

Received 7 May 2017 Accepted 19 May 2017

Edited by M. Weil, Vienna University of Technology, Austria

Keywords: crystal structure; $CaNi₂Fe(PO₄)₃$; transition metal phosphate; solid-state reactions; α -CrPO $_4$ structure type.

CCDC reference: 1551182

Supporting information: this article has supporting information at journals.iucr.org/e

2. Structural commentary

 $\text{CaNi}_2\text{Fe}(\text{PO}_4)_3$ crystallizes in the α -CrPO₄ structure type. The principal building units of the crystal structure are one $\left[{\rm CaO_8}\right]$ polyhedron, $[FeO₆]$ and $[NIO₆]$ octahedra and PO₄ tetrahedra,

Crystal structure of calcium dinickel(II) iron(III) tris(orthophosphate): $CaNi₂Fe(PO₄)₃$

Said Ouaatta,* Abderrazzak Assani, Mohamed Saadi and Lahcen El Ammari

Laboratoire de Chimie du Solide Appliquée, Faculty of Sciences, Mohammed V University in Rabat, Avenue Ibn Battouta, BP 1014, Rabat, Morocco. *Correspondence e-mail: saidouaatta87@gmail.com

The title compound, $CaNi₂Fe(PO₄)₃$, was synthesized by solid-state reactions. Its structure is closely related to that of α -CrPO₄ in the space group Imma. Except for two O atoms in general positions, all atoms are located in special positions. The three-dimensional framework is built up from two types of sheets extending parallel to (100). The first sheet is made up from two edge-sharing $[NiO₆]$ octahedra, leading to the formation of $[Ni₂O₁₀]$ double octahedra that are connected to two PO4 tetrahedra through a common edge and corners. The second sheet results from rows of corner-sharing $[FeO₆]$ octahedra and $PO₄$ tetrahedra forming an infinite linear chain. These layers are linked together through common corners of PO_4 tetrahedra and $[FeO_6]$ octahedra, resulting in an open three-dimensional framework that delimits two types of channels parallel to $[100]$ and $[010]$ in which the eightfold-coordinated Ca^H cations are located.

1. Chemical context

Phosphates belonging to the alluaudite (Moore, 1971) or to the α -CrPO₄ (Attfield et al., 1988) structure type exhibit interesting physical and chemical properties. Consequently, these compounds have many promising applications such as use as positive electrodes in lithium and sodium batteries (Kim et al., 2014; Huang et al., 2015) or as catalysts (Kacimi et al., 2005). Over the last few years, phosphate-based compounds crystallizing in the α -CrPO₄ or alluaudite structure types have been investigated by us. In this context, new phosphates adopting the alluaudite or α -CrPO₄ structure type have been synthesized and structurally characterized. For example, the mixed-valence manganese phosphates $PbMn^{II}{}_{2}Mn^{III}(PO_4)$ ₃ (Alhakmi et al., 2013) and $PbMn^H₂Mn^{III}(PO₄)₃$ (Assani et al., 2013), the magnesium phosphate $NaMg_3(PO_4)(HPO_4)_2$ (Ould Saleck *et al.*, 2015) and silver nickel phosphate $Ag_2Ni_3(HPO_4)$ - $(PO₄)₂$ (Assani *et al.*, 2011) were synthesized by hydrothermal methods, while solid-state reactions were applied to synthesize $SrNi₂Fe(PO₄)₃$ (Ouaatta *et al.*, 2015) and $Na₂Co₂Fe(PO₄)₃$ (Bouraima et al., 2015). In a continuation of the latter preparation route, we have investigated pseudo-quaternary systems $MO-NiO-Fe₂O₃-P₂O₅$ (*M* represents a divalent cation) and report here on the synthesis and crystal structure of the title compound, $CaNi₂Fe(PO₄)₃$.

research communications

Figure 1

The principal building units in the crystal structure of the title compound. Displacement ellipsoids are drawn at the 50% probability level. [Symmetry codes: (i) $-x + 2$, $-y + \frac{3}{2}$, $z + 1$; (ii) x, y, z + 1; (iii) $-x + 2$, $-y + \frac{3}{2}$, z; (iv) $-x + \frac{3}{2}$, $-y + 1$, z + $\frac{1}{2}$, (vi) $x + \frac{1}{2}$, $y + \frac{1}{2}$, $z + \frac{1}{2}$; (vi) $-x + \frac{3}{2}$, $y + \frac{1}{2}$,
z + $\frac{1}{2}$; (vii) $x + \frac{1}{2}$, $-y + 1$, z + $\frac{1}{2}$; (viii) $-x + \frac{3}{2}$, $-y + \frac{3}{2}$, $-z + \frac{1}{2}$; (x) x, -y + 1, -z; (xi) -x + 1, y, z; (xii) x, -y + 1, -z + 1; (xiii) $-x + \overline{1}, -y + 1, -z + 1$; (xiv) $x - \frac{1}{2}, y, -z + \frac{1}{2}$

as shown in Fig. 1.The octahedral coordination sphere of the iron(III) cation is more distorted than that of nickel(II), with Fe—O bond lengths in the range 1.9504 (7)–2.0822 (11) \AA and Ni-O bond lengths in the range 2.0498 (8)-2.0841 (8) \AA . In the title structure, all atoms are on special positions, except for the two oxygen atoms O1 and O2, which are on general positions. The structure can be described by the stacking of two types of sheets extending parallel to (100). The first sheet is formed by alternating $[FeO₆]$ octahedra and $PO₄$ tetrahedra sharing corners to build a linear infinite chain surrounding a zigzag chain of Ca^{II+} cations (Fig. 2). The second sheet is built up from two edge-sharing $[NiO_6]$ octahedra leading to the formation of $[Ni₂O₁₀]$ double octahedra, which are connected to two $PO₄$ tetrahedra by a common edge and a common corner, as shown in Fig. 3. The linkage of both layers, through vertices of PO_4 tetrahedra and $[FeO_6]$ octahedra, gives rise to the formation of an open three-dimensional framework that delimits two types of channels parallel to [100] and [010] in which the Ca^{II} cations are located with eight neighbouring O

Figure 2 A chain formed by sharing corners of $PO₄$ tetrahedra and $[FeO₆]$ octahedra, alternating with a zigzag chain of calcium cations.

atoms, as shown in Fig. 4. The title compound has a stoichiometric composition like that of the related strontium homologue $SrNi₂Fe(PO₄)₃$.

Figure 4 Polyhedral representation of $CaNiO₂Fe(PO₄)₃$, showing channels running parallel to [100].

3. Synthesis and crystallization

 $CaNi₂Fe(PO₄)$ ₃ was prepared by solid-state reactions in air. Stoichiometric mixtures of calcium, nickel and iron precursors were dissolved in water to which $85\%_{\rm wt}$ phosphoric acid was added. The obtained mixture was stirred without heating for 24 h and was subsequently evaporated to dryness at 343 K. The resulting dry residue was ground in an agate mortar until homogeneity, progressively heated in a platinum crucible up to 873 K to remove the volatile decomposition products, and then melted at 1433 K. The molten product was cooled down slowly with a 5 K h^{-1} rate and then to room temperature. The crystals obtained after washing with water were orange with parallelepipedal forms.

4. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 1. The maximum and minimum remaining electron densities are 0.68 and 0.41 Å , respectively, away from the Ni1 site.

Acknowledgements

The authors thank the Unit of Support for Technical and Scientific Research (UATRS, CNRST) for the X-ray measurements.

Funding information

Funding for this research was provided by: Mohammed V University, Rabat, Morocco.

References

- [Alhakmi, G., Assani, A., Saadi, M. & El Ammari, L. \(2013\).](http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=wm5390&bbid=BB1) Acta [Cryst.](http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=wm5390&bbid=BB1) E69, i40.
- [Assani, A., El Ammari, L., Zriouil, M. & Saadi, M. \(2011\).](http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=wm5390&bbid=BB2) Acta Cryst. E67[, i40.](http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=wm5390&bbid=BB2)
- [Assani, A., Saadi, M., Alhakmi, G., Houmadi, E. & El Ammari, L.](http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=wm5390&bbid=BB3) (2013). [Acta Cryst.](http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=wm5390&bbid=BB3) E69, i60.
- [Attfield, J. P., Cheetham, A. K., Cox, D. E. & Sleight, A. W. \(1988\).](http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=wm5390&bbid=BB4) J. [Appl. Cryst.](http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=wm5390&bbid=BB4) 21, 452–457.
- [Bouraima, A., Assani, A., Saadi, M., Makani, T. & El Ammari, L.](http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=wm5390&bbid=BB5) (2015). [Acta Cryst.](http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=wm5390&bbid=BB5) E71, 558–560.
- Brandenburg, K. (2006). DIAMOND[. Crystal Impact GbR, Bonn,](http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=wm5390&bbid=BB6) [Germany.](http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=wm5390&bbid=BB6)

Computer programs: APEX2 and SAINT (Bruker, 2009), SHELXT2014 (Sheldrick, 2015a), SHELXL2014 (Sheldrick, 2015b), ORTEP-3 for Windows (Farrugia, 2012), DIAMOND (Brandenburg, 2006) and publCIF (Westrip, 2010).

- Bruker (2009). *APEX2* and *SAINT*[. Bruker AXS Inc., Madison,](http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=wm5390&bbid=BB7) [Wisconsin, USA.](http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=wm5390&bbid=BB7)
- [Farrugia, L. J. \(2012\).](http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=wm5390&bbid=BB8) J. Appl. Cryst. 45, 849–854.
- [Huang, W., Li, B., Saleem, M. F., Wu, X., Li, J., Lin, J., Xia, D., Chu, W.](http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=wm5390&bbid=BB9) [& Wu, Z. \(2015\).](http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=wm5390&bbid=BB9) Chem. Eur. J. 21, 851–860.
- [Kacimi, M., Ziyad, M. & Hatert, F. \(2005\).](http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=wm5390&bbid=BB10) Mater. Res. Bull. 40, 682– [693.](http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=wm5390&bbid=BB10)
- [Kim, J., Kim, H., Park, K.-Y., Park, Y.-U., Lee, S., Kwon, H.-S., Yoo,](http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=wm5390&bbid=BB11) [H.-I. & Kang, K. \(2014\).](http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=wm5390&bbid=BB11) J. Mater. Chem. A, 2, 8632–8636.
- [Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. \(2015\).](http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=wm5390&bbid=BB12) J. [Appl. Cryst.](http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=wm5390&bbid=BB12) 48, 3–10.
- [Moore, P. B. \(1971\).](http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=wm5390&bbid=BB13) Am. Mineral. 56, 1955–1975.
- [Ouaatta, S., Assani, A., Saadi, M. & El Ammari, L. \(2015\).](http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=wm5390&bbid=BB14) Acta Cryst. E71[, 1255–1258.](http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=wm5390&bbid=BB14)
- [Ould Saleck, A., Assani, A., Saadi, M., Mercier, C., Follet, C. & El](http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=wm5390&bbid=BB15) [Ammari, L. \(2015\).](http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=wm5390&bbid=BB15) Acta Cryst. E71, 813–815.
- [Sheldrick, G. M. \(2015](http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=wm5390&bbid=BB16)a). Acta Cryst. A71, 3–8.
- [Sheldrick, G. M. \(2015](http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=wm5390&bbid=BB17)b). Acta Cryst. C71, 3–8.
- [Westrip, S. P. \(2010\).](http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=wm5390&bbid=BB18) J. Appl. Cryst. 43, 920–925.

supporting information

Acta Cryst. (2017). E**73**, 893-895 [https://doi.org/10.1107/S2056989017007411]

Crystal structure of calcium dinickel(II) iron(III) tris(orthophosphate): CaNi₂Fe(PO₄)₃

Said Ouaatta, Abderrazzak Assani, Mohamed Saadi and Lahcen El Ammari

Computing details

Data collection: *APEX2* (Bruker, 2009); cell refinement: *SAINT* (Bruker, 2009); data reduction: *SAINT* (Bruker, 2009); program(s) used to solve structure: SHELXT2014 (Sheldrick, 2015*a*); program(s) used to refine structure: *SHELXL2014* (Sheldrick, 2015*b*); molecular graphics: *ORTEP*-*3 for Windows* (Farrugia, 2012) and *DIAMOND* (Brandenburg, 2006); software used to prepare material for publication: *publCIF* (Westrip, 2010).

Calcium dinickel(II) iron(III) tris(orthophosphate)

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

Atomic displacement parameters (Å2)

Geometric parameters (Å, º)

supporting information

Symmetry codes: (i) -x+3/2, y, -z+3/2; (ii) -x+3/2, -y+1/2, -z+3/2; (iii) x, -y+1, -z+2; (iv) -x+3/2, -y+1, z-1/2; (v) x-1/2, y-1/2, z-1/2; (vi) -x+3/2, y-1/2, z-1/2; (vii) x-1/2, -y+1/2, -z+3/2; (viii) -x+1, -y, -z+1; (ix) -x+1, -y+1/2, z; (x) -x+1, y-1/2, -z+1; (xi) x, -y+1, -z+1; (xii) x, y-1/2, -z+1; (xiii) −*x*+1, −*y*+1, −*z*+1; (xiv) −*x*+1, −*y*+1/2, *z*−1; (xv) *x*, *y*, *z*−1.