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Objective. Previous attempts to estimate rheumatoid arthritis (RA) disease activity using claims data only did not 
yield high performance. We aimed to assess whether supplementing claims data with readily available electronic 
medical record (EMR) data might result in improvement.

Methods. We used a subset of the Brigham and Women’s Hospital Rheumatoid Arthritis Sequential Study (BRASS) 
that had linked Medicare claims. The disease activity score in 28 joints with C‐reactive protein (DAS28‐CRP) was 
considered the gold standard of measure. Variables in the linked Medicare claims, as well as EMR recorded in the 
preceding one‐year period were used as potential explanatory variables. We constructed three models: “Claims‐
Only,” “Claims + Medications,” and “Claims + Medications + Labs (laboratory data from EMR). We selected variables 
via adaptive LASSO. Model performance was measured with adjusted R2 for continuous DAS28‐CRP and C‐statis-
tics for binary category classification (high/moderate vs low disease activity/remission).

Results. We identified 300 patients with laboratory data and linked Medicare claims. The mean age was 68 years 
and 80% were female. The mean (SD) DAS28‐CRP was 3.6 (1.6) and 51% had high or moderate DAS28‐CRP. For the 
continuous estimation, the adjusted R2 was 0.02 for Claims‐Only, 0.09 for Claims + Medications, and 0.18 for Claims 
+ Medications + Labs. The C‐statistics for discriminating the binary categories were 0.61 for Claims‐Only, 0.68 for 
Claims + Medications, and 0.76 for Claims + Medications + Labs.

Conclusion. Adding EMR‐derived variables to claims‐derived variables resulted in modest improvement. Even 
with EMR variables, we were unable to estimate continuous DAS28‐CRP satisfactorily. However, in claims‐EMR 
 models, we were able to discriminate between binary categories of disease activity with reasonable accuracy.

INTRODUCTION

The ability to estimate rheumatoid arthritis (RA) disease activity 
would be a powerful tool for epidemiologic studies that lack direct 
disease activity measures such as the Disease Activity Score 28‐

joint counts (DAS28) (1). Currently, despite being recognized as 
an important factor when examining RA‐related outcomes, pat-
terns of medication use, or medication‐related toxicities, disease 
activity is infrequently accounted for in either electronic medical 
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record (EMR)‐based studies or population‐based administrative 
claims‐based studies. These studies often include populations 
significantly larger than those available in RA‐dedicated cohorts 
and therefore are sufficiently powered to detect relevant but infre-
quent outcomes, such as medication‐related adverse events or 
cardiovascular events. However, without the ability to account for 
RA disease activity, it is often challenging to know the degree to 
which these adverse outcomes are associated with the exposure 
or whether they are a result of increased RA disease activity.

Prior researchers have demonstrated challenges to devel-
oping and validating administrative claims–based algorithms that 
can accurately estimate rheumatoid arthritis (RA) disease activity 
(2–4). Data‐driven, machine learning tools are increasingly being 
used to accurately identify RA patients, to phenotype distinct pop-
ulations, and to develop algorithms to understand comorbidities 
and adverse outcomes (5,6). To date, only one study has applied 
machine learning methods to attempt to estimate RA disease 
activity using administrative claims–based data (2). Similar to prior 
studies, however, the final models tested showed weak accuracy.

We aimed to use data‐driven, machine learning methods to 
explore alternative strategies to develop algorithms to estimate 
DAS28 with C‐reactive protein (CRP). We combined claims data 
with readily available electronic medical record (EMR) variables 
and laboratory values to construct models to estimate DAS28‐
CRP.

METHODS

Participants. We utilized the Brigham and Women’s Hospi-
tal Rheumatoid Arthritis Sequential Study (BRASS), a single‐center 
observational cohort of adults (older than 18 years) with prevalent 
RA cared for at Brigham and Women’s Hospital, which is an urban 
tertiary care teaching hospital (7). Over 1500 patients with con-
firmed RA by the 1987 ACR criteria (8) have been followed for more 
than 15 years with annual measurement of disease activity with 
the DAS28‐CRP. Among these patients, we selected individuals 

with at least 1 year of linked Medicare administrative claims data 
preceding a disease activity measurement between 2006‐2010, 
the years for which we had existing linked claims. Medicare is the 
U.S. public insurance for individuals older than 65 years and for 
a subset of younger individuals with disabilities (9). A subset of 
BRASS patients with linked Medicare data also had medication 
benefits through Medicare, known as Medicare Part D, and for 
these individuals, pharmacy dispensing data were available.

Dependent variables. BRASS recorded DAS28‐CRP 
scores, a version of DAS28 with CRP as an inflammatory 
marker but without patient global health assessment on an 
annual basis (10). Each patient potentially had multiple DAS28‐
CRP measurements, but we focused on the first measurement 
during the follow‐up to avoid correlated dependent variables 
within each individual, which could complicate the cross‐vali-
dation process (11). We modeled disease activity in two ways: 
original continuous form and dichotomized form. We dichot-
omized the variable as “moderate or high disease activity” 
(DAS28‐CRP at 3.2 or greater) and “low disease activity or 
possible clinical remission” (DAS28‐CRP less than 3.2). We 
chose these cutoffs based on the treat‐to‐target strategy for 
established RA patients (12,13). We will refer to the dichoto-
mized cutoff of 3.2 or greater vs. less than 3.2 as high/mod-
erate vs. low disease activity, respectively, for the purposes 
of this study, recognizing differing perspectives regarding the 
definition of a DAS28‐CRP cutoff for clinical remission.

Potential explanatory variables. We derived explana-
tory variables from three sources: Medicare claims data, Medi-
care Part D pharmacy dispensing data, and EMR data. From 
Medicare claims, we used ICD‐9 codes to identify 26 variables, 
including demographics, comorbidities, joint replacement sur-
gery, rehabilitation visits, number of RA‐related codes, labora-
tory and imaging use, and health care utilization (See eTable 
1 for codes). For a subset of patients, Medicare Part D claims 
provided medication information regarding biological and con-
ventional disease‐modifying antirheumatic drugs (DMARDs), 
glucocorticoids, and opioids.

We used simple EMR‐derived variables collected dur-
ing routine clinical practice to supplement the claims‐derived 
variables. We did not use variables that may not be available 
outside of our data sources, such as survey data collected for 
research purposes from the BRASS cohort. We extracted data 
via the Research Patient Data Registry (RPDR) (14–16), a cen-
tralized clinical data registry consisting of routinely collected 
data from the EMR. We obtained smoking status, body mass 
index (BMI), systolic blood pressure, medication use (when 
Medicare Part D was not available), laboratory abnormalities 
for RA seropositivity (rheumatoid factor or anticyclic citrulli-
nated peptide), hematocrit, erythrocyte sedimentation rate 
(ESR), and CRP. When repeated measurements were avail-

SIGNIFICANCE & INNOVATION
• Previous attempts to estimate rheumatoid arthri-

tis (RA) disease activity using claims data only have 
been unsuccessful.

• We demonstrated that the use of simple electron-
ic medical record (EMR) variables linked to claims 
data can moderately improve binary classification 
(high + moderate vs low disease activity + remis-
sion).

• Accurate estimation of continuous disease activity 
score proved to be difficult even with added EMR 
variables.

• Model‐based classification, for example, can be 
used to examine treatment effect modification by 
disease activity categories.
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able, laboratory abnormality was recorded if any one of the 
measurements was abnormal. Missing values were handled 
via the missing category method. For example, a laboratory 
variable was coded as either normal, abnormal, or missing. 
We did not pursue natural language processing of EMR free 
text because we aimed to develop a simple and potentially 
portable estimation and classification model of disease activ-
ity. Tender and swollen joint counts were not available as 
structured data in our system.

For both claims and EMR data sources, the variable assess-
ment period was the 1‐year period preceding the index date on 
which the first ever DAS28‐CRP was recorded in BRASS. This 
rule was applied to all variables, including relatively stable variables 
such as seropositivity. For medications, both ongoing therapy and 
new therapy were considered similarly as “ever use” within this 
12‐month window.

Modeling strategy. We utilized a form of supervised 
machine learning, adaptive least absolute shrinkage and selection 
operator (LASSO). LASSO is a penalized regression that prevents 
model overfitting by restricting the magnitude of coefficient esti-
mates (regularization) and performs variable selection by setting 
some coefficient estimates to be zero (17,18). Adaptive LASSO 
(19) is an improvement upon the original LASSO, which allows 
a different penalty weight for each coefficient. Our modeling 
approach involved several steps: 1) initial coefficient estimation 
with ridge regression, 2) adaptive LASSO for variable selection, 
and 3) final modeling.

First, we obtained the absolute values of the ridge regression 
(20) estimates of coefficients. We constructed differential penalties 
based on the inverse of absolute ridge coefficient estimates (19). 
These differential penalties ensured that more promising potential 
explanatory variables were penalized to a lesser extent in the sub-
sequent steps.

Second, we ran an adaptive LASSO for variable selection. The 
optimal value of the overall penalty term was chosen by minimizing 
10‐fold cross‐validation errors. Importantly, cross‐validation results 
can be dependent on the specific random split of the data when 
the data set is small. Therefore, we repeated 10‐fold cross‐valida-
tion 10 000 times to stabilize this process and to minimize random-
ness (21,22). We combined these 10 000 models by examining the 
number of times each variable was chosen, and we used variables 
selected in at least 60% of the adaptive LASSO model fits as the 
final set of variables, in keeping with prior literature (23).

Third, the final model was fit with multiple regression for 
DAS28‐CRP as a continuous DAS28‐CRP, or logistic regression 
for the dichotomized DAS28 classification (DAS28‐CRP 3.2 or 
greater vs DAS28‐CRP less than 3.2). We used adjusted R2 to 
compare continuous DAS28‐CRP model fits. C‐statistics were 
used to compare the ability of the binary DAS28‐CRP classifica-
tion models to distinguish between high and low disease activity. 
We additionally calculated sensitivity, specificity, and correct clas-

sification rate at the threshold chosen by the Youden index (24) 
that aims to simultaneously maximize sensitivity and specificity. 
We used SAS v. 9.4 and R 3.4 [glmnet (25)] for computation.

For the candidate explanatory variables, we considered three 
increasingly larger potential variable pools to examine how simple 
EMR variables can improve estimation and classification based 
on claims variables only: 1) claims only (“Claims‐Only”), 2) claims 
and EMR medications (“Claims + Medications”), and 3) claims, 
EMR medications, and laboratory values (“Claims + Medications 
+ Laboratory Tests” Model). For EMR variables such as the labo-
ratory test variables, we categorized values into the normal range 
and the abnormal range and incorporated missing as a category.

RESULTS

Participants and characteristics. We identified 300 
adults with RA enrolled in BRASS with 1 year or more of linked 
Medicare claims preceding their initial DAS28‐CRP measurement 
between 2006‐2010. Thirty rheumatologists cared for these 300 
patients. The distribution of patient cluster sizes was median 3.5 
(interquartile range 1‐11). A subset of 95 patients had Medicare 
Part D medication coverage. Table 1 shows the patient character-
istics at the initial DAS28‐CRP measurement. The mean age was 
68 years, 80% were female, and 92% were white. The mean dura-
tion of RA was 21 years, reflecting the nature of the prevalent RA 
cohort that we were able to link to the Medicare claims. The extent 
of missingness in EMR data was as follows: BMI 13%, blood pres-
sure (BP) 28%, smoking 12%, rheumatoid factor (RF) 36%, ESR 
49%, CRP 19%, and hematocrit (5%). The mean (SD) of DAS28‐
CRP was 3.6 (1.6). The disease activity categories were as follows: 

Table 1. Patient characteristics at the first measurement of 
DAS28‐CRP
Variable Result
n 300
Age (Mean, SD) 67.94 (9.72)
Gender ‐ female (N, %) 241 (80.33)
Race (N, %)
white 276 (92.0)
black 14 (4.8)
other 10 (3.3)

DAS28‐CRP (Mean, SD) 3.58 (1.62)
DAS28‐CRP Category (N, %)
Clinical Remission 105 (35.0)
Low Disease Activity 41 (13.7)
Moderate Disease Activity 93 (31.0)
High Disease Activity 61 (20.3)

DMARDs (N, %)a

0 92 (30.7%)
1 151 (50.3%)
2 49 (16.3%)
3 8 (2.7%)

RA Disease Duration (Mean, SD) 20.56 (13.28)
Abbreviation: DAS28‐CRP, Disease Activity Score in 28 joints with 
C‐reactive protein; DMARD, disease‐modifying antirheumatic drug. 
aNumber of unique DMARDs prescribed during the 1‐year variable 
ascertainment period.
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20% in high disease activity (more than 5.1), 31% in moderate 
disease activity (3.2‐5.1), 14% in low disease activity (2.6‐3.2), and 
35% in clinical remission, here defined as less than 2.6.

Continuous DAS28‐CRP estimation. Claims‐only 
data resulted in a highly parsimonious final model with just 
two binary variables (Table  2). As a result, the proportion of 

Table 2. Variable selection and final fit results for continuous disease activity estimation

Claims Only Claims + Meds Claims + Meds + Labs
Data source Variable Selection Coefficient Selection Coefficient Selection Coefficient

(Intercept) 10 000 0.651 10 000 1.029 10 000 0.855
Claims Number of outpatient visit 0 ‐ 0 ‐ 0 ‐

Number of ED visits 0 ‐ 0 ‐ 2 ‐
Length of hospitalization 1740 ‐ 2356 ‐ 881 ‐
Number of hospitalizations 0 ‐ 0 ‐ 0 ‐
Number of chest X‐ray 54 ‐ 1589 ‐ 1 ‐
Arthrocentesis, yes/no 56 ‐ 1726 ‐ 0 ‐
ANA testing, yes/no 0 ‐ 0 ‐ 5 ‐
BMD testing, yes/no 0 ‐ 0 ‐ 0 ‐
CBC testing, yes/no 54 ‐ 1730 ‐ 5 ‐
Anti‐CCP testing, yes/no 20 ‐ 420 ‐ 6 ‐
Metabolic panel, yes/no 54 ‐ 1738 ‐ 5 ‐
HBV/HCV screening, yes/no 1808 ‐ 4204 ‐ 9939 1.655
Chest CT/MRI, yes/no 0 ‐ 0 ‐ 0 ‐
Liver enzymes, yes/no 56 ‐ 2104 ‐ 5872 ‐
Tuberculosis tests, yes/no 57 ‐ 1743 ‐ 2693 ‐
Age at DAS28‐CRP 0 ‐ 0 ‐ 0 ‐
CRP, yes/no 9999 −0.948 10 000 −0.944 10 000 −1.298
RF, yes/no 1398 ‐ 2176 ‐ 4877 ‐
ESR, yes/no 1723 ‐ 2270 ‐ 5031 ‐
Total Number of ESR/CRP 0 ‐ 0 ‐ 0 ‐
Race, Black 465 ‐ 2184 ‐ 104 ‐
Race, Non‐white/black 6 ‐ 1836 ‐ 1899 ‐
Sex 0 ‐ 0 ‐ 0 ‐
Charlson Comorbidity Index 0 ‐ 0 ‐ 0 ‐
Joint surgeries, yes/no 9999 1.683 9999 1.567 10 000 1.893
Occupational therapy, yes/no 0 ‐ 0 ‐ 0 ‐
Physical therapy, yes/no 62 ‐ 2042 ‐ 787 ‐
Total Number of RA Codes 0 ‐ 0 ‐ 0 ‐

Part D/ EMR Total number of DMARD use 5442 ‐ 9677 −0.444
ever use of DMARD 9994 −0.755 9959 −0.117
ever use of glucocorticoids 3 ‐ 0 ‐
ever use of opioids 9937 0.636 6860 0.340

EMR BMI ≥30 0 ‐
25≤ BMI <30 0 ‐
BMI <18.5 10 000 13.121
BMI Missing 9975 0.971
Systolic BP ≥160 0 ‐
Systolic BP 120‐159 0 ‐
Systolic BP missing 10 000 −1.296
Smoking, current 1 ‐
Smoking, past 302 ‐
Smoking, missing 5439 ‐
RF abnormal 5547 ‐
RF missing 1380 ‐
ESR abnormal 8271 0.341
ESR Missing 13 ‐
CRP abnormal 7756 0.588
CRP missing 5 ‐
Hematocrit abnormal 7036 0.340
Hematocrit missing 10 000 −0.782

Abbreviation: ANA, antinuclear antibody; BMD, bone mineral density; BMI, body mass index; BP, blood pressure; CBC, complete blood count; 
CCP, cyclic citrullinated peptide; CRP, C‐reactive protein; CT, computed tomography; DMARD, disease‐modifying antirheumatic drugs; ED, emer-
gency department; EMR, electronic medical record; ESR, erythrocyte sedimentation rate; HBV, hepatitis B virus; HCV, hepatitis C virus; Labs, lab-
oratory test results; Meds, medications; MRI, magnetic resonance imaging; Part D, Medicare Part D prescription claims; RA, rheumatoid arthritis; 
RF, rheumatoid factor.
All variables, including medications and laboratory results, were as recorded within the 12‐month period preceding the DAS28‐CRP measurement.
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continuous DAS28‐CRP explained (R2) was very poor at 0.03 
(adjusted R2 = 0.02). Models derived by an automated varia-
ble selection process may not be clinically interpretable. How-
ever, in this specific instance, the presence of laboratory tests 

(ever/never) for viral hepatitis and for CRP remained in the final 
model. CRP testing may be a surrogate for the need to assess 
inflammation formally, which is likely due to high disease activ-
ity. Viral hepatitis testing may herald the need to switch med-

Table 3. Variable selection and final fit results for binary disease activity classification

Claims‐Only Claims+ Meds Claims + Meds + Labs
Data source Variable Selection Coefficient Selection Coefficient Selection Coefficient

(Intercept) 10 000 3.937 10 000 3.737 10 000 2.434
Claims Number of outpatient visit 0 ‐ 0 ‐ 0 ‐

Number of ED visits 5119 ‐ 0 ‐ 0 ‐
Length of hospitalization 0 ‐ 3520 ‐ 0 ‐
Number of hospitalizations 0 ‐ 0 ‐ 0 ‐
Number of chest X‐ray 110 ‐ 2 ‐ 0 ‐
Arthrocentesis, yes/no 5150 ‐ 3858 ‐ 0 ‐
ANA testing, yes/no 636 ‐ 745 ‐ 3 ‐
BMD testing, yes/no 0 ‐ 0 ‐ 0 ‐
CBC testing, yes/no 118 ‐ 20 ‐ 0 ‐
Anti‐CCP testing, yes/no 4893 ‐ 4095 ‐ 9755 −0.229
Metabolic panel, yes/no 5174 ‐ 7205 −0.541 8709 −0.460
HBV/HCV screening, yes/no 9998 0.557 9999 0.210 10 000 0.571
Chest CT/MRI, yes/no 0 ‐ 0 ‐ 0 ‐
Liver enzymes, yes/no 5139 ‐ 7305 1.306 9588 1.108
Tuberculosis tests, yes/no 5142 ‐ 7183 0.001 9540 −0.184
Age at DAS28‐CRP 0 ‐ 0 ‐ 0 ‐
CRP, yes/no 9997 −0.560 9999 −0.801 10 000 −0.720
RF, yes/no 6 ‐ 0 ‐ 0 ‐
ESR, yes/no 5192 ‐ 7274 −0.228 9583 −0.173
Total Number of ESR/CRP 0 ‐ 0 ‐ 0 ‐
Race, Black 5640 ‐ 8545 0.521 9428 0.307
Race, nonwhite/black 79 ‐ 21 ‐ 0 ‐
Sex 5034 ‐ 5552 ‐ 8961 0.330
Charlson Comorbidity Index 0 ‐ 0 ‐ 0 ‐
Joint surgeries, yes/no 5703 ‐ 7229 0.879 9799 0.729
Occupational therapy, yes/no 0 ‐ 0 ‐ 0 ‐
Physical therapy, yes/no 5147 ‐ 7220 −0.285 9438 −0.217
Total Number of RA Codes 0 ‐ 0 ‐ 0 ‐

PartD/ EMR Total number of DMARD use 7189 −0.430 9501 −0.422
ever use of DMARD 15 ‐ 0 ‐
ever use of glucocorticoids 9999 0.232 10 000 0.216
ever use of opioids 9996 0.374 9772 0.144

EMR BMI ≥30 0 ‐ 0 ‐
25≤ BMI <30 7189 −0.430 0 ‐
BMI <18.5 15 ‐ 0 ‐
BMI Missing 9999 0.232 9562 0.450
Systolic BP ≥160 9996 0.374 0 ‐
Systolic BP 120‐159 1774 ‐
Systolic BP missing 10 000 −0.773
Smoking, current 0 ‐
Smoking, past 0 ‐
Smoking, missing 22 ‐
RF abnormal 10 000 0.579
RF missing 7948 0.393
ESR abnormal 10 000 0.442
ESR Missing 0 ‐
CRP abnormal 9624 0.839
CRP missing 9586 0.691
Hematocrit abnormal 7480 0.167
Hematocrit missing 8793 −0.216

Abbreviation: ANA, antinuclear antibody; BMD, bone mineral density; BMI, body mass index; BP, blood pressure; CBC, complete blood count; 
CCP, cyclic citrullinated peptide; CRP, C‐reactive protein; CT, computed tomography; DMARD, disease‐modifying antirheumatic drugs; ED, emer-
gency department; EMR, electronic medical record; ESR, erythrocyte sedimentation rate; HBV, hepatitis B virus; HCV, hepatitis C virus; Labs, lab-
oratory test results; Meds, medications; MRI, magnetic resonance imaging; Part D, Medicare Part D prescription claims; RA, rheumatoid arthritis; 
RF, rheumatoid factor.
All variables including medications and laboratory results were as recorded within the 12‐month period preceding the DAS28‐CRP measurement.
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ications, particularly to biological DMARDs in the setting of 
higher disease activity or inadequate disease control.

Adding four medication‐related variables in the initial can-
didate variable pool (Claims + Medications) resulted in a much 
larger final model with 12 variables. The estimation perfor-
mance was much better, although it still explained a relatively 
small fraction of continuous DAS28‐CRP variability (R2 = 0.12, 
adjusted R2 = 0.09). Viral hepatitis and CRP testing remained 
in the final model again. Tuberculosis and liver enzyme testing, 
which may also precede biological DMARDs, were in the final 
model. Glucocorticoid use and opioid use made it to the final 
model, but not DMARD use. DMARD use might have been of 
little value because most patients in this tertiary care center RA 
cohort were on DMARDs.

Including further EMR variables (Claims + Medications + 
Laboratory Tests) resulted in a final model with 23 variables. The 
estimation performance improved further (R2 = 0.25, adjusted 
R2 = 0.18). Laboratory variables (CRP, ESR, RF, and hematocrit) 
exceeded the model inclusion threshold of 60%. For RF, CRP, and 
hematocrit, both the abnormal value indicator and the missing 
indicator remained in the model, meaning whether a measurement 
was made at all was also informative of the underlying disease 
activity in addition to the presence of an abnormal measurement.

Binary category classification. Similar to the continuous 
DAS28‐CRP estimation, the binary Claims‐only model resulted in 
a final model with just two variables: the presence of CRP testing 
and joint surgery (Table 3). The area under the curve (AUC) of the 
model was 0.61 (Figure 1). At the optimal threshold that maxi-
mizes sensitivity and specificity jointly, sensitivity was 47.4% and 
specificity was 74.7%. Presence of joint surgery may be under-
stood as indicative of more active disease with severe damage.

The inclusion of medication‐related variables (Claims + 
Medications) retained the initial two variables, and ever use of 
DMARDs and ever use of opioids remained in the model. In com-
parison to the corresponding continuous model, which retained 
12 variables, the binary version only retained only 4 variables. 
The AUC improved slightly to 0.68 with a sensitivity of 79.2% 
and specificity of 48.6% at the optimal threshold. Ever use of 
glucocorticoids was not retained in the final model.

The largest set of candidate variables (Claims + Medications 
+ Laboratory Tests) resulted in a final model with 13 variables, 
again somewhat smaller than the continuous counterpart with 
23 variables. All four variables in the previous model remained. 
Additionally, testing for viral hepatitis and the total number of 
DMARDs during the baseline period were included in the final 
model. From the extended pool of EMR variables, several var-

Figure 1. Performance of binary classification models. Cut‐off values indicate the thresholds used to dichotomize estimated probabilities of 
MDA/HDA into binary classifications (MDA/HDA for ≥ cut‐off and REM/LDA for < cut‐off). Abbreviation: CCR, correct classification rate; Class, 
model‐based classification; HDA, high disease activity; Labs, laboratory test results; LDA, low disease activity; MDA, medium disease activity; 
Meds, medications; NPV, negative predictive value; PPV, positive predictive value; REM, clinical remission; True, gold standard.
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iables were retained. For certain variables such as BP, only the 
missingness indicator remained, suggesting that the absence/
presence status of having BP recorded was informative enough 
and actual recordings, when present, did not add much. For 
ESR and CRP values, respective abnormal value indicators were 
kept in the final model, grouping normal values and missing cat-
egory together. The AUC was 0.76 with a sensitivity of 83.1% 
and specificity of 59.6%.

DISCUSSION

A model that uses readily available data to estimate RA dis-
ease activity would be a valuable addition to epidemiologic pop-
ulation‐based studies that lack direct disease activity measures. 
Prior studies have demonstrated significant challenges in devel-
oping and validating these algorithms (2,4). We attempted to 
build on the prior literature by adding EMR variables that should 
be available from routine practice and are readily extractable 
from medical records to claims‐based data. We also leveraged 
novel machine learning strategies to allow the data to drive the 
choice of variables.

In our models, we found that adding EMR‐based informa-
tion modestly improved model performance metrics. However, 
we were still unable to estimate disease activity in a meaning-
ful way as a continuous measure. Our model that incorporated 
EMR data, medication and laboratory data, and claims to clas-
sify disease activity as a dichotomized measure did result in a 
reasonable C‐statistic (0.76), indicating the ability to distinguish 
between moderate/high vs. low disease activity with adequate 
certainty.

These results indicate that addition of simple EMR‐
derived variables to claims‐derived variables could be useful 
for improving classification of RA disease activity into high and 
moderate disease activity vs. low disease activity (correct clas-
sification rate = 71.3%) but not for accurately estimating its 
actual numerical values. Importantly, the continuous estimates 
or binary classification of RA disease activity measure will not 
add to confounding control if all the covariates are already 
included in the outcome analysis or propensity score model. 
However, it may serve as a summary risk score, which can 
be easier to handle than individual covariates in settings with 
a limited sample size. A potentially more useful use case of 
the binary classification is to use it as a stratification variable, 
for which a correct classification rate of 71.3% may still pro-
vide some value. When we are interested in how the effect 
of a given exposure on the outcome of interest differs by the 
baseline RA disease activity, stratifying the study cohort by the 
binary RA disease activity classification may add value beyond 
what individual covariates can achieve.

We acknowledge several limitations in data and modeling. 
Ideally, the final model performance should be assessed in a 

data set completely independent from the entire model building 
and validation process. However, we did not have a test set 
because of the small sample size. Although adaptive LASSO 
is a flexible variable selection strategy, it does not attempt to 
explore more complex relationships between variables and 
DAS28‐CRP. More advanced supervised machine learning 
methods, such as deep neural networks (26) and random forest 
(27), can automatically identify interaction between variables at 
the cost of being less interpretable and more data‐hungry.

Although certain variables included in our final combined 
model logically correlate with RA disease activity (such as 
joint surgeries, inflammatory marker elevations, anemia, num-
ber and ever use of DMARDs and opioids), our models also 
incorporated missing EMR data as explanatory variables. For 
example, presence or absence of EMR recording of systolic 
BP was deemed more informative than the recorded value 
itself. Although this is reasonable from a modeling perspec-
tive, model interpretability and portability may suffer. The next 
important step will be determining the degree to which this 
algorithm may perform in an external cohort with combined 
EMR‐claims data. In such external validation, variables that 
were important in the BRASS cohort may carry different impor-
tance. For example, the tuberculosis screening– and hepatitis 
screening–related variables contributed to our models. These 
may have heralded an impending treatment switch or intensi-
fication in our local practice and were informative of disease 
activity. However, this may not generalize to other practice set-
tings. The C‐statistic for our Claims + Medications model was 
only slightly inferior compared to the Claims + Medications + 
Laboratory Tests model and includes variables that are logi-
cally associated with disease activity and are readily acces-
sible in claims (inflammatory markers drawn in the prior year, 
joint replacement surgery, DMARD use, and opioid use). This 
may be a reasonable option when the goal is to distinguish 
moderate/high from low.

In summary, we attempted to improve DAS28‐CRP esti-
mation and classification based on claims data by utilizing 
easily accessible information in the EMR, resulting in a modest 
improvement for the binary category classification. Numerical 
estimation of DAS28‐CRP was unsatisfactory. External valida-
tion of our binary models in a different EMR system is an impor-
tant future direction. Nonetheless, we believe the present study 
serves as proof of concept that we can improve our ability to 
classify RA disease activity in its binary form by supplementing 
claims data with simple EMR‐derived variables.
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