; Ding, Q. A new two-dimensional map with hidden attractors. Entropy 2018, 20, 322. [CrossRef]
24. Gotthans, T.; Petrzela, J. New class of chaotic systems with circular equilibrium. Nonlinear Dyn. 2015, 81,

1143–1149. [CrossRef]
25. Sun, H.; Zhang, Y.; Baleanu, D.; Chen, W.; Chen, Y. A new collection of real world applications of fractional

calculus in science and engineering. Commun. Nonlinear Sci. Numer. Simul. 2018, 64, 213–231. [CrossRef]
26. Tenreiro Machado, J.A.; Lopes, A.M. Complex and Fractional Dynamics. Entropy 2017, 19, 62. [CrossRef]
27. Chen, W.C. Nonlinear dynamics and chaos in a fractional-order financial system. Chaos Soliton Fractals

2008, 36, 1305–1314. [CrossRef]
28. Machado, J.; Mata, M.E.; Lopes, A.M. Fractional State Space Analysis of Economic Systems. Entropy 2015,

17, 5402–5421. [CrossRef]
29. Zambrano-Serrano, E.; Campos-Canton, E.; Munoz-Pacheco, J.M. Strange attractors generated by a fractional

order switching system and its topological horseshoe. Nonlinear Dyn. 2016, 83, 1629–1641. [CrossRef]

http://dx.doi.org/10.1175/1520-0469(1963)020<0130:DNF>2.0.CO;2
http://dx.doi.org/10.1142/S0218127499001024
http://dx.doi.org/10.1016/0375-9601(76)90101-8
http://dx.doi.org/10.1142/S0218127406015179
http://dx.doi.org/10.1016/j.physleta.2011.04.037
http://dx.doi.org/10.1016/j.chaos.2013.08.018
http://dx.doi.org/10.1016/j.physrep.2016.05.002
http://dx.doi.org/10.1140/epjst/e2015-02470-3
http://dx.doi.org/10.3182/20130703-3-FR-4039.00026
http://dx.doi.org/10.1007/s11071-014-1292-6
http://dx.doi.org/10.1142/S0218127413501885
http://dx.doi.org/10.1016/j.matcom.2016.06.010
http://dx.doi.org/10.3390/e20010012
http://dx.doi.org/10.1016/j.physleta.2013.01.009
http://dx.doi.org/10.1063/1.4983523
http://www.ncbi.nlm.nih.gov/pubmed/28576098
http://dx.doi.org/10.1007/s11071-016-3170-x
http://dx.doi.org/10.1007/s11071-016-3277-0
http://dx.doi.org/10.1142/S021812741650098X
http://dx.doi.org/10.1007/s11071-017-3378-4
http://dx.doi.org/10.3390/e20050322
http://dx.doi.org/10.1007/s11071-015-2056-7
http://dx.doi.org/10.1016/j.cnsns.2018.04.019
http://dx.doi.org/10.3390/e19020062
http://dx.doi.org/10.1016/j.chaos.2006.07.051
http://dx.doi.org/10.3390/e17085402
http://dx.doi.org/10.1007/s11071-015-2436-z


Entropy 2018, 20, 564 17 of 18

30. Petras, I. Fractional-Order Nonlinear Systems, Modeling, Analysis and Simulation; Higher Education Press:
Beijing, China; Springer: Berlin, Germany, 2011.

31. Alkahtani, B.S.T.; Atangana, A. Chaos on the Vallis Model for El Niño with Fractional Operators. Entropy
2016, 18, 100. [CrossRef]

32. He, S.; Sun, K.; Wang, H. Complexity Analysis and DSP Implementation of the Fractional-Order Lorenz
Hyperchaotic System. Entropy 2015, 17, 8299–8311. [CrossRef]

33. Zambrano-Serrano, E.; Munoz-Pacheco, J.M.; Campos-Canton, E. Chaos generation in fractional-order
switched systems and its digital implementation. Int. J. Electron. Commun. (AEÜ) 2017, 79, 43–52. [CrossRef]

34. Tacha, O.I.; Munoz-Pacheco, J.M.; Zambrano-Serrano, E.; Stouboulos, I.N.; Pham, V.-T. Determining the
chaotic behavior in a fractional-order finance system with negative parameters. Nonlinear Dyn. 2018, in press.
[CrossRef]

35. Kingni, S.T.; Jafari, S.; Simo, H.; Woafo, P. Three-dimensional chaotic autonomous system with only one stable
equilibrium: Analysis, circuit design, parameter estimation, control, synchronization and its fractional-order
form. Eur. Phys. J. Plus 2014, 129, 76. [CrossRef]

36. Wang, X.; Ouannas, A.; Pham, V.-T.; Abdolmohammadi, H.R. A fractional-order form of a system with stable
equilibria and its synchronization. Adv. Differ. Equ. 2018, 20, 1–13.

37. Pham, V.-T.; Ouannas, A.; Volos, C.; Kapitaniak, T. A simple fractional-order chaotic system without
equilibrium and its synchronization. Int. J. Electron. Commun. (AEÜ) 2018, 86, 69–76. [CrossRef]

38. Pham, V.-T.; Kingni, S.T.; Volos, C.; Jafari, S.; Kapitaniak, T. A simple three-dimensional fractional-order
chaotic system without equilibrium: Dynamics, circuitry implementation, chaos control and synchronization.
Int. J. Electron. Commun. (AEÜ) 2017, 78, 220–227. [CrossRef]

39. Cafagna, D.; Grassi, G. Elegant chaos in fractional-order system without equilibria. Math. Probl. Eng. 2013,
2013, 380436. [CrossRef]

40. Cafagna, D.; Grassi, G. Chaos in a new fractional-order system without equilibrium points. Commun. Nonlinear
Sci. Numer. Simul. 2014, 19, 2919–2927. [CrossRef]

41. Kingni, S.T.; Pham, V.T.; Jafari, S.; Kol, G.R.; Woafo, P. Three-dimensional chaotic autonomous system
with a circular equilibrium: Analysis, circuit implementation and Its fractional-order form. Circuits Syst.
Signal Process 2016, 35, 1933–1948. [CrossRef]

42. Kingni, S.T.; Pham, V.-T.; Jafari, S. A chaotic system with an infinite number of equilibrium points located on
a line and on a hyperbola and its fractional-order form. Chaos Soliton Fractals 2017, 99, 209–218. [CrossRef]

43. Hoang, D.V.; Kingni, S.T.; Pham, V.T. A No-equilibrium hyperchaotic system and its fractional-order form.
Math. Probl. Eng. 2017, 2017, 3927184. [CrossRef]

44. Volos, C.; Pham, V.T.; Zambrano-Serrano, E.; Munoz-Pacheco, J.M.; Vaidyanathan, S.; Tlelo-Cuautle, E.
Analysis of a 4-D hyperchaotic fractional-order memristive system with hidden attractor. In Advances in
Memristors, Memristive Devices and Systems; Vaidyanathan, S., Volos, C., Eds.; Springer: Cham, Switzerland,
2017; ISBN 978-3-31-951723-0.

45. Rajagopal, K.; Akgul, A.; Jafari, S.; Karthikeyan, A.; Koyuncu, I. Chaotic chameleon: Dynamic analyses,
circuit implementation, FPGA design and fractional-order form with basic analyses. Chaos Soliton Fractals
2017, 103, 476–487. [CrossRef]

46. Sprott, J.C. Elegant Chaos: Algebraically Simple Chaotic Flows; World Scientific: Singapore, 2010.
47. Sprott, J.C. A proposed standard for the publication a new chaotic systems. Int. J. Bifurc. Chaos 2011, 21,

2391–2394. [CrossRef]
48. Caputo, M. Linear Models of Dissipation whose Q is almost Frequency Independent-II. Geophys. J. 1967,

13, 529–539. [CrossRef]
49. Deng, W.; Lü, J. Design of multidirectional multiscroll chaotic attractors based on fractional differential

systems via switching control. Chaos 2006, 16, 043120. [CrossRef] [PubMed]
50. Diethelm, K.; Ford, N.J.; Freed, A.D. Detailed error analysis for a fractional Adams method. Numer. Algorithms

2004, 36, 31–52. [CrossRef]
51. Diethelm, K.; Ford, N.J. Analysis of fractional differential equations. J. Math. Anal. Appl. 2002, 265, 229–248.

[CrossRef]
52. Garrapa, R. Numerical solution of fractional differential equations: A survey and a software tutorial.

Mathemathics 2017, 2, 16. [CrossRef]

http://dx.doi.org/10.3390/e18040100
http://dx.doi.org/10.3390/e17127882
http://dx.doi.org/10.1016/j.aeue.2017.05.032
http://dx.doi.org/10.1007/s11071-018-4425-5
http://dx.doi.org/10.1140/epjp/i2014-14076-4
http://dx.doi.org/10.1016/j.aeue.2018.01.023
http://dx.doi.org/10.1016/j.aeue.2017.04.012
http://dx.doi.org/10.1155/2013/380436
http://dx.doi.org/10.1016/j.cnsns.2014.02.017
http://dx.doi.org/10.1007/s00034-016-0259-x
http://dx.doi.org/10.1016/j.chaos.2017.04.011
http://dx.doi.org/10.1155/2017/3927184
http://dx.doi.org/10.1016/j.chaos.2017.07.007
http://dx.doi.org/10.1142/S021812741103009X
http://dx.doi.org/10.1111/j.1365-246X.1967.tb02303.x
http://dx.doi.org/10.1063/1.2401061
http://www.ncbi.nlm.nih.gov/pubmed/17199398
http://dx.doi.org/10.1023/B:NUMA.0000027736.85078.be
http://dx.doi.org/10.1006/jmaa.2000.7194
http://dx.doi.org/10.3390/math6020016


Entropy 2018, 20, 564 18 of 18

53. Odibat, Z.; Corson, N.; Aziz-Alaoui, M.A.; Alsaedi, A. Chaos in fractional order cubic Chua system and
synchronization. Int. J. Bifurc. Chaos 2017, 27, 1750161. [CrossRef]

54. Ahmed, E.; El-Sayed, A.M.A.; El-Saka, H.A.A. Equilibrium points, stability and numerical solutions of
fractional-order predator-prey and rabies models. J. Math. Anal. Appl. 2007, 325, 542–553. [CrossRef]

55. Tavazoei, M.S.; Haeri, M. Unreliability of frequency-domain approximation in recognising chaos in
fractional-order systems. IET Signal Proc. 2007, 1, 171–181. [CrossRef]

56. Tavazoei, M.S.; Haeri, M. A necessary condition for double scroll attractor existence in fractional-order
systems. Phys. Lett. A 2007, 367, 102–113. [CrossRef]

57. Danca, M. Hidden chaotic attractors in fractional-order systems. Nonlinear Dyn. 2017, 89, 577–586. [CrossRef]
58. Tavazoei, M.S.; Haeri, M. Chaotic attractors in incommensurate fractional order systems. Phys. D 2008,

237, 2628–2637. [CrossRef]
59. Munoz-Pacheco, J.M.; Zambrano-Serrano, E.; Volos, C.; Tacha, O.I.; Stouboulos, I.N.; Pham, V.-T. A fractional

order chaotic system with a 3D grid of variable attractors. Chaos Soliton Fractals 2018, 113, 69–78. [CrossRef]
60. Wolf, A.; Swift, J.B.; Swinney, H.L.; Vastano, J.A. Determining Lyapunov exponents from a time series.

Physica D 1985, 16, 285–317. [CrossRef]
61. Ellner, S.; Gallant, A.R.; McCaffrey, D.; Nychka, D. Convergence rates and data requirements for

Jacobian-based estimates of Lyapunov exponents from data. Phys. Lett. A 1991, 153, 357–363. [CrossRef]
62. Maus, A.; Sprott, J.C. Evaluating lyapunov exponent spectra with neural networks. Chaos Solitons Fractals

2013, 51, 13–21. [CrossRef]
63. Wei, Z.; Sprott, J.C.; Chen, H. Elementary quadratic chaotic flows with a single non-hyperbolic equilibrium.

Phys. Lett. A 2015, 379, 2184–2187. [CrossRef]
64. Sprott, J.C. Strange attractors with various equilibrium types. Eur. Phys. J. Spec. Top. 2015, 224, 1409–1419.

[CrossRef]
65. Petras, I. Comments on “Coexistence of hidden chaotic attractors in a novel no-equilibrium system”

(Nonlinear Dyn, doi:10.1007/s11071-016-3170-x). Nonlinear Dyn. 2017, 90, 749–754. [CrossRef] [PubMed]
66. Sprott, J.C.; Xiong, A. Classifying and quantifying basins of attraction. Chaos 2015, 25, 083101. [CrossRef]

[PubMed]
67. Gottwald, G.A.; Melbourne, I. On the implementation of the 0–1 test for chaos. SIAM J. Appl. Dyn. Syst.

2009, 8, 129–145. [CrossRef]
68. Gottwald, G.A.; Melbourne, I. A new test for chaos in deterministic systems. Proc. R. Soc. Lond. Ser. A Math.

Phys. Sci. 2004, 460, 603–611. [CrossRef]
69. Gottwald, G.A.; Melbourne, I. On the validity of the 0–1 test for chaos. Nonlinearity 2009, 22, 1367–1382.

[CrossRef]
70. Sun, K. Chaotic Secure Communication; Walter de Gruyter GmbH: Berlin, Germany; Boston, MA, USA, 2016.
71. Wang, Q.; Yu, S.; Li, C.; Lü, J.; Fang, X.; Guyeux, C.; Bahi, J.M. Theoretical design and FPGA-based

implementation of higher-dimensional digital chaotic systems. IEEE Trans. Circuits Syst. I 2016, 63, 401–412.
[CrossRef]

72. Rukhin, A.; Soto, J.; Nechvatal, J.; Smid, M.; Barker, E. A Statistical Test Suite for Random and Pseudorandom
Number Generators for Cryptographic Applications; Booz-Allen and Hamilton Inc.: Mclean, VA, USA, 2010.

c© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1142/S0218127417501619
http://dx.doi.org/10.1016/j.jmaa.2006.01.087
http://dx.doi.org/10.1049/iet-spr:20070053
http://dx.doi.org/10.1016/j.physleta.2007.05.081
http://dx.doi.org/10.1007/s11071-017-3472-7
http://dx.doi.org/10.1016/j.physd.2008.03.037
http://dx.doi.org/10.1016/j.chaos.2018.05.015
http://dx.doi.org/10.1016/0167-2789(85)90011-9
http://dx.doi.org/10.1016/0375-9601(91)90958-B
http://dx.doi.org/10.1016/j.chaos.2013.03.001
http://dx.doi.org/10.1016/j.physleta.2015.06.040
http://dx.doi.org/10.1140/epjst/e2015-02469-8
http://dx.doi.org/10.1007/s11071-017-3671-2
http://www.ncbi.nlm.nih.gov/pubmed/29187777
http://dx.doi.org/10.1063/1.4927643
http://www.ncbi.nlm.nih.gov/pubmed/26328552
http://dx.doi.org/10.1137/080718851
http://dx.doi.org/10.1098/rspa.2003.1183
http://dx.doi.org/10.1088/0951-7715/22/6/006
http://dx.doi.org/10.1109/TCSI.2016.2515398
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Mathematical Background
	Predictor–Corrector Scheme
	Stability of Fractional-Order Systems

	A New Three-Dimensional Fractional-Order Chaotic System
	Self-Excited Chaotic Attractor: Spiral Saddle Type of Equilibrium Points
	Degenerate Case: Self-Excited Chaotic Attractor with Nonhyperbolic Equilibria
	Hidden Chaotic Attractor Localization in the Fractional-Order System without Equilibria
	Coexistence of Hidden Attractors Regimes in the Fractional-Order System without Equilibria
	Mechanism of the Different Dynamics

	Test 0–1 for Chaos
	Spectral Entropy Analysis
	Structural Complexity of the New Fractional-Order Chaotic System
	Design of a PRNG Using Hidden Attractors

	Conclusions
	References

