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Invertebrates can be primed to enhance their protection against pathogens

they have encountered before. This enhanced immunity can be passed mater-

nally or paternally to the offspring and is known as transgenerational immune

priming. We challenged larvae of the red flour beetle Tribolium castaneum by

feeding them on diets supplemented with Escherichia coli, Micrococcus luteus
or Pseudomonas entomophila, thus mimicking natural exposure to pathogens.

The oral uptake of bacteria induced immunity-related genes in the offspring,

but did not affect the methylation status of the egg DNA. However, we

observed the translocation of bacteria or bacterial fragments from the gut to

the developing eggs via the female reproductive system. Such translocating

microbial elicitors are postulated to trigger bacterial strain-specific immune

responses in the offspring and provide an alternative mechanistic explanation

for maternal transgenerational immune priming in coleopteran insects.
1. Introduction
Invertebrates can mount specific immune responses against previously encoun-

tered pathogens [1,2], although this phenomenon varies in its specificity [3,4].

The priming effect can even be transferred to the next generation to increase off-

spring survival following exposure to the same pathogen. This effect, known as

transgenerational immune priming (TGIP), has been described for crustaceans

[1], insects [5] and molluscs [6]. Both males and females can deliver information

about the pathogens they have encountered to their offspring, but maternal and

paternal TGIP in beetles differs in terms of specificity and the investment of

resources [6–9].

The mechanisms underlying TGIP are not clearly understood. Passive

mechanisms such as the transfer of antimicrobial peptides or mRNAs encoding

immunity-related proteins would confer transient immunity, but full protection

would require a more stable mechanism, and epigenetic modifications have

been proposed. The latter include, for example, changes in DNA methylation

in the parental genome caused by the first encounter with a pathogen that is

transferred to the offspring as a methylation imprint in the eggs and sperm,

allowing the pre-emptive activation of immunity-related genes [10,11].

Recently, a new TGIP mechanism was identified in the greater wax moth

Galleria mellonella involving the transfer of ingested bacteria from the maternal

gut to the eggs [12].
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Figure 1. Relative expression levels of immunity- and stress-related genes in naive Tribolium castaneum eggs. RNA was isolated from pooled 50 mg samples of eggs
laid by parents fed on bacterial diets. Expression levels are presented relative to eggs from non-supplemented diet and normalized against the endogenous house-
keeping gene Rps3. The data represent means (+s.d.) of three independent biological replicates (one-way ANOVA, Holm – Sidak, ***p , 0.001).
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To determine whether similar TGIP mechanisms may be

involved in T. castaneum, an insect that is now established

as a model for bacterial oral infections [13] and in which

both maternal and paternal TGIP have already been con-

firmed [14], we investigated the transfer of bacterial

particles ingested by female beetles and the methylation

status of DNA in the offspring.
2. Material and methods
(a) Insect rearing and treatment
Wild-type Tribolium castaneum San Bernardino beetles were reared

as described elsewhere [15]. Neonate larvae were fed until

the adult stage on diets supplemented with 0.3% lyophilized

Escherichia coli, Micrococcus luteus or Pseudomonas entomophila.

A non-supplemented diet was used as a control treatment. The

adults were removed at 10 days old and transferred to the control

diet. Eggs were collected by sieving after 24 h.

(b) RNA isolation and quantitative real-time PCR
Total RNA was extracted from pooled eggs (50 mg, three bio-

logical replicates) using Direct-zolTM RNA MiniPrep (Zymo

Research, Irvine, CA) according to the manufacturer’s instruc-

tions. The quality and quantity of RNA were determined using

a Nanodrop ND-1000 spectrophotometer (NanoDrop Technolo-

gies Inc., Wilmington, DE). We reverse transcribed 50 ng total

RNA using the first-strand cDNA synthesis kit (Thermo Fisher

Scientific, Rockford, IL) and carried out quantitative real-time

PCR using the Power SYBRw Green PCR master mix (Thermo

Fisher Scientific) with a StepOne plus real-time PCR system

(Thermo Fisher Scientific). Primers were designed using primer3

(http://bioinfo.ut.ee/primer3-0.4.0/) and were purchased from

Sigma-Aldrich (St Louis, MO).

Three biological replications, each with two technical replica-

tions and no template controls, were run in parallel. Relative gene

expression levels were calculated using the 22DDCT method [16]

with the ribosomal protein gene Rps3 as a reference. Statistical

analysis was carried out using SIGMAPLOT v. 12.0 (Systat Software

Inc., San Jose, CA). Significant differences between groups of

parametric data were determined by one-way analysis of variance

(ANOVA) with a subsequent Holm–Sidak test ( p , 0.05). Non-

parametric data were analysed by ANOVA on-ranks with a

subsequent Tukey’s test.
(c) Methylation assay
Eggs (50 mg, three biological replicates) from adults (5–7 days

old) raised on white flour supplemented with bacteria (see

above) were collected for DNA isolation using the ZR Tissue

and Insect MicroPrep kit (ZymoResearch), and the global DNA

methylation status was determined using the colorimetric

MethylFlash methylated DNA quantification kit (Epigentek,

Farmingdale, NY) according to the manufacturer’s instructions.

The absolute amount of methylated DNA was calculated from

100 ng total DNA using a standard curve.

(d) Analysis of fluorescent BioParticlesw
Animals were fed on an artificial agar-based diet containing 5%

whole wheat flour, 15% yeast, 3% agar and 0.4% methyl

hydroxybenzoate. The artificial diet was supplemented with

E. coli (K-12 strain) cells (3 � 106 E. coli ml21) conjugated with

25 ml Texas Redw BioParticlesw (Thermo Fisher Scientific) per

1 ml agar, suspended at a concentration of 10 mg ml21 in

10 mM PBS. Decapitated last-instar larvae and adult females,

as well as dissected reproductive tissue and ovipositioned eggs,

were embedded in Tissue-Tekw OCTTM (Sakuraw Finetek).

Samples were frozen in liquid nitrogen and stored at –808C.

A cryostat microtome CM 1850 (Leica Microsystems) was used

to prepare 10 mm sections at –208C and these were mounted

with Fluoromount-GTM (Southern Biotech) and observed

under a DM5000 B fluorescence microscope (Leica; see the

electronic supplementary material).
3. Results
(a) Expression of immunity- and stress-related genes
We compared the expression profiles of immunity- and

stress-related genes in eggs laid by naive parents, and

adults reared on diets supplemented with E. coli, M. luteus
or P. entomophila. Quantitative real-time PCR data for seven

immunity-related genes and five stress-related genes (encod-

ing cytochrome p450, Thor and heat shock proteins (hsp) 27,

68 and 90) showed that the offspring of beetles ingesting M.
luteus displayed by far the highest expression levels. With the

exception of hsp90, all genes were induced by more than

fourfold compared with the control treatment (figure 1).

Defensin 1 was induced most strongly, with expression levels
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Figure 2. Analysis of the maternal transfer of fluorescent bacteria (BioParticlesw). (a) Artificial diet mixed with BioParticlesw (scale bar, 50 mm). (b,c) BioParti-
clesw in the dissected larval gut after the ingestion of the artificial diet, show (b) the foregut and midgut region and (c) the hindgut (scale bars, 1 mm).
(d ) BioParticlesw beneath the cuticle of the larval foregut (scale bar, 100 mm). (e) Larval midgut containing translocated BioParticlesw in the lumen and sur-
rounding fat body cells (scale bar, 50 mm). ( f ) Female genital region with BioParticlesw attached to the fat body (scale bar, 50 mm). (g,h) BioParticlesw between
the ovariole wall and the follicular epithelium of eggs in (g) the proximal region (scale bar, 50 mm) and (h) the distal region close to the lateral oviduct (scale bar,
150 mm). (i,j) BioParticlesw associated with (i) spermatheca and the anterior bursa copulatrix, and ( j ) the posterior bursa copulatrix (scale bars, 50 mm).
(k,l) BioParticlesw attached to (k) the follicular epithelium (scale bar, 50 mm) and (l ) incorporated into the yolk of dissected eggs (scale bar, 150 mm). (m) Oviposi-
tioned egg containing BioPariclesw (scale bar, 150 mm). Further details are provided in the electronic supplementary material. Arrowheads indicate fluorescent
BioParticlesw (red spots). abc, anterior bursa copulatrix; ch, chorion; cu, cuticle; e, egg; ep, epithelium; fb, fatbody; fe, follicular epithelium; fg, foregut; hc, haemocoel;
hg, hindgut; lu midgut lumen; mg, midgut; ov, oviduct, ow ovariole wall; pbc posterior bursa copulatrix; sp, spermatheca; tr, tracheole.
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increasing by more than 10-fold (mean fold change ¼ 10.27).

Contamination of the larval diet with E. coli induced the

expression of defensin 1 (mean fold change ¼ 3.31) and defensin
2 (mean fold change ¼ 2.2) in the eggs, whereas genes encod-

ing thaumatin 1, p450, lysozyme and polyphenoloxidase were only

marginally upregulated. Surprisingly, the oral uptake of P.
entomophila had a much lower impact on gene expression,

resulting in the slight induction of defensin 1 (mean fold

change ¼ 2.47).
(b) Maternal transfer of bacteria
The underlying physiological mechanisms of TGIP are not well

understood, and several hypotheses have been proposed

to explain how such information might be transferred to

the offspring. One hypothesis involves the epigenetic modifi-

cation of germline DNA [17]. We therefore analysed the

global DNA methylation status of eggs laid by parents
ingesting diets supplemented with P. entomophila, E. coli or

M. luteus, compared with DNA from eggs laid by naive parents.

We found no significant differences among the treatments. The

average level of global methylation was approximately

10% (10.17%+0.75) under all treatment regimens (electronic

supplementary material, figure S1).

We investigated whether ingested bacteria are translocated

from the gut into the developing eggs in T. castaneum by deter-

mining the fate of non-viable E. coli bioparticles after larval

ingestion (figure 2). We established an artificial feeding assay

to administer high doses of bioparticles to the larvae (electronic

supplementary material, figures S2 and S3). Cryosections of

last-instar larvae confirmed the translocation of fluorescent

bacterial particles from the midgut epithelium into the sur-

rounding fat body cells in the haemocoel following oral

uptake (figure 2e and electronic supplementary material,

figure S4). The genital regions of adult females fed on a diet

supplemented with bacteria also contained bacterial particles
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attached to the fat body (figure 2f ), and particles were also

detected between the ovariole wall and the follicular epi-

thelium of the developing eggs (figure 2k–l and electronic

supplementary material, figure S5). Ultimately, we confirmed

the presence of bacterial particles in the ovipositioned eggs

(figure 2m and electronic supplementary material, figure S6).
 ypublishing.org
Biol.Lett.11:20150885
4. Discussion
We investigated the processes underlying maternal TGIP in

T. castaneum, focusing on two proposed mechanisms: the

transfer of ingested bacterial particles from the larval gut to

the eggs of adult female beetles and the methylation status

of the maternal and offspring DNA. We found that the oral

administration of bacteria to T. castaneum larvae was suffi-

cient to induce an immune response in the next generation.

Similar TGIP effects have been observed in lepidopteran

species ingesting a diet supplemented with bacteria [12]

and in the offspring of mealworms (Tenebrio molitor) injected

with bacterial lipopolysaccharides [18]. The gene expression

profiles in the eggs T. castaneum larvae fed with contaminated

diet suggested that the immune response differs between

Gram-positive and Gram-negative bacteria.

The physiological processes underlying TGIP remain

elusive. Microbial pathogens can modulate host epigenetic

regulatory factors such as the acetylation or deacetylation

of histones and the expression of miRNAs, suggesting that

transgenerational inheritance may be associated with epigenetic

mechanisms such as DNA methylation [11,19]. However,

T. castaneum larvae reared on a bacteria-supplemented diet

did not transmit changes in the overall level of DNA methyl-

ation to the next generation, but this does rule out the

possibility that differences in DNA methylation pattern

may pass to the offspring. Further research is necessary to deter-

mine whether other epigenetic mechanisms such as histone

acetylation are involved.

We therefore monitored the fate of bacterial particles orally

administered to T. castaneum larvae and found that they
crossed the gut epithelium and were translocated into the

developing egg. Such a transfer of bacteria to the germline

necessitates the protection of the eggs against pathogens.

Indeed, the extraembryonic serosa of T. castaneum eggs is

described as a frontier epithelium that expresses nearly 90%

of the immunity-related genes in the egg genome, providing

a full range of immune responses [20]. Such an investment in

the immune competence of the serosa makes sense if bacteria

from the gut can translocate into the developing eggs.

Indeed, a recent study shows that the egg yolk protein vitello-

genin is involved in the internalization of bacteria during

oogenesis [21]. Our data provide a plausible explanation for

maternal strain-specific TGIP in the model beetle T. castaneum
and confirm the mechanism identified in lepidopteran species,

suggesting that it may be a general strategy used by diverse

insects. However, the maternal transfer of bacterial fragments

does not explain paternal TGIP in T. castaneum [8], and the

latter will therefore be addressed in our future studies.
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