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Abstract

Metabolic dysfunction-associated fatty liver disease (MAFLD), a recently proposed term to
replace non-alcoholic fatty liver disease (NAFLD), emphasizes the critical role of metabolic
dysfunction and applies broader diagnostic criteria. Diagnosis of MAFLD requires evidence
of hepatic steatosis combined with obesity, type 2 diabetes mellitus, or other metabolic
dysregulation conditions, all of which significantly elevate the risk of chronic kidney dis-
ease (CKD). This review discusses the pathological mechanisms of lipid accumulation and
insulin resistance in MAFLD and CKD, highlighting their mechanistic connections. Specifi-
cally, ectopic fat accumulation triggered by metabolic reprogramming, oxidative stress and
inflammation induced by energy overload, modified lipids, uremic toxins, and senescence,
as well as insulin resistance pathways activated by pro-inflammatory factors and lipotoxic
products, collectively exacerbate simultaneous hepatic and renal injury. Moreover, inter-
actions among hyperinsulinemia, the sympathetic nervous system, the renin–angiotensin
system (RAS), and altered adipokine and hepatokine profiles further amplify insulin resis-
tance, ectopic lipid deposition, and systemic damage. Finally, the review explores potential
therapeutic strategies targeting lipid metabolism, insulin sensitivity, and RAS activity,
which offer promise for dual-organ protection and improved outcomes in both hepatic and
renal systems.

Keywords: metabolic dysfunction-associated fatty liver disease; chronic kidney disease;
oxidative stress; lipid; insulin resistance

1. Introduction
Metabolic dysfunction-associated fatty liver disease (MAFLD), previously termed

non-alcoholic fatty liver disease (NAFLD), has emerged as a major cause of chronic liver
disease and is accompanied by multi-system complications, including cardiovascular
disease (CVD), diabetes mellitus, and chronic kidney disease (CKD) [1,2]. In a study of
the Global Burden of Disease 2021 database, MAFLD was found to affect approximately
1.27 billion people worldwide, generated 48.35 million incident cases, and accounted
for 3.67 million disability-adjusted life-years (DALYs), with the latter having risen by
more than 60% since 1990 [3]. In 2020, international experts proposed renaming NAFLD
as MAFLD to better reflect its underlying metabolic pathogenesis and improve patient
management by recognizing extrahepatic manifestations. Unlike previous definitions
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that excluded significant alcohol consumption, the new diagnostic criteria emphasize
metabolic dysfunction, specifically type 2 diabetes (T2D), overweight or obesity, and
related metabolic disorders [4]. In 2023, a multisociety consensus further recommended
renaming NAFLD to metabolic dysfunction-associated steatotic liver disease (MASLD) to
explicitly underscore metabolic dysfunction as the primary etiological factor. Similar to the
prior pathological characterization of NAFLD, MAFLD involves hepatic steatosis (defined
as fat accumulation in over 5% of hepatocytes) and spans a clinical spectrum from benign
steatosis to metabolic dysfunction-associated steatohepatitis (MASH), liver cirrhosis, and
ultimately hepatocellular carcinoma [5,6]. Metabolic syndrome (MetS), the principal driver
of MAFLD, encompasses obesity, hypertension, hyperglycemia, T2D, and dyslipidemia,
all of which share insulin resistance as a central pathological mechanism [7]. Beyond
metabolic-driven steatosis, chronic hepatitis C virus (HCV) infection remains a noteworthy
differential diagnosis. The viral NS3/4A serine protease fosters hepatic steatosis, systemic
insulin-resistance, and cryoglobulinaemic glomerulonephritis, thereby increasing the risk
of CKD [8]. Cure rates > 95% with pangenotypic NS3/4A inhibitors and experimental RNA
aptamers that bind HCV core or NS5B proteins—highlight the importance of ruling out
occult HCV before attributing steatosis and renal injury to MAFLD/MASLD [9].

CKD is an irreversible, progressive disease characterized by persistent reduction in
estimated glomerular filtration rate (eGFR) below 60 mL/min/1.73 m2, and/or abnormal
urinary albumin-to-creatinine ratio (ACR, >30 mg/g) and/or overt proteinuria (>500 mg)
lasting more than three months [10,11]. Pathologically, CKD manifests as renal inflam-
mation and fibrosis, affecting tubular, glomerular, and interstitial structures [12]. CKD
frequently coexists with obesity and ectopic fat deposition, promoting inflammation and
structural damage in podocytes, mesangial cells, and proximal tubular cells [13]. Con-
versely, impaired renal function exacerbates lipid redistribution and dyslipidemia in CKD
and end-stage renal disease (ESRD) [14]. Insulin resistance emerges as an initial metabolic
alteration among CKD patients, even when eGFR remains within the normal range, and
is particularly prevalent in ESRD. Insulin resistance accelerates cardiovascular and renal
deterioration [15].

Globally, MAFLD and CKD affect approximately 30% and 9.5% of the population,
respectively [16,17], posing substantial clinical and economic challenges. A systematic
review and meta-analysis showed that the global prevalence of MAFLD was 50.7% in
overweight and obese adults [18]. Additionally, a 15-year prospective study demonstrated
that obesity severity is directly proportional to CKD incidence, with over 40% of severely
obese participants developing CKD [19]. Recognized as a hepatic manifestation of MetS,
MAFLD has a reciprocal relationship with obesity and insulin resistance. Importantly,
MAFLD independently predicts CKD development, and liver fibrosis severity influences
CKD prognosis [20]. Compared with traditionally defined NAFLD, MAFLD exhibits higher
CKD prevalence, emphasizing critical role of metabolic dysfunction in connecting hepatic
and renal pathologies [21]. The shared metabolic disorders, including obesity, dyslipidemia,
and insulin resistance, likely serve as mechanistic links bridging MAFLD and CKD.

Despite acknowledging the mutual relationship between MAFLD and CKD, the precise
molecular connections remain incompletely understood. This narrative review investigates
the complexities of insulin resistance and lipid metabolism disturbances common to both
diseases, examining their interrelationship and identifying potential therapeutic targets for
clinical practice.
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2. Pathology of Lipid Metabolic Disorders in MAFLD and CKD
2.1. Lipid Metabolism-Related Genes in MAFLD and CKD

Patatin-like phospholipase domain-containing protein 3 (PNPLA3), expressed in hepa-
tocytes and human hepatic stellate cells (HSCs), encodes proteins that regulate intrahepatic
triglyceride (TG) levels. A 2024 metabolomic study is the first to systematically compare
differences in VLDL secretion and disease progression in three subtypes of MASLD; the
PNPLA3 variant does not affect hepatic VLDL secretion, which is more common in metabo-
types associated with CVD, whereas the transmembrane 6 superfamily member 2 (TM6SF2)
variant is associated with reduced VLDL secretion [22].

Disruption of PNPLA3 ubiquitylation caused by gene variation leads to its accumula-
tion in hepatic lipid droplets and potential hepatic steatosis [23]. The G allele of PNPLA3
rs738409 is the most significant and widespread variant influencing the progression of
MAFLD, with the highest frequency in Central and South America (~50%) and the lowest
in Africa (12%) [24]. This variant up-regulates the expression of lipid synthesis-related
proteins such as cholesterol regulatory element-binding protein-1c (SREBP-1c) and carbohy-
drate response element-binding protein (ChREBP) and inhibits adipose TG lipase. PNPLA3
is expressed in podocytes and renal tubular cells, where the rs738409 variant contributes
to renal lipotoxicity [25]. PNPLA3 rs738409 correlates with renal glomerular and tubular
damage, including decreased glomerular filtration rate (GFR) and increased acute kidney
injury (AKI) markers [26]

2.2. Lipid Overload, Steatosis, and Dyslipidemia of MAFLD

Increased de novo lipogenesis (DNL), increased fatty acid (FA) mobilization, and
enhanced fatty acid β-oxidation (FAO) contribute to hepatic lipid accumulation and
steatosis [7]. Elevated hepatic glucose and insulin independently enhance DNL by ac-
tivating SREBP-1c and ChREBP, respectively, stimulating downstream lipogenic genes [6].
Citrate from an overloaded tricarboxylic acid (TCA) cycle shuttles into the cytoplasm,
regenerating acetyl-CoA and exacerbating lipogenesis [27]. In the DNL process, the acetyl-
CoA-to-malonyl-CoA conversion catalyzed by acetyl-CoA carboxylase (ACC) is enhanced
by SREBP-1c up-regulation [28]. Malonyl-CoA inhibits carnitine palmitoyl transferase I
(CPT-1), limiting FAO and exacerbating lipid accumulation [29]. Chronic lipid overload
eventually disrupts FAO flexibility, causing endoplasmic reticulum (ER) stress, mitochon-
drial dysfunction and peroxisome reactions, and reactive oxygen species (ROS) production
(e.g., O2•−, H2O2, and malondialdehyde (MDA)) [28]. In turn, excessive ROS aggravate mi-
tochondrial dysfunction, establishing a positive feedback loop in hepatocyte apoptosis [30].

Peroxisome proliferator-activated receptor alpha (PPAR-α), predominantly expressed
in the liver, regulates pathways of FAO and free FA (FFA) uptake, maintaining hepatic lipid
and energy homeostasis. Under oxidative stress, ROS (H2O2) inhibit PPAR-α and CPT-1,
reducing FAO rates [31]. Clinical studies reveal an inverse correlation between PPAR-α
expression and hepatic steatosis severity [32]. Conversely, PPAR-γ, highly expressed in adi-
pose tissue, promotes hepatic TG storage and DNL via SREBP-1c, exacerbating steatosis [33].
Energy depletion in the liver activates AMP-activated protein kinase (AMPK) and silent in-
formation regulator T1 (Sirt1), inhibiting the PPAR-γ/SREBP-1c pathway [34]. Meanwhile,
PPAR-γ coactivator-1a (PGC-1α) can bind with PPAR-γ or PPAR-α to enhance CPT-1/FAO
activity but is suppressed by insulin/SREBP-1c signaling and oxidative stress [35]. In
adipose tissue, PPAR-γ augments lipid storage and adiponectin [36]. Adiponectin is nega-
tively correlated with the degree of obesity, maintaining anti-inflammatory effects, FAO,
and insulin sensitivity. Reduced adipose PPAR-γ promotes ectopic lipid accumulation,
suggesting a complex, detrimental role in steatosis [37]. Although PPAR-γ acts complexly
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in the liver and adipose, its up-regulation in the liver and down-regulation in adipose
tissue probably worsen steatosis.

Liver X receptor (LXR), as a cholesterol sensor of fat, glucose, and cholesterol
metabolism, facilitates lipogenesis and fat storage by up-regulating SREBP-1c/CD36 to
adapt to the energy excess of hepatic steatosis [38]. CD36 is an FA translocase that uptakes
long-chain fatty acids (LCFAs), lipoproteins, modified lipids, and oxidized phospholipids
(ox-PL), associated with apoptosis, angiogenesis, thrombosis, inflammation, and atheroscle-
rosis. Clinical studies show that hepatic CD36 elevation drives fat accumulation in NAFLD
patients, and it correlates with steatosis severity [39]. Farnesoid X receptor (FXR), highly
expressed in the liver, ileum, and kidney, coordinates bile acid, lipid, and glucose homeosta-
sis. FXR activation induces the transcription of PPAR-α/γ, CPT-1, and apolipoprotein C2
(Apo C2), while simultaneously repressing the LXR/SREBP-1c lipogenic axis [40]. During
CKD progression, diminished expression of FAO enzymes, together with perturbations
in key nuclear receptors (PPAR-α, PPAR-γ, and FXR), alters FA uptake machinery and
downstream lipid–metabolic pathways, thereby accelerating tubulointerstitial fibrosis [41].

In MAFLD, excess FAs derived from DNL and adipose tissue lipolysis accumulate as
intrahepatic TG droplets. Mobilization of these droplets markedly increases the secretion
of TG-rich very-low-density lipoprotein (VLDL) into the circulation [42]. Within peripheral
capillaries, lipoprotein lipase (LPL) and hepatic lipase hydrolyze VLDL and chylomicrons,
releasing FFAs; the residual particles are remodeled into intermediate density lipoprotein
(IDL), cholesterol-rich low-density lipoprotein (LDL-c), and chylomicron remnants (CM).
Concurrently, Apo A1, cholesterol, and phospholipids assemble into nascent high-density
lipoprotein (HDL), which lecithin-cholesteryl acyl-transferase (LCAT) converts to mature
cholesteryl-ester (CE)-rich HDL (HDL-c). Cholesteryl-ester transfer protein (CETP) then
exchanges HDL-c for TG in LDL, generating TG-enriched HDL (HDL-TG) and LDL-c
destined for hepatic clearance. MAFLD is characterized by heightened CETP activity,
over-production of VLDL, accumulation of small dense LDL (sdLDL) particles, and de-
pressed HDL-c concentrations—an atherogenic profile that predisposes to cardiovascular
disease [43]. Angiopoietin-like proteins (ANGPTLs), frequently upregulated in MAFLD,
further inhibit LPL and impair peripheral FA uptake [44].

2.3. Dyslipidemia and Adipose Ectogenesis in CKD

Dyslipidemia emerges early in CKD, distinguished from the MAFLD pattern by re-
duced activity of LPL and hepatic lipase, down-regulation of VLDL receptors (VLDLR)
in muscle and adipose tissue, and diminished hepatic LDL-receptor-related protein 1
(LRP-1) [45,46]. Advancing CKD also elevates proprotein convertase subtilisin/kexin type-
9 (PCSK9), which suppresses LDL-receptor (LDLR) expression [47]. Impaired lipoprotein
remodeling hampers the transition from pre-β-HDL to mature HDL; uremic retention of
apolipoprotein C-III (Apo C-III) and pre-β-HDL further inhibits LPL-mediated TG clear-
ance, an effect amplified by secondary hyperparathyroidism [48–50]. In ESRD, hemodialy-
sis exacerbates LPL depletion and lowers Apo A1 and HDL-c levels [51]. Overall, CKD is
typified by low HDL-c, abundant sdLDL, and progressively rising CETP activity with de-
clining eGFR, while LCAT activity falls, culminating in extremely low HDL-c and HDL-TG
particles [47].

Although the kidney is intrinsically a “lean” organ, CKD triggers ectopic lipid accu-
mulation. In the kidneys, proximal tubular epithelial cells (PTECs) are the major oxygen-
consuming cell type and exert FAO activities regulated by related genes such as PPARs and
CPT-1, in which PPAR-α is highly expressed [52]. CKD suppresses the FAO axis (PPAR-α,
PGC-1α, and CPT-1) and AMPK, and FA synthesis is enhanced in PTECs [52]. Moreover,
FA synthesis and the expression of lipid synthesis-related enzymes are augmented in the
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adipose tissue of rats suffering from chronic renal failure [53]. In addition to suppressed in-
trarenal metabolism, fatty acid transport protein (FATP), fatty acid-binding protein (FABP),
and scavenger CD36 are widely expressed in the kidneys and can facilitate lipid accumu-
lation. Membrane transporters (CD36 and FATP2) are upregulated after kidney injury
or exposure to uremic milieu, leading to renal lipid accumulation [54]. The pathological
mechanisms of lipid abnormality in MAFLD and CKD are shown in Figure 1.

 

Figure 1. Mechanisms of lipid metabolism abnormalities in MAFLD and CKD. (A) In MAFLD, DNL
enhanced by elevated insulin and glucose levels, FAO overload, and increased FA influx leads to lipid
accumulation and steatosis. Excessive energy contributes to TCA mitochondrial dysfunction and ROS
production. In turn, oxidative stress inhibits the PGC-1α/CPT-1/FAO axis. PPAR-γ shows opposite
expression patterns in the liver and adipose tissue, enhancing hepatic DNL and adipocyte lipolysis,
respectively, and exacerbating fat accumulation in MALFD. Increased levels of TG-containing VLDL
are released into circulation, together with decreased HDL-c and increased LDL-c levels, which are
regulated by increased CETP and inhibited LPL, forming dyslipidemia. (B) In CKD, abnormality
of enzymes including LPL, LCAT, and CETP and dysregulated expression of VLDLR, LDLR, and
LRP contribute to CKD dyslipidemia, characterized by increased LDL-c levels, elevated VLDL levels,
and impaired HDL. Abnormal lipid enzymes in CKD are also related to uremic toxins and dialysis
status. Down-regulation of the PGC-1α/CPT-1 pathway in the renal tubules and up-regulation of
transporters such as CD36 cause lipid accumulation in the kidneys.
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3. Lipid Burden Linking MAFLD and CKD
3.1. Abdominal/Visceral Obesity

Abdominal obesity correlates closely with both hepatic and renal lipid deposition. Re-
cent clinical studies have verified that prolonged sitting, consumption of sugar-sweetened
beverages (SSBs), smoking, hormone changes, etc., are all factors that enhance visceral adi-
pose tissue (VAT), and these factors are further stratified by age, gender, and region [55–57].

In a National Health and Nutrition Examination Survey III cohort study, the coexis-
tence of MAFLD and abdominal obesity raised the multivariable adjusted odds of CKD
by 84%, and central fat indices mediated approximately 70% of the MAFLD-to-CKD path-
way, whereas BMI explained only 33% [58]. It also showed that post-menopausal women
had higher incidence of MAFLD and steeper eGFR decline [58]. Loss of hepatic estro-
gen/estrogen receptor-α signaling curtails FAO, enhances DNL, and compromises insulin
pathways [59]. However, before this point in time, visceral fat accumulation and MAFLD
prevalence is generally higher in men than that in women [3]. Estrogen up-regulates
PNPLA3 to promote TG storage in subcutaneous adipose tissue (SAT), whereas androgen
increases the VAT/SAT ratio; sex hormones also influence eating style, with men preferring
fats and women preferring carbohydrates [60]. Smoking is an important factor contribut-
ing to the higher incidence of MAFLD in men aged 19–39, and nicotine activation of the
renin–angiotensin system (RAS) is even more detrimental to CKD prevention [61].

3.2. Obesity-Related Inflammation

The liver acts as an active secretory organ rather than a passive reservoir. Hepatocellu-
lar lipid droplet overload provokes ER stress and reactive oxygen species (ROS) generation,
activating Kupffer cells and the nuclear factor kappa B (NF-κβ) and c-Jun N-terminal kinase
(JNK) pathway, releasing inflammatory factors and chemokines. Notably, senescent hepato-
cytes accumulate with age and MASLD severity; they lose β-oxidation capacity and secrete
senescence-associated secretory phenotype (SASP) cytokines rich in IL-6, IL-1β, and mono-
cyte chemoattractant protein 1 (MCP-1), which trigger NOD-like receptor family pyrin
domain containing 3 (NLRP3) systemically [62]. Consequently, MASLD augments the secre-
tion of pro-inflammatory factors and hepatokines such as fetuin-A and ANGPTLs remain
chronically elevated, exacerbating fat redistribution and peripheral insulin resistance [63].

In adipose tissue, excess lipids and lipotoxic intermediates sustain macrophage-driven
inflammation, enhance lipolysis, and induce insulin resistance [37]. Activation of JNK and
NF-κB in adipocytes and adipose tissue macrophages (ATM) promotes the secretion of TNF-
α, IL-6, IL-1β, angiotensin II, and leptin [6]. These cytokines worsen metabolic dysfunction
in the liver and adipose tissue and have been implicated in podocyte effacement and
increased glomerular permeability [64]. Moreover, IL-6 synergizes with angiotensin II to
amplify intrarenal RAS signaling in proximal tubular epithelial cells (PTECs) [65]. The
oxidative stress, metabolic dysfunction, and ischemia hits also contribute to the SASP of
PTECs, which inhibits renal regeneration and exacerbates the process of fibrosis [66].

3.3. Lipoproteins and Lipotoxic Products

MAFLD derived dyslipidemia is characterized by increased levels of VLDL, LDL-c,
and sdLDL, and decreased levels of HDL, but CKD is dominated by metabolic enzyme dys-
function, LDL-c excess, and HDL immaturity. When circulating lipid levels surpass the stor-
age capacity of adipose tissue, lipids become deposited in multiple organs besides adipose
tissue (e.g., liver, kidney, and muscle), a phenomenon termed “ectopic lipid deposition” [67].
Filtered FFAs and oxidized LDL (ox-LDL) are re-absorbed by PTECs, and lipid deposition
in diverse renal cell types precipitates nephrotoxicity. In the liver, dysfunctional HDL and
atherogenic lipoproteins accelerate lipid accumulation and atherosclerosis—major deter-
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minants of NASH-related mortality [68]. For the kidney, staged reduction of organic anion
transporter (OAT1/3) and HDL-receptor-mediated uptake in CKD makes the excretion of
protein-bound/particle-bound lipid metabolites more difficult. Circulating lipoproteins,
including VLDL and LDL, heighten the permeability of the glomerular basement mem-
brane by binding to polyanionic glycosaminoglycans; the filtered lipoproteins amass within
mesangial cells to stimulate cell proliferation and production of the basement membrane
substance, culminating in glomerular and tubulointerstitial disease [69].

ROS-mediated oxidation converts LDL into ox-LDL, which amplifies pro-inflammatory
signaling and oxidative stress [70]. Ox-LDL facilitates monocyte recruitment to the kidney,
enhances macrophage adhesion to the glomerular endothelium, and promotes macrophage-
to-foam-cell transformation via CD36 [71,72]. In the dyslipidemia mouse model, podocyte
injury was found to drive foam cell accumulation in capillaries, ultimately leading to
segmental glomerulosclerosis [73]. Ox-LDL-CD36/Toll-like receptor (TLR4)-dependent
endocytosis triggers ROS, NLRP3 activation and cuproptosis in renal tubules, accelerating
necrosis and fibrosis [74], and stimulates TGF-β1–driven fibrogenesis in mesangial cells and
PTECs [75,76]. HDL normally restrains ROS production and LDL oxidation; its quantitative
and functional decline therefore intensifies atherosclerosis and CKD progression [77]. It
can be seen that the metabolic communication between MAFLD and CKD tends to be a
“liver-generated and kidney-retained” relationship, but the impact from CKD should not be
ignored. Ox-LDL formation is also accelerated in CKD, partly owing to myeloperoxidase
(MPO) excess [78]. Similarly, ox-LDL induces intrahepatic ROS surge and mitochondrial
dysfunction. In early stages of atherosclerosis, Apo B-containing ox-LDL is efficiently
phagocytosed by Kupffer cells, triggering intracellular inflammatory transcription and
short-term induction of intrahepatic cholesterol/TG accumulation [79]. Ox-LDL can di-
rectly up-regulates NF-κβ/TGF-β1 signaling in HSC to drive collagen 1A1 deposition
and fibrosis [80]. A 2025 study found that ox-LDL-induced CD36 upregulation in double-
negative regulatory T cells precipitates ferroptosis and disrupts hepatic immune home-
ostasis in MASLD [81]. Ox-LDL elicits an immune cell response and fibrotic signaling
activation in both the liver and kidneys, which is pathologically significant in connecting
liver-kidney circuit.

3.4. Modified Lipids as a New Class of Uremic Toxins

In CKD, reduced antioxidant defenses and impaired renal excretion favor the ac-
cumulation of lipid-derived uremic toxins, including 3-carboxy-4-methyl-5-propyl-2-
furanpropanoic acid (CMPF), advanced lipoxidation end-products (ALEs), and ox-PL [82].
Levels of ALEs and ox-PL/ox-LDL also rise in steatohepatitis [28,83]. Although not much
literature on CMPF and fatty liver exists, a clinical study of NAFLD patients showed that
elevated CMPF is negatively correlated with lipid metabolizing ability, with the potential
to predict disease progression [84]. ALEs, such as MDA and 4-hydroxy-2-nonenal (4-HNE),
the end products of poly unsaturated fatty acid (PUFA) peroxidation, are initiated by ROS
attack on membrane PUFAs. They serve as both oxidative-stress markers and endothelial
toxins [85]. 4-HNE-modified LDL, for instance, accelerates foam-cell formation and en-
dothelial permeability [82]. Lipid-derived uremic toxins and lipotoxic products predispose
to vascular problems, amplified inflammation, and metabolic reprogramming, which are
the mediators linking CKD to MAFLD progression. Antioxidant and anti-inflammatory
dysfunction contributes to increased ROS and elevated ALEs, resulting in increased pro-
inflammatory factors including MCP-1, IL-6, IL-1β, and TNF-α. These cytokines, acting
as pro-insulin resistance mediators, contribute to increased FFA release, reduced glucose
uptake, and energy influx to the liver [27]. CC chemokine receptor 2 (CCR-2) expression
is elevated in the liver in MAFLD, and MCP-1 binding to CCR2 causes more monocyte
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and macrophage infiltration in the liver [86]. ALE binding to the receptor for advanced
glycation end products (RAGE) simultaneously activates NF-κB and TGF-β1 in hepato-
cytes, Kupffer cells, and HSCs, fueling an inflammatory-fibrotic circuit and dysregulated
iron homeostasis [87]. Similar to ox-LDL, Ox-PL binding to TLR2/TLR4 causes a burst
of ROS. As demonstrated by Sun et al., ox-PL suppressed PGC-1α-dependent FAO and
promoted mitochondrial dysfunction and hepatic fibrosis, a process reversible with the E06
neutralizing antibody [83]. Oxidized lipoproteins, phospholipids, and inflammatory factors
are among the damage-associated molecular patterns (DAMPs), and sensors such as RAGE,
CD36, and TLR are effectors for DAMPs. Blocking this signaling process, antioxidant or
neutralizing antibodies are promising therapeutic directions.

3.5. Lipoprotein Recepters and Effectors

In CKD, hepatic LRP-1 and LDLR and peripheral tissue VLDLR are down-regulated;
LRP-1 and LDLR also decline in MAFLD, whereas VLDLR is markedly up-regulated
in advanced steatosis [88]. LRP-1 loss leads to CM and IDL retention and exacerbates
hepatic TG/cholesterol accumulation, thereby worsening steatohepatitis under high-fat
dietary (HFD) intake [89]. Decreased VLDLR/LPL impairs peripheral VLDL-TG uptake,
contributing to CKD-associated sarcopenia and insulin resistance [90]. The surplus VLDL-
TG is redirected to the kidney, liver, and vasculature and, together with hepatic VLDLR
changes, facilitates excessive intrahepatic lipid recycling.

CD36 expression is markedly elevated in circulating monocytes/macrophages and
renal tissue of dialysis patients [54]. In podocytes, CD36-mediated palmitate uptake induces
ROS production, inflammation, and apoptosis [91]. Pharmacological or genetic CD36
inhibition prevents renal fibrosis in experimental models, positioning CD36 as a therapeutic
target [92]. Obesity-related podocyte detachment increases glomerular permeability, while
sodium–glucose cotransporter 2 (SGLT-2)-mediated glucose hyper-reabsorption exacerbates
tubular injury [93]. In the liver, CD36 drives lipotoxic uptake, insulin resistance and
steatosis [94]. Monocytes are recruited to tissues at the onset of liver injury; an increase
in non-classical monocytes increases the risk of NAFLD [95]. CD36 is highly expressed
in monocytes/macrophages infiltrating fibrotic livers [96], suggesting that highly CD36-
expressing monocytes recruited to the liver may exacerbate hepatic fibrosis. It is verified
that ox-LDL up-regulates the expression of macrophage CD36 by the long non-coding RNA
MALAT1 (LncMALAT1) [97]. Ox-LDL also accentuates hepatocyte LXR/CD36 signaling,
reinforcing hepatic lipotoxicity [98].

Due to the widespread expression of CD36, its role in lipid metabolic reprogramming
is potentially considered as a liver–kidney therapy. Vivo and in vitro studies have found
that some natural CD36 inhibitors prevent or mitigate fat accumulation in NAFLD, such
as quercetin and alisol B [99]. Apo AI-mimetic peptide 5A competitively occupies CD36
and promotes LDL-c efflux. In a CKD mice model, the 5A peptide inhibited NLRP3
activation, macrophage infiltration, and presented remission of albuminuria and interstitial
fibrosis [100]. However, natural CD36 inhibitors have multiple targets of action, and
mimetic short peptides may cause excess serum LDL-c and immune cell dysregulation.
Their safety and clinical feasibility need to be confirmed in long-term studies.

To conclude, lipid mobilization and redistribution are associated with fat inflammation,
circulating lipotoxins, and related receptor alterations in peripheral tissues at the onset
of both diseases, and this is particularly obvious when MAFLD is accompanied by CKD.
MAFLD, as one of the MetS phenotypes, is more likely to be a predisposing factor for CKD,
but CKD also affects lipid metabolism and leads to hepatic injury (Figure 2).
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Figure 2. Metabolic dysfunction linking MAFLD and CKD. (MAFLD) and chronic kidney disease
(CKD) share a dyslipidemic signature, including decreased HDL-C, elevated LDL-C and VLDL, and
altered lipoprotein receptor profiles. Hepatic lipid overload precipitates mitochondrial dysfunction
and ROS generation, whereas impaired toxin clearance in renal failure magnifies this oxidative milieu.
ROS drive the formation of ALE, ox-LDL, ox-PL, and other pro-inflammatory danger-associated
molecular patterns, fostering systemic multi-organ inflammation. Adipose inflammation aggravates
insulin resistance and liberates FFAs, accelerating lipid flux to both the liver and kidney, which is
ectopic fat accumulation. In the liver, ALEs and CD36-mediated ox-LDL uptake activate resident
immune cells and trigger HSC-driven fibrosis. In the kidney, deposition of ox-LDL, FFAs, and other
lipoproteins induces macrophage foam-cell formation and promotes glomerulosclerosis and fibrosis.

4. Pathology of Insulin Resistance in MAFLD and CKD
4.1. Lipotoxicity, Inflammation, and Insulin Resistance in MAFLD

Adipose tissue is the principal site of systemic insulin resistance, functioning as an FFA
pump [101]. During the early stages of obesity or high-fat feeding, adipocyte hypertrophy
precipitates local hypoxia, fibrosis, and macrophage infiltration. The ensuing release of IL-6
and TNF-α accelerates lipolysis and aggravates insulin resistance, further amplifying FFA
efflux. In skeletal muscle, ectopic lipid deposition impairs glycogen synthesis and glucose
uptake, redirecting energy substrates toward hepatic lipogenesis [7]. Hepatic insulin
resistance exists independently and secondarily to insulin resistance in adipose tissue and
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skeletal muscle [102]. Pancreatic lipid overload initially augments insulin secretion, but
chronic exposure to excess glucose and FFAs induces oxidative stress, inflammation and
ultimately β-cell dysfunction and apoptosis [102,103]. The mechanisms by which insulin
resistance occurs in the liver and peripheral tissues are described below and presented in
Figure 3.

 

Figure 3. Cellular mechanism of hepatic and peripheral insulin resistance. Under obesity and
systemic inflammation, FA input and cytokine stimulation is increased. FAO/TCA imbalance and
mitochondrial dysfunction causes an increase in ROS and lipotoxic products (DAGs and ceramides) of
DNL. The inflammatory factor TNF-α activates the NF-κβ/JNK and iNOS-NO pathways, impairing
the IRS/Akt/GLUT2/4 insulin signaling pathway; DAG/PKC signals inhibit the insulin receptor,
and ceramide induces the iNOS inflammatory pathway and inhibits Akt. Hepatic insulin resistance
is selective: Inactivation of the IRS2/AKT/FOXO signaling pathway leads to a decrease in insulin’s
ability to inhibit glucose metabolism; due to differences in the intrahepatic expression distribution of
IRS-1 and IRS-2, the IRS-1/Akt/mTOR pathway is less affected by PKC signaling, thereby enhancing
SREBP-1c/DNL.

Excess nutrient supply provokes mitochondrial dysfunction and endoplasmic retic-
ulum (ER) stress, increasing ROS production and activating TLR, NF-κB and JNK
signaling [102]. JNK, upregulated in insulin-responsive tissues including the liver, adipose
tissue, and skeletal muscle of T2D patients, phosphorylates insulin receptor substrate
1/2 (IRS-1/2) on serine residues, thereby disrupting downstream phosphatidylinositol
3-kinase (PI3K)/serine threonine kinase (Akt) signaling [104]. IRS/PI3K/Akt is a core
pathway of insulin signaling that inhibits hepatic gluconeogenesis, increases glycogen
levels, and promotes glucose uptake through the translocation of glucose transporters 2/4
(GLUT 2/4; GLUT2 in liver; GLUT4 in adipocytes and skeletal muscle). In NAFLD models,
TNF-α neutralization alleviates JNK-dependent IRS-1 phosphorylation and JNK/SREBP-
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1c-driven IRS-2 down-regulation, restoring hepatic insulin sensitivity [105]. Moreover,
FFA-stimulated JNK activation similarly compromises GLUT4 translocation and glucose
uptake in adipocytes and muscle cells [106,107]. In response to inflammation and ox-
idative stress, inducible nitric-oxide synthase (iNOS), transcriptionally upregulated by
NF-κB and JNK, amplifies inflammation by generating nitric-oxide (NO)-derived reactive
species (RNS), such as peroxynitrite (ONOO−), nitroxyl anion (NO−), and dinitrogen
trioxide (N2O3) [108]. iNOS was found to be elevated in both Kupffer cells and hepatocytes
in an NAFLD and obesity model; it generates NO/RNS to promote the S-nitrosylation
of IRS-1 and the down-regulation of IRS-2 in hepatocytes [108,109]. In skeletal muscle,
lipopolysaccharide/palmitate-induced iNOS promotes the nitration of insulin receptor ty-
rosine kinase (INSRβ), IRS-1, and Akt, further weakening insulin signaling [110]. Blockade
of INSR/IRS/Akt/GLUT4 pathway and iNOS/RNS elevation also occurs in hypertrophic
and stressed adipocytes [111]. Thus, JNK and iNOS constitute mutually reinforcing inflam-
matory nodes that impair insulin action across multiple tissues.

In hepatocytes, non-essential fatty acids (NEFAs), especially long-chain fatty acids
(LCFAs) and their lipotoxic products, such as diacylglycerols (DAGs) and ceramide, are
significantly enriched, which exacerbate hepatic insulin resistance. DAGs and lipotoxic
products also influence insulin resistance in muscle. During DNL, glycerol-3-phosphate
(G3P, from glycolysis) esterifies LCFA-CoA to generate lysophosphatidic acid, a DAG
precursor. Metabolic overload can shift energy flow from the pathways of FAO and
glycolysis to DNL and gluconeogenesis [27]. Excessive glucose and LCFA-CoA can be
transformed into G3P to promote DAG production [37]. DAGs activate protein kinase
C (PKC) to inhibit INSRβ and insulin-related IRS-2 phosphorylation. DAG activation of
PKCs inhibits INSRβ and IRS-2 phosphorylation, relieving forkhead box protein O (FOXO)
inactivation and up-regulating gluconeogenesis-related enzymes [112]. As IRS-1 is less
affected by PKC, the IRS-1/mTOR and the DAG/PKC/mTOR pathway can still up-regulate
SREBP-1, while glucose-induced ChREBP activation remains insulin-independent [113].
Different from the liver, adipose tissue has lower glucose uptake, insufficient glucose-
ChREBP activation, and reduced DNL.

In the Golgi apparatus and ER, LCFA-CoA (e.g., palmityl-CoA) and sphingosine are
esterized into ceramide. FA-CD36-mediated sphingomyelin hydrolysis will increase ce-
ramide levels [37]. Ceramide is verified to impede insulin signaling in vitro, and in one
study, it inhibited glucose uptake, promoted lipid storage, and induced hepatic steatosis in
mice [114]. Specifically, ceramide can inhibit Akt and activate the NF-κβ signaling pathway,
thus inducing iNOS expression, inflammation and impairing insulin signaling [36,102].
IRS1 is predominantly expressed in the hepatic perivenous zone responsible for lipogenesis,
whereas IRS-2 expression is concentrated in the hepatic periportal zone responsible for
gluconeogenesis. IRS-2 is susceptible to suppression by hyperinsulinemia, which may be
achieved through inactivated FOXO and activated SREBP-1c, whereas IRS-1 in the lipogen-
esis zone is relatively preserved [7]. Consequently, hepatic insulin resistance is “selective”:
glucose uptake and glycogen synthesis decline, yet gluconeogenesis and lipogenesis remain
inappropriately active.

4.2. Insulin Resistance in CKD

Independent insulin resistance frequently accompanies CKD, emerging in early stages
and becoming nearly universal in ESRD [15]. Skeletal muscle is the primary site of CKD-
derived insulin resistance; the rodents with subtotal nephrectomy exhibited marked GLUT4
depletion [115]. Similar to MAFLD, CKD patients exhibit excess FFAs and abnormal levels
of adipokines (e.g., adiponectin, leptin, resistin, and omentin) in their circulation, leading
to systemic insulin resistance in peripheral tissue [15]. Insulin resistance among CKD
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patients is associated with reduced adiponectin levels, and a decline in adiponectin levels
is associated with the risk of CVD [116]. Leptin, normally cleared by kidneys, accumulates
as GFR falls; chronic hyperleptinaemia is linked to sympathetic over-activity and insulin
resistance in uremic patients [117]. Though slight increases in leptin are beneficial for fat
metabolism, chronic hyperleptinemia triggers insulin resistance in uremic patients [15].
Uremic toxins, including carbamylated proteins and protein-bound toxins, generate ROS
and impair insulin signaling in peripheral tissues [118].

In haemodialysis patients, insulin resistance correlates with deficient erythropoietin
(EPO) and 1,25 dihydroxycholecalciferol [1,25(OH)2D3]. Reduced EPO secretion, a conse-
quence of renal insufficiency, is a primary contributor to renal anemia development [119].
EPO improves insulin sensitivity by improving anemia and diminishing TG levels [120].
Anemia may have induced insulin resistance through chronic tissue hypoxia and metabolic
stress. Although a direct causal link between renal anemia and insulin resistance remains
unproven, chronic hypoxia and metabolic stress are plausible mediators. As kidney disease
advances to its end stage, a deficiency in calcium and 1,25(OH)2D3 coupled with elevated
phosphate levels instigates the onset of secondary hyperparathyroidism, causing a compen-
satory elevation in parathyroid hormone (PTH). Excessive PTH concentrations impair the
insulin secretion of pancreatic β-cells via calcium-dependent mechanisms, obstructing glu-
cose uptake [121]. Dialysis patients deficient in 1,25(OH)2D3 exhibited glucose intolerance
in one study [122]. Researchers found that 1,25(OH)2D3 treatment and vitamin D receptor
agonist (VDRA) attenuated fibrosis and albuminuria in CKD patients by inactivating RAS,
though vitamin D application has not been found to delay the progression of CKD [123].

5. Insulin Resistance Linking NAFLD and CKD
5.1. The Linkage Between Ectopic Lipid Accumulation and Insulin Resistance

In CKD, insulin resistance typically manifests first in the skeletal muscle and subse-
quently involves adipose tissue and the liver [15]. Diminished peripheral glucose uptake,
enhanced lipolysis, and compensatory hepatic energy production drive this metabolic
phenotype. A study has shown that advanced CKD contributes to the up-regulation
of SREBP-1/ChREBP-mediated DNL-associated enzymes and the depression of CPT-1-
mediated FAO activity in the liver, accompanied by hepatic fat accumulation [124]. The
role of CKD in metabolic reprogramming of the liver possibly reflects an insulin-resistant
milieu, adipokine dysregulation, and chronic inflammation. Insulin resistance and CKD
together potentiate CETP activity and the fractional catabolic rate of Apo A1, culminating in
immature HDL particles [125]. Declining HDL-c prompts a compensatory rise in VLDL-TG
and an elevated remnant cholesterol/HDL-c ratio. The immaturity of HDL impedes the
reverse transport of cholesterol from peripheral tissues to the liver and affects the clearance
of free cholesterol in the liver, thereby triggering ER stress and TG synthesis and promoting
the progression of NAFLD and atherosclerosis [126]. AMPK-driven FAO is weakened and
LXR/SREBP-1c is activated due to cholesterol accumulation and HDL exhaustion [127].
Consequently, insulin resistance constitutes an independent risk factor for NAFLD and
accelerates the transition to fibrotic NASH [128].

In MAFLD, insulin resistance manifests as a hepatic “lipogenic-gluconeogenic pheno-
type” and a peripheral “glucose-FFA-release phenotype,” together establishing a supply-
and-storage circuit at an early stage. Intrahepatic DNL inversely correlates with systemic
insulin sensitivity and fuels TG storage [129]. Dysfunction of the IRS/Akt/FOXO pathway
due to selective hepatic insulin resistance results in a loss of inhibition of Apo B lipidation,
contributing to a significant increase in the secretion of Apo B-containing lipoproteins, such
as VLDL [130]. The resulting VLDL-TG, along with FFAs and glucose derived from periph-
eral insulin resistance, fosters renal lipotoxicity and glucotoxicity. Lipoproteins stimulate
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mesangial cell proliferation and extracellular-matrix (ECM) production [69]. NEFA deposi-
tion in podocytes and proximal tubular epithelial cells (PTECs) activates mTOR, promoting
gluconeogenesis, proteinuria, and tubular injury [13]. Su et al. found that palmitate inhib-
ited PPAR-γ expression to reduce the renal levels of insulin-degrading enzyme (IDE), which
participated in the clearance of insulin and insulin sensitivity [131]. Advanced glycation
end-products (AGEs) engage RAGE on PTECs, activating metalloproteinase-2 (MMP-2) and
ROS and accelerating diabetic nephropathy [132]. DAG-PKCβ activation is also involved
in renal vascular permeability, immune cell adhesion, and cytokine activation [133]. We
speculate that insulin resistance contributes to lipid accumulation in the kidneys and liver
(Figure 3).

5.2. Adipokines and Hepatokines

MAFLD is characterized by elevated leptin and reduced adiponectin levels secondary
to obesity and inflammation; early CKD shows an analogous pattern owing to diminished
renal clearance, although adiponectin levels rise in later CKD stages. Adiponectin enhances
insulin sensitivity and FAO via the AMPK/PPAR-α pathway; its decline promotes HSC
activation and ROS generation [134]. Decreases in adiponectin and increases in leptin
levels can lead to podocyte injury and albuminuria [135]. A slight increase in leptin
promotes FAO, but an excessive increase promotes ROS production and enhances fibrosis
signaling. Leptin excess induces podocyte damage, albuminuria, and hypertension through
TGF-β1 signaling [136] and can magnify NAFLD by eliciting pyroptotic hepatocyte death
via CD8+ T cell activation [137]. A 2023 study of 575 NAFLD patients found that the
adiponectin–leptin ratio (ALR) could predict disease severity independently of insulin
resistance [138]. There are currently no such cohort studies for CKD, but it is evident that
a high adiponectin-leptin ratio is detrimental to glomerular function. CKD and MAFLD
can drive each other through this adipokine abnormality, with or without inducing insulin
resistance. Fetuin-A levels rise in both MAFLD and obesity-related CKD, potentiating lipid-
driven inflammation, fibrogenesis, and adiponectin suppression; thus, Fetuin-A-mediated
AMPK inhibition may represent a common pathological node [134].

Fibroblast growth factor 21 (FGF-21) is mainly secreted in the liver, but other organs
can also be its producers and targets. FGF-21, the hepatokine mediated by PPAR-α acti-
vation, is compensatorily up-regulated in MAFLD to maintain energy homeostasis [63].
FGF-21 alleviates lipid metabolism through the inhibition of SREBP-1c and increases in the
expression of PGC-1α in the liver and maintains insulin sensitivity through activation of the
PI3K/Akt/GLUT4 signaling pathway, adiponectin up-regulation, and direct protection of
pancreatic β-cells [63,139]. FGF-21 also alleviates renal inflammatory infiltration and lipo-
toxicity, but FGF-21-induced hypertension is noteworthy [140]. Levels of B-Klotho (KLB),
the anti-aging molecule that mediates the signaling of FGF receptor 1c (FGFR-1c), decline
with age, CKD progression, and inflammation, contributing to FGF-21 resistance [141]. FGF-
21 increases with aging and severity of MAFLD and metabolic dysfunction; although it has
a protective effect, impaired signaling still renders FGF-21 ineffective [142]. As a protective
factor linking MAFLD and CKD, FGF-21 can serve as a common therapeutic target.

Insulin-like growth factor 1 (IGF-1) modulates insulin sensitivity and protein synthesis.
NAFLD displays reduced IGF-1 levels and elevated levels of IGF-binding proteins (IGF-
BPs), whereas advanced fibrosis is associated with further IGF-1 decline and heightened
CKD risk [139]. IGFBP is detrimental to IGF-1’s effect, and its up-regulation contributes
to IGF-1 resistance. A clinical study of adults with NAFLD demonstrated an increased
risk of progression to CKD in the group with a high-risk of fibrosis, which was accom-
panied by a decrease in IGF-1 [143]. Moreover, CKD presents elevated IGFBP, growth
hormone (GH)/IGF-1 resistance, and IGF-1 elevation [144]. Normal levels of IGF-1 help
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maintain eGFR, promote repair, and suppress inflammation; excessive IGF-1 mediates
renal ECM accumulation, cell proliferation and fibrosis [145]. Both diseases show biphasic
dysregulation—initial deficiency followed by relative resistance—underscoring the need
for time-specific therapy.

5.3. SNS-RAS-ROS Axis

Systemic insulin resistance impairs PI3K-mediated NO production, favoring vaso-
constriction and glomerular hyperfiltration [146]. Hyperinsulinemia promotes SNS hyper-
activity and sodium retention, which is verified in obesity, T2D, and renal failure [147].
SNS activation causes the release of angiotensin–aldosterone and norepinephrine (NE)
to promote renal vasoconstriction and hypertension. Angiotensin II and ROS reinforce
one another and together with hyperglycemia activate epidermal growth factor receptor
(EGFR)/Src/TGF-β1 signaling, driving ECM deposition and glomerulosclerosis [148]. In-
sulin also up-regulates vascular AT1-receptor expression, sensitizing tissues to angiotensin
II and promoting renal vasoconstriction and sodium–water retention [149,150]. Under
hyperinsulinemia and obesity conditions, RAS activation and enhanced sodium–glucose
absorption in the proximal tubules result in hyperfiltration, albuminuria, and potential
glomerulosclerosis [13]. Under inflammatory conditions, infiltrating macrophages release
IL-6 to mediate the overexpression of cell adhesion molecules 1 (CAM-1) and AT-1 receptors
in the endothelium [151]. AT-1 receptors facilitate renal vascular damage, and CAM-1 aids
in the recruitment of macrophages to the vascular endothelium [152].

Insulin resistance in CKD also exacerbates MAFLD through the activation of SNS
and RAS. In CKD, sympathetic reflexes from the kidneys and peripheral tissue stimulate
the RAS/ROS axis to enhance insulin resistance in adipocytes and skeletal cells [153].
Adipocytes in inflammatory states can produce leptin, angiotensin II, and NE. Vitamin D
deficiency in CKD affects the inhibition of RAS activation and release of angiotensin II [154].
Correspondingly, hyperleptinemia, increased angiotensin II levels, and hyperinsulinemia
enhance renal SNS activation [117]. Though the liver serves as a nonclassical target organ
for RAS and SNS, HSCs, Kupffer cells, and hepatocytes express AT-1 and the adrenoceptor.
Angiotensin II/aldosterone stimulation has been found to promote NF-κβ signaling to
mediate inflammation and hepatic fibrosis in rats [155]. Sigala et al. found that the
adrenoceptor is up-regulated in human cirrhotic NAFLD, leading to HSC proliferation
and collagen deposition upon SNS-neurotransmitter stimulation [156]. Another study
found that the NE-adrenoceptor activated the release of TNF-α in a mouse model of liver
cirrhosis [157]. This fibrotic process, which can also be induced through the angiotensin
II/TGF-β1 pathway, is evident in the synergistic effect of insulin resistance, SNS, and RAS,
which together aggravate liver injury (Figure 4).

5.4. The Effect of Fructose

Modern diets, such as SSBs, are rich in sucrose and high-fructose corn syrup. In
MAFLD, Fructose metabolism proceeds ten-fold faster than glucose, generating exces-
sive ROS and supplying G3P and acetyl-CoA for DNL [158]. Fructose is metabolized
into fructose-1-phosphate by fructokinase, generating glycolytic intermediates that pro-
vide essential substrates, such as G3P and acetyl-CoA for lipogenesis. Perpetual fructose
consumption promotes DNL through the activation of SREBP-1c/ChREBP downstream
enzymes, such as ACC and FA synthase [159]. Up-regulation of CD36 induced by excess
high fructose input mediates steatosis in MASLD [160]. In rats consuming a high fructose
diet, hepatic activation of TLR4, NLRP3, NFκB, and JNK with the inhibition of AMPK leads
to inflammation and insulin resistance [161]. Fructose also promotes hepatic fibrosis via
oxidized coenzyme Q9 and nitro-oxidative stress [162].
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Figure 4. Insulin resistance in MAFLD and CKD and the interaction between the two diseases. In
NAFLD, lipid overload triggers inflammatory responses and insulin resistance in adipocytes, acting
as a pump for the export of FFA/glucose and inflammatory factors. Hepatic insulin resistance can be
driven by high-fructose diets, dysregulation of FAO/DNL, and the formation of lipotoxic products,
as well as by increased energy input from peripheral tissues. In CKD, HDL immaturity, increase in
fructose/uric acid axis, decreased EPO production, and PTH hypersecretion contribute to systemic
insulin resistance. CKD and diabetes can both cause HDL immaturity, leading to reduced HDL-c
and increased LDL-c levels; meanwhile, MAFLD enhances VLDL output, exacerbating this pattern
of dyslipidemia. Increased deposition of lipoproteins (VLDL and LDL-c), FAs, and glucose in the
kidneys induces lipotoxicity and inflammatory response, which stimulate gluconeogenesis activation
and insulin resistance in the kidneys; insulin resistance in the kidneys exacerbates glomerulosclerosis
and renal fibrosis. MAFLD and CKD both exhibit abnormalities in adipokines and hepatokines,
which induce systemic insulin resistance; abnormal adipokines cause damage to glomerulus and liver
cells. Within the SNS/RAS/ROS axis, insulin, and adipokine, there is a feedback loop amplifying
the interactions among them, and then leptin/SNS/RAS axis activates fibrotic signals in the liver
and kidneys.
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In CKD, overconsumption of fructose escalates obesity, insulin resistance, and
hyperuricemia [163]. Fructokinase converts fructose to fructose-1-phosphate, generating
AMP for uric acid synthesis, while renal fructose catabolism supplies pyruvate for gluco-
neogenesis. Apart from dietary fructose, endogenous fructose production, enhanced by
hyperglycemia and renal ischemia, further accelerates CKD progression [164]. In fructose-
induced MetS, pro-inflammatory mediators such as uric acid and C-reactive protein are
identified as drivers of renal injury [165]. Despite the previous belief that uric acid was not
a significant contributor to metabolic problems, uric acid directly induces hepatic steatosis
and insulin resistance through NLRP3 activation [166]. Thus, excessive fructose and uric
acid accumulation represent convergent therapeutic targets in MAFLD and CKD.

6. Potential Therapies Targeting Metabolic Disorders in NAFLD and CKD
To date, only resmetirom has been approved by the FDA in 2024 as a standard treat-

ment for MAFLD. As a selective thyroid receptor agonist, resmetirom is indicated for allevi-
ating fibrosis non-cirrhotic MASH and reducing hepatic fat accumulation [167]. However,
several medications for obesity, diabetes, and cardiovascular diseases are recommended in
MAFLD guidelines. For CKD, in addition to RAS inhibitors (RASIs) and SGLT-2 inhibitors
(SGLT-2I) as first-line drugs, treatment also involves multiple complications, such as drugs
to correct anemia, calcium supplements, antiplatelet agents, other antihypertensive drugs,
antidiabetic drugs, etc. [168]. With the goal of correcting metabolic disorders, there is
potential for overlap in the use of medications for MAFLD and CKD. Metabolism-related
medications for MAFLD and CKD are listed in Tables 1 and 2. Among them, the shared
drugs used by two diseases with proven clinical potential are shown in Figure 5.

Table 1. Drugs that intervene in the metabolism of MAFLD.

Type Object Mechanism and Influence on the Liver Reference

Vitamin E NASH adults without T2D

Down-regulate CD36, up-regulate
PPAR-γ/adiponectin, and reduce ox-LDL and

MDA levels; hepatic inflammation↓ and
incidence of CKD↓

[169,170]

RAS inhibitors

Obese mice with HDF Activate PPAR-γ/AMPK, inhibit RAS, and
improve insulin resistance; steatosis↓ [171]

MASH patients and
MASLD patients

Activate PPAR-γ, and reduce TG and cholesterol
levels; HOMO-IR↓, inflammation↓, steatosis↓,

hepatic fibrosis↓, and morbidity↓
[172,173]

PPAR-γ agonists NASH patients and
diabetes patients

Activate adiponectin/AMPK/PPAR-α, inhibit
Fetuin-A, and enhance FAO; intrahepatic lipid↓

and hepatic fibrosis↓
[174,175]

Pan-PPAR agonists MASH patients Improve TG and HDL levels; HOMA-IR↓,
inflammation↓, and hepatic fibrosis↓ [176]

GLP-1R agonists MASLD/MASH patients Inhibit Fetuin-A and induce FGF-21; hepatic fat
content↓, inflammation↓, and hepatic fibrosis↓ [63,177,178]

SGLT-2 inhibitors
T2D mice with HDF and

MASH mice

Modulate AMPK/mTOR and inhibit ACC;
inflammation↓, hepatic TG accumulation↓,

HOMA-IR↓, and hepatic fibrosis↓
[179,180]

MASH patients Hepatic fibrosis↓ [181]

FXR agonists NAFLD patients with T2D
and NASH patients

Enhance CPT-1/FAO, inhibit DNL, improve
insulin sensitivity, and reduce VLDL;
intrahepatic lipids↓, transaminase↓,

and hepatic fibrosis↓

[182,183]
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Table 1. Cont.

Type Object Mechanism and Influence on the Liver Reference

FGF-21 analogue MASH patients
Activate PGC-1α, inhibit SREBP-1c, and improve

insulin sensitivity; hepatic fat content↓,
transaminase↓, and hepatic fibrosis↓

[184]

Statins

NAFLD/NASH mice
Activate PPAR-α/CPT-1α/FAO and reduce

ALE-RAGE signals; inflammation↓, steatosis↓,
and hepatic fibrosis↓

[185,186]

MAFLD patients
Reduce dyslipidemia indices (LDL-c, Apo B,
FFA, TG, and total cholesterol); hepatic fat

content↓ and incidence of CVD↓
[170,187]

The arrow↓, alleviation of condition, or decrease of negative indicators; the arrow↑, enhancement of function.

Table 2. Drugs that intervene in the metabolism of CKD.

Type Object Mechanism and Influence on the Kidney Reference

Vitamin D CKD/uremia patients Inhibit PTH hypersecretion, inhibits RAS, and improve
dyslipidemia and insulin resistance; albuminuria↓ [122,123]

RAS inhibitors
5/6 nephrectomized rats Activate PPAR-γ and inhibit RAS; renal fibrosis↓ [188]

CKD patients Incidence of ESRD↓ [189]

Finerenone Diabetic nephropathy Antagonize aldosterone and maintain water-sodium
balance; renal fibrosis↓ [190]

PPAR-γ agonists
5/6 nephrectomized rats Inhibit TGF-β1 and collagen I; renal fibrosis↓ [191]

CVD patients Microalbuminuria↓; eGFR decline↓ [192]

GLP-1R agonists
HFD-induced CKD rats

and UUO rats

Reduce sodium reabsorption, activate
Sirt1/AMPK/PGC-1α, and inhibit TGF-β1 and ECM

secretion; renal fat accumulation↓; renal fibrosis↓
[193,194]

CKD patients with T2D Incidence of ESRD↓; eGFR decline↓ [195]

SGLT-2 inhibitors
Obese/diabetic mice

Inhibit RAS/TGF-β1/ECM secretion, inhibit the absorption
of glucose and sodium, and inhibit CD36 in PTECs;

albuminuria↓, renal fibrosis↓, and renal lipotoxicity↓
[196,197]

CKD patients eGFR decline↓ and morbidity↓. [198]

Statins
5/6 nephroectomized rats

Reduce dyslipidemia indices and alleviate NRLP3
activation; inflammation and foam cell infiltration↓,

dyslipidemia↓, and renal function↑
[199]

CKD patients Albumin/creatinine ratio↓, inflammation↓,
and eGFR decline↓ [200,201]

The arrow↓, alleviation of condition, or decrease of negative indicators; the arrow↑, enhancement of function.

 

Figure 5. Drugs with verified clinical potential shared by two diseases.
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6.1. Vitamin

Active vitamin D, as a drug for the routine treatment of metabolic bone disease in
CKD, can inhibit PTH hypersecretion, the release of inflammatory factors, and even RAS
activation to alleviate albuminuria and insulin resistance [123]. The previous clinical
study have confirmed that 1,25(OH)2D3 treatment can alleviate dyslipidemia and insulin
resistance in patients with uremia [122]. Active VDRAs, such as calcitriol, have been
shown to reduce homeostasis model assessment of insulin resistance (HOMO-IR) and liver
function indices (ALT) in NAFLD patients deficient in 1,25(OH)2D3 [202]. Although short-
term supplementation with Vitamin D and VDRA can alleviate insulin resistance, long-term
use may cause abnormal blood calcium and phosphorus levels in MAFLD patients without
deficiency of 1,25(OH)2D3.

Vitamin E ameliorates insulin resistance by down-regulating CD36 and up-regulating
PPAR-γ-dependent adiponectin and improves oxidative stress by reducing ox-LDL and
MDA production [169]. Guidelines suggest that in adults with NASH without diabetes,
800 IU/d rrr-α-tocopherol may be considered to improve inflammation, but it does not
reverse fibrosis [170]. In adults with NASH without diabetes, 800 IU/d rrr-α-tocopherol
may be considered. According to a 30-year follow-up trial of 4038 American adults, dietary
vitamin E and tocopherol isoforms reduced the incidence of CKD [203]. For CKD, the
therapeutic window for vitamin E is narrow, and excessive doses increase the risk of
bleeding. The long-term safety of its use needs to be clinically verified.

6.2. Renin Angiotensin System Inhibitors and Mineralocorticoid Receptor Antagonist

Angiotensin-converting enzyme inhibitors (ACEIs) and angiotensin receptor blockers
(ARBs), which belong to RASIs, are the first-line drugs for managing CKD hypertension,
and they can alleviate metabolic problems. Huang et al. found that telmisartan, which is one
of the ARB family and also partly functions as PPAR-γ agonist, improved insulin resistance
by activating AMPK and diminishing ER stress and alleviated hepatic steatosis in mice fed a
HFD [171]. In a randomized controlled trial (RCT) on MASH patients, telmisartan activated
PPAR-γ and reduced blood TG and total cholesterol to alleviate the HOMO-IR, steatosis,
inflammation, and hepatic fibrosis [172]. A nationwide database-based analysis published
by Hepatology in 2025 showed that ACEI/ARB use significantly reduced the probability
of death, CVD, and risk of hepatic events (e.g., ascites and hepatic encephalopathy) in
MASLD [173]. Telmisartan was found to ameliorate vascular dysfunction and fibrosis by
activating PPAR-γ and blocking AT-1 receptors in CKD model of 5/6 nephrectomized rats
with hypertension [188]. A meta-analysis of 18 RCTs including 1739 participants with a
mean eGFR of 22.2 mL/min/1.73 m2 showed that the use of RASIs could delay progression
to ESRD with replacement therapy [189]. Importantly, the dilating effect on the efferent
arteries and hyperkalemia induced by RASIs is noticeable. When using RAS blockers,
especially in patients with CKD, electrolyte and eGFR decreases should be monitored, and
dose adjustments should be made promptly; neither discontinuation nor dual use of ARB
and ACEI is recommended [168].

A non-steroidal mineralocorticoid receptor antagonist (MRA), such as finerenone, is
recommended to be added to a RASI and a SGLT-2I for treatment of CKD with T2D in
Kidney Disease: Improving Global Outcomes (KDIGO) guidelines. Finerenone antagonizes
the action of aldosterone, down-regulates inflammatory fibrosis genes such as TGF-β1 and
collagen 1A1, reduces water and sodium retention, and has excellent renal and cardiac
protective effects in diabetic nephropathy [190]. For the liver, there is only one small sample
size RCT involving 48 MASH patients, which showed improvement in fibrosis after MRA
treatment and benign liver safety [204]. However, research on MRA treatment for MAFLD
remains limited.
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6.3. Insulin-Sensitizing Agents

As an insulin-sensitizing agent, thiazolidinedione (TZD) activates PPAR-γ and up-
regulates adiponectin levels in adipose tissue, stimulating AMPK and PPAR-α and en-
hancing FAO and glucose uptake [205]. The 2023 American Association for the Study of
Liver Diseases (AASLD) practice guidelines indicate that pioglitazone can be considered
in cases of MAFLD combined with T2D, but caution should be exercised regarding side
effects [170]. In patients with NASHs, one of the TZD family, pioglitazone, improved in-
sulin resistance, significantly reduced intrahepatic fat, and attenuated histological changes
and hepatic fibrosis [174]. An RCT of diabetes patients showed that pioglitazone lowered
both hemoglobin A1c and fetuin-A levels [175]. Sun et al. found that pioglitazone amelio-
rated mitochondrial dysfunction by inhibiting ROS production and protected the kidneys
from fibrotic progression by reducing TGF-β1 signaling and fibronectin and collagen I
levels in a CKD model of 5/6 nephrectomized rats [191]. A meta-analysis showed that TZD
reduced microalbuminuria by an average of 25–30%, slowed the annual rate of decline in
eGFR by about 1 mL/min/year, but increased hospitalization for heart failure [192]. Recog-
nition of the adverse effects of TZD, which include weight gain, water–sodium retention,
edema, and the possibility of developing heart failure and severe renal impairment, should
be maintained. The American Diabetes Association (ADA)-KDIGO consensus report recom-
mends that TZDs may be considered when first-line medications are not tolerated; however,
they should be used with caution in patients who are overweight or at risk of heart failure.

In recent years, lanifibranor (pan-PPAR agonist) and saroglitazar (dual PPAR-γ/α
agonist) presented lower degrees of edema, weight gain, and incidence of heart failure.
Lanifibranor reversed or attenuated fibrosis in MASH in clinical phase II trials and im-
proved TG, HDL-c, HOMA-IR, and other biochemical abnormalities, demonstrating su-
perior anti-fibrotic and anti-inflammatory effects [176]. Saroglitazar has been shown to
be pharmacokinetically stable in severe renal injury and cholestatic liver disease, with no
demonstrated safety concerns [2]. The safer, more comprehensive effect makes the new
PPAR agonist drug more feasible for concurrent use in MAFLD and CKD.

6.4. Glucagon-like Peptide 1 Receptor Agonists

Glucagon-like peptide-1 (GLP-1) is an incretin secreted by distal-ileal L-cells that
augments glucose-stimulated insulin release. In T2D, GLP-1R agonists (GLP-1RA) improve
obesity-related insulin resistance by enhancing β-cell insulin secretion and suppressing
hepatic DNL [206]. The US FDA has approved once-weekly semaglutide for chronic weight
management in adults with obesity or those who are overweight, providing a therapeutic
rationale for MAFLD. GLP-1RA therapy lowers circulating fetuin-A concentrations and
mediates the GLP-1/FGF-21 axis in clinical studies of MASLD [63]. A meta-analysis of
RCTs demonstrated that liraglutide, semaglutide, and exenatide significantly reduced
hepatic fat content and improved the histological manifestation of MASH compared with
a placebo [177]. In a phase III study of MASH, semaglutide also decreased hepatic fi-
brosis, attenuated lobular inflammation, and resulted in marked weight loss [178]. In
the kidneys, GLP-1 down-regulates epithelial sodium channel expression in the proximal
tubules, thereby reducing sodium reabsorption and intraglomerular pressure [207]. In
an HFD-induced CKD rat model, liraglutide lessened renal lipid accumulation, activated
the Sirt1/AMPK/PGC-1α axis, and preserved mitochondrial function [193]. Li et al. re-
ported that liraglutide inhibited the ECM secretion of PTECs treated with TGF-β1 and
ameliorated renal fibrosis in CKD mice with unilateral ureteral obstruction (UUO) [194].
Clinically, once-weekly dulaglutide (1.5 mg) lowered the composite risk of ≥40% eGFR
decline or progression to ESRD in patients with T2D and CKD [195]. Drugs adminis-
tered at low eGFR increase the likelihood of intractable gastrointestinal reactions and need



Int. J. Mol. Sci. 2025, 26, 6962 20 of 31

prompt adjustment; Liraglutide along with exenatide is partially excreted by the kidneys,
administration is recommended with eGFR ≥ 15 mL/min/1.73 m2 for liraglutide and
eGFR ≥ 60 mL/min/1.73 m2 for exenatide [208]. GLP-1RA has become one of the few
“same-target, dual-action” drugs that link MAFLD and CKD by integrating metabolic–
inflammatory–hemodynamic signaling through multiple pathways.

6.5. Sodium–Glucose Cotransporter 2 Inhibitors

SGLT-2I diminish the reabsorption of glucose and sodium in the proximal tubules,
resulting in decreased albuminuria, water–sodium retention, RAS activation, and blood
glucose levels [196]. Dapagliflozin and empagliflozin, the SGLT-2I, have been approved
by the FDA as anti-diabetic drugs and are officially listed as first-line drugs for CKD in
KDIGO’s 2024 guidelines. It used to be thought that SGLT-2I was not recommended CKD
patients with eGFR < 45 mL/min/1.73 m2; a recent study showed that CKD patients
given dapagliflozin treatment with eGFR < 30 mL/min/1.73 m2, compared to a placebo,
similarly demonstrated decelerated decreases in eGFR, with reduced rates of mortality
and cardiovascular events, which is consistent with the effects observed in CKD patients
with eGFR between 30 and 70 mL/min/1.73 m2 [198]. Dapagliflozin attenuates renal
fibrosis manifestations and ECM deposition in diabetic mice via angiotensin II/TGF-β1
signaling [196]. In HFD-induced obese mice, empagliflozin also inhibited CD36 expression
in PTECs through the PPARγ pathway, reducing the deposition of lipotoxic products and
cell apoptosis [197]. In the liver of T2D mice with HDF treatment, the animal and in vitro
experiments documented that dapagliflozin regulated the AMPK/mTOR pathway and in-
hibited DNL-related enzyme ACC, improving hepatic TG accumulation and steatosis [179].
Empagliflozin is reported to alleviate inflammation and steatosis in MASH mice with
improvements in HOMA-IR, inflammatory factors, and fibrosis markers [180]. A 2025
RCT found that dagliflozin inhibited the progression of hepatic fibrosis in MASH without
significantly altering histology [181]. The effects of SGLT-2I on the kidney are relatively
well defined, and institutions have initiated studies on the combination of SGLT-2I and
lanifibranor in MAFLD/T2D to reduce edema through hemodynamic improvement and
to efficiently reverse hepatic fibrosis and systemic inflammation. The ADA has included
eGFR ≥ 20 as a routinely recommended threshold, and more clinical evidence is needed on
the safety of pre-dialysis CKD (eGFR < 15); the risk of diabetic ketoacidosis and urinary
tract infection while co-administering insulin need to be cautioned.

6.6. Farnesoid X Receptor Agonists

The farnesoid X receptor (FXR) in hepatocytes, PTECs, and ileal epithelium regulates
the homeostasis of bile acids, lipids, and glucose. The FXR agonist enhances CPT-1-
mediated FAO, inhibits DNL activity, induces ileal and hepatic production of FGF-19 to
inhibit bile acid overproduction, and lowers the levels of hepatic lipids to reduce VLDL
output. In a randomized double-blind trial of patients with T2D and NAFLD, the group
treated with obeticholic acid, a natural agonist of FXR, exhibited significantly lower AST
and ALT values, increased insulin sensitivity, and improved hepatic fibrosis compared
to a placebo [182]. In the phase 2a/b trial of a new-generation FXR agonist, tropifexor,
NASH fibrotic signaling and hepatic fat receded significantly compared to a placebo,
and no pharmacological hepatotoxicity was observed [183]. The FXR agonist attenuated
lipid accumulation, lipotoxicity, and ox-LDL/β-catenin-mediated activation of the fibrotic
pathway in renal tubules in an HFD mice model [76]. Major adverse effects of FXR agonists,
including pruritus, hepatotoxicity, and LDL-c burden due to cholesterol reflux, warrant
particular caution. FXR is a common target in the liver and kidneys through the lipo-
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inflammatory–fibrotic axis, but longer-term, larger clinical trials are needed to validate its
safety profile and the application in CKD.

6.7. FGF-21 Analogue

A recent meta-analysis of nine IIb/IIa RCTs, including 1054 MASH patients, showed
that the use of FGF-21 analogues significantly improved hepatic fibrosis; it also significantly
improved liver fat content, transaminases, and dyslipidemia indices (TG, HDL-C, and
LDL-C) [184]. Mendelian randomization studies using missense variants that mimic
pharmacological activation of FGF-21 further show associations with higher eGFR and a
reduced risk of CKD [209]. Although related trials are sparse in CKD and renal outcomes
remain undefined, the genetics analysis and safety data provide a strong rationale for
ongoing and future clinical studies.

6.8. Statins

Inhibitors of 3-hydroxy-3-methylglutaryl-coenzyme A (HMG-CoA) reductase and
ligand, known as statins, reduce levels of TG, total cholesterol, and LDL-c. In a NASH
model, statins treatment upregulated hepatic PPAR-α and CPT-1α, thereby augmenting
mitochondrial FAO [185]. In another NAFLD model, simvastatin mitigated steatosis,
fibrosis and inflammatory signaling by suppressing oxidative and ALE-RAGE stress [186].
Clinically, a RCT in 32 patients with metabolic syndrome and moderate-to-severe MAFLD
showed that hepatic lipid content declined in parallel with decreases in LDL-C, ApoB,
and FFA [187]. Consistent with these findings, the AASLD practice guidance endorses
statins as safe in MAFLD and advises early initiation to lessen cardiovascular risk [170].
Renal data are similarly encouraging. In 5/6 nephroectomized rats, after atorvastatin
reduced LDL-C levels, cholesterol crystals were significantly reduced, NRLP3 activation
and foam cell infiltration were alleviated, and renal aquaporin-2 AQP2 expression and
renal function were improved [199]. Rosuvastatin has been found to alleviate albuminuria
and inflammation and reduce urinary albumin–creatinine ratio in CKD patients [200].
High-dose atorvastatin (≥40 mg) and rosuvastatin (≥20 mg) significantly reduced the
progression of eGFR in CKD patients [201]. Statin therapies have slight risk of myotoxicity,
necessitating dosage adjustments by severity of renal impairment, but discontinuation is
considered only when transaminases exceed three times the upper limit of normal [210].

7. Conclusions
Our review highlights that metabolic dysfunction-associated fatty liver disease

(MAFLD) is a potent initiator and accelerator of chronic kidney disease (CKD), whereas
CKD can reciprocally worsen hepatic steatosis. On the one hand, excessive ectopic lipid
accumulation and insulin resistance unify MAFLD and CKD pathogenesis, promoting their
oxidative stress, inflammation, and fibrosis through shared pathways, such as dyslipidemia
induced by the impairment of related enzymes and receptors, activation of inflammatory
signals mediated by cell senescence, ALEs, ox-LDL, CD36, and RAGE/TLR-4, and in-
sulin signaling impairment driven by PPAR signals and LCFA/DAG/ceramide. Systemic
involvement via the SNS/RAS/ROS axis, exacerbated by insulin resistance and altered
adipokine/hepatokine profiles, intensifies mutual hepatic and renal injury. On the other
hand, advanced CKD results in excessive lipotoxins, uremic toxins, and PTH, as well as
deficiency in EPO, in a unique pattern that causes systemic inflammation and insulin resis-
tance. Hepatic insulin resistance is selective, as evidenced by preserved gluconeogenesis
and DNL effects but impaired glucose uptake and glycogen synthesis, whereas peripheral
insulin resistance is biased toward enhanced lipolysis. The interaction between MAFLD
and CKD reinforces the loop of “extrahepatic energy donation and hepatic storage”.
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Emerging pharmacotherapies, including statins, PPAR-γ agonists, GLP-1RAs, RASIs,
and SGLT-2I, have demonstrated multi-target metabolic effects and clinical efficacy in both
MAFLD and CKD. Among these agents, GLP-1RAs and SGLT-2I are becoming first-line
therapies in MAFLD-CKD comorbidity, owing to their combined metabolic and hemody-
namic benefits, alongside accumulating evidence supporting their long-term safety. FXR
agonists, FGF-21 analogues, and pan-PPAR agonists have so far only been validated in
MAFLD but possess therapeutic targets abundantly expressed in multiple organs, including
the liver and kidney, and exhibit good tolerability with manageable side effects. Future
clinical studies should focus on FXR agonists with minimal hepatotoxicity and on dedicated
CKD trials for FGF-21 and pan-PPAR agonists. The combination of pan-PPAR agonists
and SGLT-2I holds particular promise due to the relief of blood volume burden and insulin
resistance. Finally, although selective CD36 inhibitors have not yet been developed and
entered clinical use, their research is warranted given CD36’s central role in mediating
metabolic crosstalk along the liver–kidney axis.
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