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Abstract: The aim of this study was to address chronic heart failure (HF) diagnosis with the applica-
tion of machine learning (ML) approaches. In the present study, we simulated the procedure that is
followed in clinical practice, as the models we built are based on various combinations of feature
categories, e.g., clinical features, echocardiogram, and laboratory findings. We also investigated
the incremental value of each feature type. The total number of subjects utilized was 422. An ML
approach is proposed, comprising of feature selection, handling class imbalance, and classification
steps. The results for HF diagnosis were quite satisfactory with a high accuracy (91.23%), sensitiv-
ity (93.83%), and specificity (89.62%) when features from all categories were utilized. The results
remained quite high, even in cases where single feature types were employed.

Keywords: heart failure; machine learning

1. Introduction

HF is a clinical syndrome of various etiologies, in which the heart cannot pump
enough blood to satisfy the metabolic needs of the body [1]. Patients with HF have to
deal with changes that severely affect their quality of life. HF is one of the major causes of
mortality [2] and the most common cause of hospital admissions in people over 65 years of
age [3]. Projections show that the prevalence of HF will increase by 46% from 2012 to 2030,
resulting in >8 million people ≥18 years of age with HF [4]. Based on the left ventricular
ejection fraction (EF), HF patients are classified as HF with reduced EF (HFrEF; EF < 40%),
mid-range EF (HFmrEF; EF 40–49%), and preserved EF (HFpEF; EF ≥ 50%) [5].

The diagnosis of HF can be challenging, especially in the early stages and in patients
with HFpEF. Symptoms and signs may be particularly difficult to identify and interpret
in obese individuals, in the elderly, and in patients with chronic lung disease [3]. Along
with standard laboratory investigations, echocardiogram, electrocardiogram (ECG), and
natriuretic peptides are probably the most useful tests for diagnosis in patients with
suspected HF. For the management of HF, the European Society of Cardiology (ESC)
Guidelines [5] propose a range of approaches, including medical management with renin-
angiotensin–aldosterone system therapies, beta blockers, mineralocorticoid receptor an-
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tagonists, sodium–glucose co-transporter 2 inhibitors (for HFrEF) and diuretic therapies,
careful management of cardiovascular and other co-morbidities, biomarker monitoring
with serial natriuretic peptide measurements, remote monitoring (using an implanted
device when indicated), structured telephone support, and multidisciplinary care. For
most patients, the standard management of HF involves office-based follow-up 2–12 times
a year, while patients are advised to monitor their weight, blood pressure, pulse, diet, and
symptoms on a daily basis.

ML offers the potential to improve healthcare efficiency in numerous ways. Prognostic
models may empower healthcare experts to select better treatment options for their patients.
Additionally, diagnostic models can be used in screening, in risk stratification, and in
recommending appropriate tests. This decreases the burden on clinicians, saves resources,
and reduces costs. Due to the increased incidence and the large financial costs associated
with the management of HF, the diagnosis and treatment of the disease remain extremely
important issues.

Several studies have been conducted to build a model that can diagnose HF based
on various ML algorithms. Ali et al. [6], Javeed et al. [7], Samuel et al. [8], Mohan et al. [9],
and Potter et al. [10] utilized the Cleveland Heart Disease Database that consists of de-
mographics, symptoms, clinical and laboratory values, and electrocardiographic features.
Choi et al. [11] detected HF on a multivariate dataset consisting of demographics, habits,
clinical and laboratory values, the International Classification of Disease version 9 (ICD-9)
codes, information in Current Procedural Terminology (CPT) codes, and medication fea-
tures. Son et al. [12] tested a rough set (RS)-based model on demographic characteristics
and clinical laboratory values. Reddy et al. [13] detected HFpEF by analyzing medications,
demographics, comorbidities, and echocardiographic and ECG features. Masetic et al. [14],
Acharya et al. [15], and Ning et al. [16] analyzed ECG signals to detect HF. Lal et al. [17],
Wang et al. [18], Chen et al. [19], and Gladence et al. [20] utilized Heart Rate Variabil-
ity (HRV) measures to diagnose congestive HF. Zheng et al. [21] and Gjoreski et al. [22]
suggested a system for chronic HF diagnosis based on the analysis of heart sound charac-
teristics. In Table 1, all studies mentioned in the literature review are presented in detail in
order to discriminate between different approaches, methods, and datasets.

Table 1. State of the art in machine learning for HF diagnosis.

Study Target Method Features Dataset Measures

Zheng et al. [21]
(2015)

Chronic HF
diagnosis

Healthy vs.
chronic HF

Least
square-Stacked
Support Vector
Machine (SVM)

model

Cardiac reserve
and heart sound
characteristics

152 subjects
88 controls

64 chronic with HF

Acc 95.39%
Sens 96.59%
Spec 93.75%

Masetic et al. [14]
(2016)

Congestive HF
diagnosis

Healthy vs.
congestive HF

Decision tree,
K-Nearest

Neighbors (K-NN),
SVM, Neural

Network (NN),
and Random
Forest (RF)

ECG signals

31 subjects
18 with congestive

HF
13 controls

RF acc 100%

Choi et al. [11]
(2017)

HF diagnosis
Healthy vs. HF

Recurrent Neural
Network (RNN)
models, Logistic
Regression (LR),
SVM, Multilayer

Perceptron (MLP),
K-NN

Demographics,
habits, clinical and
laboratory values,
ICD-9 codes, CPT

codes, and
medications

3884 with HF
28.903 controls

RNN model AUC
77.70%
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Table 1. Cont.

Study Target Method Features Dataset Measures

Chen et al. [19]
(2017)

Congestive HF
diagnosis

Healthy vs.
congestive HF

Deep Neural
Network (DNN)

HRV measures
based on the RR

interval

116 subjects
44 with congestive

HF
72 controls

Acc 72.44%
Sens 50.39%
Spec 84.93%

Samuel et al. [8]
(2017)

HF diagnosis
Healthy vs. HF

Hybrid decision
support method

based on artificial
neural networks

and fuzzy analytic
hierarchy process

(Fuzzy_AHP)
techniques

Demographics,
symptoms, clinical

and laboratory
values, and electro-

cardiographic
results

Cleveland heart
disease database

297 subjects
137 with HF
160 controls

Acc 91.10%

Reddy et al. [13]
(2018)

HFpEF
identification LR

Medications,
demographics,

comorbidities, and
echocardiographic
and ECG features

414 subjects
267 with HFpEF

147 controls
AUC 88.60%

Wang et al. [18]
(2019)

Congestive HF
diagnosis

Healthy vs.
congestive HF

Combination of the
Long Short-Term
Memory (LSTM)

network and
convolution net

architecture

HRV measures
based on the RR

interval

156 subjects
44 with congestive

HF
112 controls

Acc 99.22%

Acharya et al. [15]
(2019)

Congestive HF
diagnosis

Healthy vs.
congestive HF

Convolutional
neural network

(CNN)
ECG signals

73 subjects
15 with congestive

HF
58 controls

Acc 98.97%
Spec 99.01%
Sens 98.87%

Ali et al. [6] (2019) HF diagnosis
Healthy vs. HF SVM

Demographics,
symptoms, clinical

and laboratory
values, and electro-

cardiographic
results

Cleveland heart
disease database

297 subjects
137 with HF
160 controls

Acc 92.22%
Sens 100.00%
Spec 82.92%

Javeed et al. [7]
(2019)

HF diagnosis
Healthy vs. HF

Random Search
Algorithm (RSA)

for feature
selection and RF
for classification

Demographics,
symptoms, clinical

and laboratory
values, and electro-

cardiographic
results

Cleveland heart
disease database

297 subjects
137 with HF
160 controls

Acc 93.33%

Mohan et al. [9]
(2019)

HF diagnosis
Healthy vs. HF Hybrid RF

Demographics,
symptoms, clinical

and laboratory
values, and electro-

cardiographic
results

Cleveland heart
disease database

297 subjects
137 with HF
160 controls

Acc 88.40%
Sens 92.80%
Spec 82.60%

Lal et al. [17]
(2020)

Congestive HF
diagnosis

Healthy vs.
congestive HF

SVM Gaussian,
K-NN, decision

tree, SVM RBF, and
SVM polynomial

HRV measures

116 subjects
44 with congestive

HF
72 controls

SVM Gaussian
Acc 88.79%
Sens 93.06%
Spec 81.82%
AUC 95.00%

Gjoreski et al. [22]
(2020)

Chronic HF
diagnosis

Healthy vs.
chronic HF

Combination of
classic ML and

end-to-end Deep
Learning (DL)

Heart sound
characteristics 947 subjects

Acc 92.90%
Sens 82.30%
Spec 96.20%
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Table 1. Cont.

Study Target Method Features Dataset Measures

Potter et al. [10]
(2020)

Stage B HF
detection RF

Demographics,
symptoms, clinical

and laboratory
values, and electro-

cardiographic
results

Cleveland Heart
Disease Database

254 subjects as
train set (135 with
HF, 119 controls)
65 subjects as test
set (27 with HF, 38

controls)

AUC 76.00%
Sens 93.00%
Spec 61.00%

Ning et al. [16]
(2020)

Congestive HF
diagnosis

Healthy vs.
congestive HF

Hybrid DL
algorithm that is
composed of a

CNN and a
recursive NN

ECG signals

33 subjects
15 chronic HF

subjects
18 controls

Acc 99.93%
Sens 99.85%
Spec 100%

All previous works focus on classification between HF and non-HF, using various
methods, datasets, and features. Such a classification, although very useful for an auto-
mated diagnosis system, provides limited support to an experienced clinician that lacks
the ability to perform laboratory tests and echocardiogram due to various logistic rea-
sons [23,24]. In the present study, we propose a methodology to diagnose HF; its main
characteristic is that the models are based on various combinations of features, using
the clinical approach followed by clinicians, based on current guidelines [5]. In order to
examine how each feature type contributes to the diagnosis, initially, our models were built
by utilizing only clinical features, i.e., features that can be collected by all clinicians without
performing laboratory tests or echocardiogram, such as the patient’s medical history, re-
sults from the physical examination, symptoms, comorbidities, demographic information,
etc. Subsequently, various combinations of features are assessed by adding additional
types of features: Clinical features and natriuretic peptides, clinical and echocardiographic
features, echocardiographic features exclusively, and finally all features combined. In this
way, we examined how—through the application of machine learning—the different types
of features proposed in the guidelines can be applied for HF diagnosis. The results can also
be of special value in cases where some of the features cannot be easily obtained.

2. Materials and Methods
2.1. The Dataset

Data were provided by the University College Dublin (UCD), Ireland (410 subjects),
and the 2nd Department of Cardiology of the University Hospital of Ioannina (77 subjects).
The total number of subjects was 487 (260 without HF, 180 with chronic HF, and 47 with
acute HF). As is common in ML studies, the maximum available data were used (available
patient data from patients having accepted informed consent). In order to train and test ML
algorithms, both kinds of subjects are needed, i.e., HF and controls. This allows algorithms
to be trained for both cases and to be able to correctly classify any new case. The same
applies for testing; testing needs to be done for both cases (HF/non-HF). In our case, we had
227 HF patients and 260 controls. Patients were diagnosed with HF by clinical experts. This
diagnosis was based on the patients’ physical examinations, along with standard laboratory
investigations, echocardiograms, ECGs, and the measurement of natriuretic peptides. The
features recorded for each patient were grouped into the following categories: General
demographic data, classical cardiovascular risk factors, personal history of cardiovascular
disease, other diseases, lifestyle/habits, medications, symptoms, physical examination,
laboratory findings, and echocardiographic features (Table 2).
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Table 2. Initial dataset provided.

Category Description

General demographic data Age and gender

Classical cardiovascular risk factors Hypertension and diabetes mellitus

Personal history of cardiovascular disease

Device, myocardial infarction (MI), coronary
artery disease (CAD), angina, peripheral
vascular disease, any arrhythmia (Arr),

paroxysmal atrial fibrillation (Afib), and stroke

Other diseases Arthritis, chronic obstructive pulmonary
disease, cancer, asthma, gout

Lifestyle/habits smoking, and physical activity

Medications

Mineralocorticoid receptor antagonists (MRAs),
diuretics (loop or thiazide diuretic), calcium
channel blocker (CCB), statin, antiplatelet,

renin angiotensin aldosterone system (RAAS),
beta blocker (BB), oral anticoagulant (OAC),

other lipid-lowering drugs (LipD), alpha
blocker, digoxin, insulin, warfarin, nitrate,

diabetes drugs, and ivabradine

Symptoms Dyspnea, orthopnea, NYHA classes I–IV, and
paroxysmal nocturnal dyspnea

Physical examination

Weight, height, body mass index (BMI),
murmurs, systolic blood pressure (SBP),

diastolic blood pressure (DBP), heart rate (HR),
pulse, crackles, oedemas, JVP distension, and

body surface area

Laboratory findings

BNP, Na, K, Ca, Cl, urea, creatinine, eGFR, full
blood count including WBC, full blood count
including Hb, platelet count, total cholesterol,

HDL, LDL, triglycerides, and glucose
(non-fasting)

Echocardiographic parameters

Interventricular septal thickness at
end-diastole (IVS), posterior wall thickness at

end diastole (PW), left ventricular internal
dimension in diastole (LVIDd), LV mass, left

ventricular mass index (LVMI), left atrial
volume (average 4ch and 2ch) (LAVI), left atrial

(LA) dimension (mm), peak E-value, peak
A-value, early filling (E wave)/late diastolic
filling (A wave) ratio (E/A), mitral annular
velocity (E’), early filling (E wave)/mitral

annular velocity(E/E’), E deceleration time,
ejection fraction (EF), diastolic biventricular
inner dimension, estimation of any valvular

disease, right ventricular systolic pressure, and
pulmonary artery systolic pressure;

classification of HF phenotype into: HFrEF,
HFmrEF, and HFpEF

Certain features were removed due to overlapping information, i.e., interventricular
septal thickness and posterior wall thickness at the end diastole had similar information to
the left ventricular mass index values. NYHA classification and dyspnea symptoms were
recorded in all patients, but were not included in the HF classification analysis. Rhythm de-
vice information was also excluded from the final analysis, since the target population who
may benefit from the application of these models will not have implanted defibrillators or
resynchronization therapy (these therapies are applied to already diagnosed symptomatic
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NYHA II–IV HF patients). Finally, the classification of HF phenotype (HFpEF, HFrEF, or
HFmrEF) did not fit in our analysis, since the models were to be used for HF diagnosis in
previously undiagnosed patients. Medications were not included in our final dataset, since
they can be considered either as a determinant or as an indicator of a patient’s condition.
The resulting dataset is depicted in Table 3.

Table 3. Dataset after deleting features.

Category Description

General demographic data Age and gender

Classical cardiovascular risk factors Hypertension and diabetes mellitus

Personal history of cardiovascular disease MI, CAD, angina, peripheral vascular disease,
Arr, Afib, and stroke

Other diseases Arthritis, chronic obstructive pulmonary
disease, cancer, asthma, and gout

Lifestyle/habits Smoking and physical activity

Symptoms Orthopnea, Paroxysmal Nocturnal Dyspnea

Physical examination
Weight, height, BMI, murmurs, SBP, DBP, HR,
pulse, crackles, edemas, JVP distension, and

body surface area

Laboratory findings

BNP, Na, K, Ca, Cl, urea, creatinine, eGFR, full
blood count including WBC, full blood count
including Hb, platelet count, total cholesterol,

HDL, LDL, triglycerides, and glucose
(non-fasting)

Echocardiographic parameters

LVIDd, LV mass, LVMI, LAVI, left atrial
dimension (mm), peak E-value, peak A-value,
EA, mitral annular velocity, Ee, E deceleration

time, EF, diastolic biventricular inner
dimension, estimation of any valvular disease,

right ventricular systolic pressure, and
pulmonary artery systolic pressure

2.2. The Proposed Methodology

The proposed methodology consists of three basic stages: Preprocessing, feature
selection, and classification. The preprocessing pipeline includes the removal of features
with ≥50% missing values. Discrete features with unbalanced distribution of values are
also removed and outliers and typos (e.g., 4,5 is recorded instead of 4.5) per feature are
detected and corrected. Furthermore, the class imbalance problem is handled by applying
the undersampling method to the dataset, which is quite common for dealing with this
issue [25]. This method produces a random subsample with a given spread between
class frequencies. The maximum “spread” between the rarest and most common class is
specified. In this study, a random undersample of the majority class is followed, so that all
classes have the same number of instances. The 19 features retained after removing features
with ≥50% missing values and discrete features with unbalanced distribution of values
and utilized for the diagnosis of HF are presented in Table 4. For better understanding of
the individual contribution of each feature, we calculated the information gain [26] metric
as presented in Table A2 of Appendix B.
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Table 4. Features for HF diagnosis.

Category Description

General demographic data Age and gender

Classical cardiovascular risk factors Hypertension

Personal history of cardiovascular disease
MI, CAD, and any arrhythmia (Arr) or

paroxysmal atrial fibrillation (Afib) combined
as Arr-Afib

Physical examination BMI, SBP, DBP, and HR

Laboratory findings BNP

Echocardiographic parameters LVIDd, LVMI, LAVI, EA, E deceleration time,
Ee, EF, and peak E-value

At the second stage, feature selection is applied to all features from all categories and
the subset of features retained is used for the classification process. In this study, feature
selection methods are employed to assess the predictive ability of feature subsets and the
degree of redundancy among them, preferring sets of features that are highly correlated
with the class but with low intercorrelation [27].

Finally, at the classification stage, different classifiers (i.e., decision tree, RF, rotation
forest (ROT), naive Bayes (NB), K-NN, SVM, logistic model tree (LMT), and Bayes network
(BN)) are applied to the reduced feature subset. Then, 10-fold cross-validation is applied for
the evaluation of the classifiers, which is a statistical method for evaluating and comparing
learning algorithms by dividing data into two segments: One used to learn or train a model
and the other used to validate the model [28]. The proposed methodology is presented in
Figure 1. The results are expressed in terms of accuracy, sensitivity, and specificity.
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3. Results

The mean age of the subjects in the dataset was 69 years and the median age was
71 years. Regarding HF patients, the mean age was 72 and the median was 74 years, while
for subjects without HF, the mean age was 67 and median was 68 years. The dataset
consisted of 260 male and 224 female subjects. The dataset with documented HF consisted
of 73 females and 154 males, while the non-HF dataset consisted of 151 female and 106 male
subjects (for three subjects, gender information was unavailable). Furthermore, regarding
the subjects with HF, 68 were classified as HFpEF, while 60 as HFrEF and 88 as HFmrEF (for
11 subjects, the classification according to ejection fraction was missing, since the ejection
fraction was unavailable).

For the HF diagnosis, all subjects with acute HF and subjects with NYHA classifi-
cation III–IV were removed, as diagnosis of HF in patients with severe symptoms is not
challenging. Thus, the dataset for HF diagnosis consisted of 422 subjects (260 without HF
and 162 with chronic HF).

The results for the HF diagnosis problem with feature selection are depicted in Table 5.

Table 5. HF diagnosis classification results.

Features Type Classifier Accuracy % Sensitivity % Specificity %

Clinical features LMT 84.12 82.10 85.38

Clinical features
and BNP

LMT 88.15 85.80 89.62

Clinical and
echocardio-
graphic
features

ROT 90.76 93.21 89.23

Echocardiographic
features

ROT 87.91 90.74 86.15

All features ROT 91.23 93.83 89.62

Our approach achieved the highest results in terms of accuracy using mostly the LMT
and ROT classifiers with different combinations of features included. The accuracy values
ranged from 84.12% in models using only clinical features to 91.23% in models using all
features combined.



Diagnostics 2021, 11, 1863 9 of 15

The optimal features that were retained after the feature selection procedure in various
models with different feature combinations are presented in Table 6. All retained features
showed statistically significant (p < 0.01) correlations (Figure A1 and Tables A3 and A4)
with the diagnosis of HF.

Table 6. Retained features for HF diagnosis, all possible features set.

Feature Set Retained Features

Clinical features Hypertension, Arr-Afib, CAD, and SBP

Clinical features and BNP Hypertension, Arr-Afib, CAD, SBP, and BNP

Clinical and echocardiogram features Hypertension, Arr-Afib, CAD, SBP, EF, LAVI,
LVMI, E/E’, and E deceleration time

Echocardiogram features EF, LAVI, LVMI, and E deceleration time

All features Hypertension, Arr-Afib, LAVI, LVMI, CAD,
BNP, SBP, and EF

4. Discussion

Data-driven approaches for the optimization of population health management are
continuously growing and may prove valuable in modern healthcare models, especially
for highly prevalent and costly diseases such as HF. The present study made another
considerable contribution toward the development of such an approach for the diagnosis
of HF in symptomatic patients with risk factors based on simple clinical data, as well as
natriuretic peptides and echocardiographic indices (suggested by ESC guidelines) with the
use of various machine learning techniques. The results for HF diagnosis were quite high
in terms of accuracy (91.23%), as well as in terms of sensitivity (93.83%) and specificity
(89.62%), confirming the classification power of ML approaches. Furthermore, our model
achieved high accuracy, even when only the clinical features were used for classification
(84.12%), which can prove to be of great value for an initial screening in settings where
laboratory tests are not available. We also noticed that the addition of BNP to clinical
features increased the accuracy of HF diagnosis (88.15%), as expected based on the well-
established value of natriuretic peptides in the diagnosis of HF [5]. Furthermore, the
combination of clinical and echocardiographic features for the classification of HF diagnosis
also resulted in increased accuracy compared to clinical features alone (accuracy 90.76%).
This finding re-emphasizes the diagnostic value of echocardiography that, even without
natriuretic peptides, can establish the diagnosis of HF in the majority of patients with
suspected non-acute HF [5]. A small difference in terms of accuracy between models using
BNP or echocardiographic parameters was observed; whether these differences are of
clinical importance is not known.

Furthermore, in every classification model, our method finally utilized a smaller
feature subset. This may indicate that a small number of clinical, biochemical, and echocar-
diographic parameters are needed for reaching a diagnosis of HF, which corresponds
to less time and cost. From a clinical point of view, the current study suggests that the
identification of a few classic risk factors (e.g., hypertension) and common cardiovascular
diseases (e.g., coronary artery disease and atrial fibrillation) are most important in the
diagnosis of HF. Regarding the laboratory tests taken into account, BNP (and its N-terminal
counterpart NTproBNP) is the biomarker most widely used. It is secreted mainly by the
ventricular heart muscle and causes natriuresis, diuresis, and smooth muscle relaxation. It
is increased in HF of all etiologies [29], both in acute and chronic settings. We might have
also used troponin T (TnT), a polypeptide forming part of the contractile apparatus of the
striated muscle, which is the best laboratory parameter in the early diagnosis of acute my-
ocardial infarction and also has a predictive role in various diseases of the cardiovascular
system, such as HF and/or in hemodynamic instability [30,31]. The latest guidelines by
the ESC recommend the use of troponin for the exclusion of an acute coronary syndrome
and suggest it for estimating the risk of myocardial damage in other situations such as
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hereditary muscle diseases (dilated, hypertrophic, and arrhytmogenic cardiomyopathy),
cardio-toxic medications used in oncology, myocarditis, and atrial diseases [5]. However,
in chronic HF, TnT tends to be less marked and it is used as incremental information to
natriuretic peptides [32]. For simplicity reasons we included only the biomarker that was
incorporated in the diagnostic algorithm for HF proposed by the ESC [5].

Besides natriuretic peptides, the use of only a few structural echocardiographic indices
(such as LV mass, left atrial size, and LV ejection fraction) may be also valuable for HF
diagnosis. In this way, ML may assist in the isolation of high-risk features and thus provide
an appropriate phenotyping that may improve the detection accuracy of HF. These methods
may also lead to greater insights into the pathophysiological pathways underlying the
development of HF and the design of future clinical studies that will validate the clinical
importance of our findings.

Relevant approaches in the literature provide a method for detecting HF based on
several feature types with an accuracy ranging from 72.44% to 99.22%. Our method cannot
be directly compared with those utilizing ECG signals [14–16], HRV measures [17–19], or
heart sound characteristics [21,22], but with those that utilize the Cleveland Heart Disease
Database [6–10], which is a dataset that resembles ours, and studies that use a multivariate
dataset [11–13]. It should be noted that the present study utilized a larger dataset (422
instances) compared to the studies that utilized the Cleveland Heart Disease Database.
Moreover, in our approach, the medications were not finally considered in the feature
set. If we included medications, the obtained results would further increase (the ROT
classifier achieved 93.36% accuracy, 95.70% sensitivity, and 91.90% specificity). Still, as the
addition of medications might introduce a kind of bias, this approach was not selected.
We also tested whether CAD and Arr-Afib could be omitted, as they are not necessarily
known or easy to determine during a consultation. It seems that these two features can
slightly contribute to the performance of our classifier. In more detail, by omitting these
two features the evaluation metrics (namely, the accuracy, sensitivity, and specificity)
changed from 91.23%, 93.83%, and 89.62% to 90.28%, 94.00%, and 85.00% (Table A1). On
the other side, this is an indication that our approach works adequately, even without these
hard-to-obtain features.

Moreover, we excluded several features (NYHA class, device, dyspnea, and HF phe-
notype) and subjects with acute HF and NYHA classes III–IV as they could be indicative of
HF presence. In our study, feature selection was applied, concluding to a smaller feature set
where all retained features were significantly correlated with the class (Tables A2 and A3);
even with a smaller feature, set the achieved results were high. This study provides an
automated diagnostic tool with high accuracy for detecting the presence of HF, even in
cases when limited tests (echocardiogram and laboratory tests) are offered. Additionally,
it can be valuable in cases when multiple co-morbidities occur and can offer the clinical
expert a further aid in the diagnosis of HF.

Limitations: Although the current study was performed with one of the largest
datasets compared to the literature, the incorporation of the proposed approach in a
Clinical Decision Support System used in actual clinical practice requires extensive testing
and validation with a larger and more diverse dataset.

5. Conclusions

In the present study, we developed a method approach able to diagnose the presence
of HF based on ML techniques. This study is quite innovative, because we simulated the
clinical procedure and investigated the impact of different feature types on the classification
accuracy. The results for the HF diagnosis, when all available feature types were utilized for
classification, were high in terms of accuracy (91.23%), sensitivity (93.83%), and specificity
(89.62%). Efficiency is supported as a limited feature set is selected through feature selection,
minimizing the need for diagnostic tests. Moreover, even without the whole feature set,
our approach provides quite high results; the results remain high even when only clinical
features are used. This provides opportunity to clinicians that do not have the opportunity
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to perform laboratory tests or echocardiograms to diagnose HF quite accurately without
necessarily needing the input of additional tests.
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Appendix A

HF Diagnosis Classification Results without CAD and Arr-Afib Features

As CAD and Arr-Afib are not necessarily known or easy to determine during a con-
sultation, we also tested our models without these two features. The results are presented
in Table A1.

Table A1. HF diagnosis classification results without CAD and Arr-Afib features.

Features Type Classifier Accuracy % Sensitivity % Specificity %

Clinical features NB 75.36 80.70 67.30

Clinical features
and BNP

ROT 86.02 92.80 77.50

Clinical and
echocardio-

graphic
features

ROT 88.39 92.70 82.30

All features ROT 90.28 94.00 85.00

Appendix B

Contribution of Each Individual Feature to the Predicted Outcome

The information gain calculates the reduction in entropy from transforming a dataset
in some way and is used for determining the best features that render the maximum
information about a class. In Table A2, the features are ranked based on their information
gain, which is also given.

http://www.kardiatool.eu/
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Table A2. Features’ information gain.

Ranking Feature Information Gain

1 BNP 0.4202

2 Arr_Afib 0.3076

3 LAVI 0.302

4 EF 0.2813

5 DBP 0.131

6 LVMI 0.1181

7 CAD 0.1143

8 SBP 0.1129

9 Hypertension 0.0905

10 Peak_E_Value 0.066

11 Age 0.0544

12 Gender 0.0489

13 Ee 0.0405

14 MI 0.0393

15 LVIDd 0.0312

16 E Deceleration Time 0.02

17 HR 0

18 BMI 0

19 Ee 0

In Figure A1, the correlations among all features, as well as the correlation of each
feature with the class (HF outcome), are presented.
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In Table A3, the correlation of each feature with the class (HF outcome) is presented.

Table A3. Features’ correlation with class.

Feature Correlation with Class

Age 0.3

Gender 0.3

BMI –0.07

Hypertension –0.4

MI 0.2

Arr-Afib 0.6

CAD 0.4

BNP 0.7

SBP –0.4

DBP –0.4

HR –0.05

EF –0.6

LAVI 0.7

LVMI 0.4

LVIDd 0.3

Ee 0.2

E Deceleration time 0.09

Peak_E_Value 0.3

EA 0.03

For the retained features, the chi-square test results and the p-values are presented
in Table A4.

Table A4. Chi-square and p-value for the retained features.

Chi-Square Test p-Value

LAVI 12.791 <0.001

LVMI 8.467 <0.001

SBP –7.987 <0.001

BNP 14.2434 <0.001

EF –11.659 <0.001

HyperT 53.74 <0.001

Arr-Afib 172.51 <0.001

CAD 67.11 <0.001

Appendix C

Results from the Logistic Regression for Clinical Features

The results after the application of logistic regression for the clinical features are
presented in Table A5, where the results from the LMT classifier (that were the best results)
are also depicted.
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Table A5. Results from the logistic regression for clinical features.

Accuracy % Sensitivity % Specificity %

Logistic regression 84.12 88.10 78.10

LMT 84.12 82.10 85.38
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