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Abstract
An aptamer is a short oligonucleotide chain that can specifically recognize targeting 
analytes. Due to its high specificity, low cost, and good biocompatibility, aptamers as 
the targeting elements of biosensors have been applied widely in non-invasive tumor 
imaging and treatment in situ to replace traditional methods. In this review, we will 
summarize recent advances in using aptamer-based biosensors in tumor diagnosis. 
After a brief introduction of the advantage of aptamers compared with enzyme sen-
sors and immune sensors, the different sensing designs and mechanisms based on 
3 signal transduction modes will be reviewed to cover different kinds of analytical 
methods, including: electrochemistry analysis, colorimetry analysis, and fluorescence 
analysis. Finally, the prospective advantages of aptamer-based biosensors in tumor 
theranostics and post-treatment monitoring are also evaluated in this review.
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1  | INTRODUC TION

The latest statistics from the American Cancer Society found that the 
average number of people dying from cancer in the United States each 
year is as high as 600 000.1 Fear of cancer is a common phenomenon 
at this stage. The limitation of effective treatment and delay in diag-
nosis are the main reasons for the high incidence of cancer mortality.2 
In view of this, timely and accurate diagnosis of early cancer is par-
ticularly important for improving the cure rate of cancer. Currently, 
common cancer diagnosis methods include tissue biopsy, proteom-
ics, tumor imaging, and biomarker detection.3 Compared with the 
first 3, biomarker detection is more common in clinical screening 
and diagnosis due to its characteristics of less invasive damage and 
lower cost. However, the detection of tumor markers at this stage 
has low sensitivity and cannot be used for low-level concentration 
screening in the early stages of cancer, resulting in a certain missed 
diagnosis rate. Designing a low detection limit and high affinity de-
tection strategy is particularly important for the detection of early 
cancer marker proteins.4 Recently, due to the application of various 
signal amplification technologies in biosensors, such as enzyme catal-
ysis, nucleic acid chain reaction, biotin-streptavidin, click chemistry, 
cascade reaction, nanomaterials, etc., biosensors have high reproduc-
ibility and sensitivity to effectively circumvent the limitations of tradi-
tional methods.5 With a very low detection limit, the biological signal 
is converted to a visual signal that can be used to measure the level 
of specific proteins on or secreted by tumor cells. The biosensor was 
defined as "an independent integrated device."6 Usually, they mainly 
include 3 major components: biometric identification component, 
signal conversion component, and information reading component. 
Most of the biological recognition elements are macromolecules such 
as antibodies, aptamers, and enzymes, which have the characteristics 
of specifically recognizing target analytes to facilitate quantitative or 
semi-quantitative analysis of a certain target by biosensors.7

At present, the recognition element of the most applicable 
aptasensor is a short oligonucleotide chain separated from a ran-
dom library in vitro by SELEX,8,9 using different screening strate-
gies and manipulation of the selection conditions to closely control 
the aptamer-target binding affinity and specificity.10 Generally, the 
size of the aptamer sequence can be ~30-70 nucleotides in average 
length, folded into a three-dimensional structure, and connected to 
specific biological elements through specificity and affinity, such as 
metal ions, tumor marker proteins, small molecules, or even viruses, 
circulating tumor cells, etc.11-15 For example, Li et al used aptamers 
and nanomaterials to assemble fluorescent aptasensors to detect 

tumor-associated proteins on exosomes derived from prostate can-
cer and breast cancer, and successfully used them in the clinical dif-
ferentiation of healthy specimens from tumor specimens with the 
advantage of high sensitivity.16 Based on the characteristics of rapid 
response and portability, biosensors using enzymes as identification 
elements have been used for immediate detection of tumor patients, 
such as detecting circulating tumor cells, prostate antigen, etc.17,18 
However, enzymes are sensitive to temperature and pH, having a 
short shelf life. For antibody sensors, the generation and character-
ization of new antibodies are time consuming and difficult,19,20 such 
as induction by target preparations, animal immunity, antibody puri-
fication, and other operations are complicated and require time and 
material costs.21-23 For some small molecules and proteins with low 
immunogenicity, it is also difficult for newly generated antibodies 
to control their binding properties and bind to similar structures to 
cause non-target interference,24 and are easily affected by immuno-
suppressive agents.25 Different from enzyme and antibody sensors, 
the most notable feature of aptamers is their ease of modification 
and low immunogenicity. The specific aptamer sequence can be syn-
thesized in vitro with low cost, reproducible mass production, and 
is easily modified by nanomaterials for tumor marker analysis and 
treatment. In addition, they can tolerate various pH and salt concen-
trations, and have good thermal stability.9,26 These features make 
aptamers an ideal recognition element for biosensors for tumor 
monitoring instead of enzymes or antibodies.

According to the signal conversion elements of different types 
of aptasensors, biological information is usually converted to fluo-
rescent signals, electrochemical signals or color changes,27-29 which 
can be divided into fluorescence, electrochemistry, and colorimetric 
aptasensors.8-10 These changed signals are read by simple instru-
ments, and the result can be visualized. Based on portable design, 
good signal theory, and compatibility with biochemical components, 
the most traditional electrochemistry is still the most commonly used 
in the assembly of aptasensors. Compared with other transducers, 
the advantages of electrochemical aptasensors are miniaturization 
and automation, insensitivity to turbidity or quenching effects, and 
almost completely avoids complicated sample preparation. Moreover, 
electrochemical aptasensors have lower detection limits than other 
types of sensors. The detection limit (particle number/mL) of most 
optical aptasensors is mostly 105-106, while the detection limit of 
most electrochemical aptasensors can reach 103-104.3 Currently, the 
transduction mediums of electrochemical sensors usually affect the 
diffusion efficiency, electron transfer, and the final detected signal. 
Finding suitable electroactive substances is particularly important for 
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the design of electrochemical sensors.30 Due to the characteristics 
of ease of use, accessibility, and instant detection, colorimetric apta-
sensors can be used to detect tumor markers by observing the color 
change of the solution by the naked eye. However, the colorimetric 
aptasensor has some limitations because it is easily affected by the 
color of the sample, making it difficult in the clinical diagnosis of high-
demand multi-target detection. Different from the first 2 sensors, the 
most significant advantage of the fluorescent aptasensor is that it can 
distinguish different wavelengths of visible light, used in multiple de-
tection in the form of a sensor array to simultaneously distinguish and 
even quantify a variety of tumor cells with extremely low detection 
limits. Based on the above 3 signal transduction modes of aptasen-
sors, this review summarizes the latest developments and current 
challenges of different detection strategies for electrochemical, col-
orimetric and fluorescent aptasensors, and evaluates the application 
trend of some types of aptasensors in the future combined with nano-
materials to realize the integration of tumor diagnosis and treatment.

2  | ELEC TROCHEMIC AL APTA SENSOR

Electrochemical aptasensors are currently the most widely used 
biosensors in tumor imaging, which was first proposed in 2004, and 

they can provide low-power and ultra-low detection limits of tar-
get analytes.31,32 Due to its high accuracy and good reproducibility, 
this type of sensor is often used as a minimally invasive device for 
POCT.33 Generally, in the electrochemical aptasensor, the aptamer 
is fixed on the electrode surface as a biological recognition element. 
Through the specific binding of the aptamer to the target, the ca-
pacitance change caused by binding of the analyte or the current or 
potential response generated by the oxidation and reduction reac-
tions on the electrode surface is evaluated. According to the type of 
response signal, it can be divided into ampere method, cyclic voltam-
metry, electrical impedance method, etc.34-36 This section discusses 
the design schemes of several common electrochemical aptasensors 
for tumor marker monitoring, including direct fixation, sandwich, 
and immobilization free.

2.1 | Direct immobilization

In most cases, the aptamer probe can be immobilized on the 
electrode surface to capture the target protein by electrostatic 
adsorption, covalent attachment, and affinity.37 Several electro-
chemical aptasensors based on direct induction of target have been 
developed, with paper, ion-exchangeable polymer membrane, and 

F I G U R E  1   A, Schematic illustration of aptamer direct immobilization electrochemical sensor for capturing target proteins. B, Schematic 
illustration of peroxidase-labeled aptamer sandwich electrochemical sensor for capturing tumor cells and converting into electrical signals. 
C, Schematic illustration of immobilization-free aptasensor based on MB-labeled dsDNA conformation
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high-load graphene oxide fixed on the surface of GCE to provide 
a conductive path,38 as shown in Figure 1A. Bharti et al used elec-
trodeposited gold-platinum bimetallic nanoparticles on the sur-
face of the CGO/FTO electrode for signal amplification, and used 
EDS-NHS to activate CGO, and then modified with streptomycin to 
further deposit biotin-labeled aptamers. After incubation with the 
breast cancer marker protein MUC1, the aptamer electrode binds to 
the target and the signal changes are measured by differential pulse 
voltammetry, which is concentration-dependent with MUC1.31

2.2 | Sandwich format

The design strategy of the sandwich electrochemical aptasen-
sor comes from the structure of the immunosensor, including 
antibody-aptamer sandwich, aptamer-antibody sandwich, and 
aptamer-aptamer sandwich sensing layer.39,40 Compared with the 
participation of a single aptamer, the sandwich form usually has 
higher selectivity. Signal aptamers often bind to redox markers 
such as Fc, MB, or peroxidase,30 as shown in Figure 1B. Shekari 
et al designed a sensor to deposit gold nanoparticles and graphene 
quantum dots on a graphene-nitrogen-modified GCE to obtain a 
GQD/AuNP/NG/GCE type structure. The CEA Apt I was fixed 
on the modified GCE. The amino-modified CEA Apt II was con-
nected to the heme-G-quadruplex via GA as a linker to produce 
Apt II/GA/DNAzyme. Through the sandwich mode, the Apt II /
GA/DNAzyme bioconjugate was captured by the CEA aptamer on 
the electrode. Hemin-G4 acts as a peroxidase to rapidly catalyze 
the electroreduction of hydrogen peroxide, and quantify CEA by 
differential pulse voltammetry.41

In addition, the sandwich format facilitates multiple amplification 
strategies such as a DNA walker for signal amplification. Ji et al built 
a DNA walker track by self-assembly of Fc-labeled anchored DNA 
and thrombin Apt I on the surface of the gold electrode. Thrombin 
Apt II and walking strand DNA were introduced into the gold elec-
trode through aptamer-target specific recognition, thereby starting 
the hybridization of DNA walker with anchored DNA. The DNA 
walker gradually cut the hybridized anchored DNA by cutting en-
donuclease to release multiple Fc molecules for signal amplification. 
The electrochemical signal produced by Fc decreased linearly with 
the log value of thrombin concentration in the range 10 pM to 100 
nM.42 Similarly, Cai et al43 built a signal amplification electrochemical 
aptasensor for detecting breast cancer cells through a free-running 
DNA walker.

2.3 | Immobilization free

For the above 2 types, the process of fixing the aptamer to the 
electrode surface is time consuming. The aptamer assembled on 
the electrode sometimes hinders the effective recognition be-
tween the target and the aptamer. Unlike the conventional strat-
egy of fixing aptamers on electrodes, in Figure  1C, this design 

strategy is usually to form a dsDNA conformation by complement-
ing the hybridized strand with MB or Fc-labeled aptamer. The 
dsDNA modified with electroactive substances is easily adsorbed 
by the electrode modified with specific nanomaterials, and then 
the electrical signal is turned on. When the target marker is pre-
sent, the aptamer preferentially binds to the target, the complex 
falls off, and the electrical signal is turned off. In the study by 
Wang et al, a thiolated complementary chain was used to hybrid-
ize with MB-labeled aptamer, adsorbed by the electrode modified 
to trigger the electrical signal. After the MB-aptamers recognized 
K562 circulating tumor cells, the Apt-CTC complex fell off from 
the electrode, causing the signal to turn off, and the detection limit 
reached 23 cells/mL.44 Due to the avoidance of complicated elec-
trode modification and identification probe fixation processes, as 
well as expensive labeling procedures, label-free homogeneous 
detection with high sensitivity and accuracy has gained popularity 
in the design of electrochemical aptasensor.

3  | COLORIMETRIC APTA SENSOR

Among various signal transduction modes, colorimetry is un-
doubtedly the simplest, most convenient, and intuitive detection 
method.45,46 This method can visually distinguish the color change 
by visual observation or the change of absorbance value to feedback 
the response of the target analyte, having the application prospect 
of instant diagnosis at the bedside when there is no complicated 
instrument.47,48

3.1 | AuNPs

At present, the most common AuNPs are used as transducers 
of colorimetric aptasensors in various studies.49 Due to the sur-
face plasmon resonance of gold nanoparticles, they have strong 
distance-dependent optical properties.50 Once the differently 
modified gold nanoparticles are close to each other, their absorp-
tion spectra will shift, and the scattering profile will change, even-
tually resulting in a change in the color and absorption spectra 
of the sample. The aggregation and redispersion of AuNPs regu-
late the color change of the solution and indicate whether there 
is a certain tumor marker in the sample,51,52 as shown in Figure 2. 
As gold nanoparticles are easily biofunctionalized and have good 
biological stability and spectral performance, Borghei et al used 2 
sets of single-stranded DNA probes to functionalize 2 sets of gold 
nanoparticles. Afterwards, the complementary aptamer AS1411 
was hybridized to the specific sites of the 2 sets of DNAs to in-
duce cross-linking and aggregation of the 2 sets of nanoparticles, 
and the solution was purple. When the NCL was present, the ap-
tamer AS1411 preferentially bound to the target protein NCL and 
then fell off from the DNA sequence. There were only 2 groups of 
unrelated DNA-AuNPs in the solution, which were red.52 Direct 
visual observation was used to distinguish MCF-7 breast cancer 
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cells that expressed high NCL from normal cells not expressing 
NCL, and the detection limit of this method was estimated to be 
~10 cells/mL, which gave sufficient sensitivity and selectivity. In 
addition, the operation was simpler than the more costly fluores-
cence and electrochemical measurements.53

3.2 | H2O2 oxidation

Another commonly used detection strategy is to simulate intrinsic 
enzymes,54 such as modifying nanozymes with aptamers to increase 
the activity of peroxidase-like enzymes, to enhance the oxidation of 

F I G U R E  2   Schematic illustration of the colorimetric aptasensor identifying tumor cells by AuNPs aggregation-inducing color change
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tetramethylaniline in the presence of H2O2 and present a strong blue 
color.55 When tumor cells with high expression of target markers are 
present, the aptamer preferentially binds to the target protein. After 
the target responsive structure changes, the nanozyme returns to 
the original lower peroxidase-like activity, thereby weakening the 
catalytic effect; the solution does not turn into blue significantly,54 
as shown in Figure 3. Compared with HRP, these nano-artificial en-
zymes such as AuNPs, Au@Fe3O4 NPs, ZnFeO reduced GO, and 
heme/G-quadruplex,56-59 due to their low cost and tolerance to 
pH and temperature, have been widely used in colorimetric sen-
sors to distinguish tumors. Xia et al used TMB and CD63 aptamer-
terminated single-walled carbon nanotubes s-SWCNTs as catalytic 
substrates and catalytic enzymes to detect serum exosomes in 
breast cancer patients.60 In view of this, they can be widely used in 
the rapid detection and discrimination of different cancers, by just 
changing the aptamer.61

4  | FLUORESCENT APTA SENSOR

The design of fluorescent aptasensors mainly involves fluorophores, 
dyes, or fluorescent nanomaterials, aptamers, and quenchers.62,63 
Different from colorimetric aptasensors, they are not affected by 
the background color of the sample and can simultaneously design 
multiple aptamers in the form of a sensor array for multi-channel 
rapid detection.64 Based on the different detection mechanisms of 
fluorescence signal recovery, they are mainly divided into: fluores-
cence resonance energy transfer, fluorescence signal amplification, 
and fluorescence polarization.65 Using its non-invasiveness and visu-
alization, combined with a variety of nanomaterials such as photo-
sensitizers, real-time in situ monitoring and killing of tumor cells, and 
treatment effect monitoring are other significant directions in the 
design strategy of fluorescent aptasensors.

4.1 | Fluorescence resonance energy transfer

The most typical way is to modify the 3' or 5' end of the aptamer 
with a fluorophore or an aggregation-inducing luminescence agent, 
and then introduce a fluorescence quencher through electrostatic 
adsorption or complementary structure. The fluorescence signal is 
turned off based on FRET between the luminescent agent and the 
quencher.16,66 When the target marker is present, the conformation 
switch shifts, the quencher and the fluorophore are separated, and 
the fluorescent signal is turned on again to quickly detect the target 
protein67 (Figure 4A). This method of turning off and then turning 
on the fluorescent signal effectively reduces the background signal.3 
Common high-distance-dependent fluorescence signal quenchers 
include graphene oxide, mesoporous carbon nanospheres, organic 
frameworks, magnetic nanoparticles, etc.67-70 Xu et al designed a 
four-color sensor based on FRET to distinguish 4 tumor markers, AFP, 
VEGF165, CEA and HER2, with a very low detection limit,64 realizing 
the simultaneous detection and imaging of multiple tumor-related 

proteins in living cells. Based on the same detection strategy, but 
changing different aptamers or nanoquenchers, Li et al16 designed 
GO/Apt-TPE-TA nanocomposites that quenched the aptamer PSMA-
modified aggregation-inducing luminescence of TPE-TA by GO, and 
finally turned on the fluorescence signal in the serum of prostate 
cancer patients to successfully detect tumor exosomes.

4.2 | Fluorescence signal amplification

Common nucleic acid signal amplification reactions include RCA, 
HCR, HD-CHR, and SDR.3 As shown in Figure 4B, Huang et al used 
the MB-CD63 antibody to capture leukemia-derived exosomes. 
DNA probes containing AS1411 aptamers and RCA primers bound 
to exosomes and initiated RCA amplification. Finally, FAM was re-
leased to enhance the fluorescence signal.71 Feng et al developed 
a double-amplification detection method for adenosine based on 
HCR and exonuclease III-assisted DNA circulation. In the presence 
of adenosine, the adenosine aptamer triggered the initiation of HCR 
between H1 and H2, resulting in longer double-stranded DNA po-
lymerization. Finally, the dye SYBR Green I was inserted into the 
groove of DNA, causing significant amplification of the fluorescence 
signal.72 Using the same principle, Zhao et al monitored early pros-
tate cancer through HCR to amplify the fluorescent signal mecha-
nism.34 Ma et al35 also applied HCR to the detection of MUC1 model 
peptides; this is expected to be applied to the detection of breast 
cancer and other tumor cells that highly express MUC1. Figure 4B 
shows the principle of signal amplification in common HCR-based 
sensor designs.

4.3 | Fluorescence polarization

Compared with the former, the design based on fluorescence po-
larization is more simplified and requires no quenchers or donor-
acceptor pairs. As shown in Figure 4C, when the aptamer detaches 
from the polymer and forms a specific three-dimensional struc-
ture with the target protein, the fluorescence signal is restored.36 
Bao et al reported that the Apt-PFN+ complex was used to detect 
tumor markers AFP and CEA.73 Similarly, Ho et al prepared aptamer 
sgc8c-conjugated DAR NPs trapped with R6G and aptamer TD05-
conjugated DAR NPs trapped with R101 to recognize CCRF-CEM 
and Ramos cells, respectively.74 Based on this detection strategy, 
Lyu et al proposed the afterglow effect, bypassing real-time lumi-
nescence monitoring, and minimizing the tissue background signal.75

4.4 | Prospects for theranostics

In addition to early screening and diagnosis, timely treatment of 
pre-cancer is the top priority to reduce the mortality rate of cancer. 
At present, aptasensors are mature in various cancer screening and 
detection technologies. However, being able to report and trigger 
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targeted killing of tumor cells at the same time is still a challenge we 
need to face.76 At this stage, some researchers have reported that 
aptasensors can be combined with photodynamic, photothermal, 
and chemotherapy to diagnose and treat tumors.77-79

Wang et al reported a composite material composed of Au 
NBPs@PDA and Au NCs. Au NCs labeled with MUC1 aptamer 
(probe 1) competitively bound with the target protein MUC1, and 
then detached from the surface of Au NBPs@PDA, turning on the 
red fluorescence to accurately image MCF-7 breast cancer cells. 
At the same time, the hybridization of the complementary sin-
gle strand (probe 2) with high expression of MicroRNA-21 in the 
HepG2 cells triggered the green fluorescence of Au NCs, which 
realized the original dual-type imaging of tumor biomarkers with 
different spatial distributions of different tumor cells. In addi-
tion, the marked photothermal properties of Au NBPs@PDA can 
kill cancer cells more effectively for accurate diagnosis and tumor 
treatment.77 Han et al designed the combined application of Cy5-
labeled Cyt c aptamer, GO, and the anti-tumor drug COU-DHA 
targeted mitochondrial for real-time imaging of cell death. After 
the tumor cells had endocytosed the composite material, COU-
DHA was released from the GO surface to target the mitochondria, 
inducing the production of ROS in situ to kill tumor cells. Then, 
Cyt c was released from mitochondria, the Cy5-labeled aptamer 

preferentially bound to Cyt c and fell off from GO, emitting red 
fluorescence, indicating tumor cell apoptosis.80 It is inevitable that 
most research on the integration of diagnosis and treatment is the 
complex structure of composite materials. Committed to build a 
multifunctional aptasensor as a new research direction, and use for 
imaging and killing tumor cells to achieve the dual goals of diagno-
sis and treatment will be the direction of the extensive research on 
aptasensors in the future.

5  | CONCLUSION AND OUTLOOK

In this review, we focused on the detection strategies of aptamer 
biosensors with 3 signal transduction modes. Each type of aptamer 
sensing has unique advantages and corresponding limitations, which 
must also be considered before determining the purpose of detec-
tion. For example, the fluorescent aptasensor is easier to use for 
multi-channel simultaneous detection of different tumor cells than 
the other 2; the colorimetric aptasensor is the most intuitive and 
simplest of the 3 to distinguish between cancer and normal samples; 
the electrochemical aptasensor is more focused on non-invasive, 
small, portable, and low detection limits to screen tumor markers. 
In addition, the article also mentions the expanded application of 

F I G U R E  4   A, Schematic illustration of the fluorescent aptasensor based on FRET between fluorophores and quenchers to turn on the 
fluorescent signal and recognize tumor cells. B, Schematic illustration of the aptasensor based on HCR for amplifying signals by activating 
H1, H2. C, Schematic diagram of the aptasensor assembled by the cationic copolymer and aptamer to detect tumor marker proteins through 
fluorescence polarization
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aptasensors in treatment and post-treatment monitoring. At pre-
sent, many studies have been successfully applied in the clinic to 
detect cancer patient samples. We have reason to believe that the 
application prospect of aptasensors will become more available in 
the clinical practice in the foreseeable future.
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