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Abstract

Background: In chronic lymphocytic leukemia (CLL), epigenomic and genomic studies have expanded the existing
knowledge about the disease biology and led to the identification of potential biomarkers relevant for implementation
of personalized medicine. In this study, an attempt has been made to examine and integrate the global DNA
methylation changes with gene expression profile and their impact on clinical outcome in early stage CLL patients.

Results: The integration of DNA methylation profile (n = 14) with the gene expression profile (n = 21) revealed 142 genes
as hypermethylated-downregulated and; 62 genes as hypomethylated-upregulated in early stage CLL patients compared
to CD19+ B-cells from healthy individuals. The mRNA expression levels of 17 genes identified to be differentially
methylated and/or differentially expressed was further examined in early stage CLL patients (n = 93) by quantitative real
time PCR (RQ-PCR). Significant differences were observed in the mRNA expression of MEIS1, PMEPA1, SOX7, SPRY1, CDK6,
TBX2, and SPRY2 genes in CLL cells as compared to B-cells from healthy individuals. The analysis in the IGHV mutation
based categories (Unmutated = 39, Mutated = 54) revealed significantly higher mRNA expression of CRY1 and PAX9 genes
in the IGHV unmutated subgroup (p < 0.001). The relative risk of treatment initiation was significantly higher among
patients with high expression of CRY1 (RR = 1.91, p = 0.005) or PAX9 (RR = 1.87, p = 0.001). High expression of CRY1
(HR: 3.53, p < 0.001) or PAX9 (HR: 3.14, p < 0.001) gene was significantly associated with shorter time to first treatment.
The high expression of PAX9 gene (HR: 3.29, 95% CI 1.172–9.272, p = 0.016) was also predictive of shorter overall survival
in CLL.

Conclusions: The DNA methylation changes associated with mRNA expression of CRY1 and PAX9 genes allow risk
stratification of early stage CLL patients. This comprehensive analysis supports the concept that the epigenetic changes
along with the altered expression of genes have the potential to predict clinical outcome in early stage CLL patients.
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Background
Chronic lymphocytic leukemia (CLL) arises from a ma-
lignant clone of B cells due to altered control of apop-
tosis and dysregulated rate of proliferation. Its
progression is characterized by clonal proliferation and
accumulation of mature neoplastic CD5+ B lymphocytes
[1]. The clinical course of CLL patients is extremely vari-
able with some patients progressing rapidly as compared
to others and ultimately, requiring therapeutic interven-
tion. Several biomarkers including immunoglobulin
heavy chain variable (IGHV) gene mutations that segre-
gate CLL patients into low and high-risk clinical groups
are widely used to assess the prognosis of these patients.
Low-risk patients generally display mutated IGHV gene,
low CD38, and low ζ chain associated protein kinase-70
(ZAP-70) expression, while high-risk cases exhibit the re-
verse pattern [2–6].
Altered DNA methylation is one of the hallmark events

in cancer. The first evidence of DNA methylation in CLL
was presented by Wahlfors et al. [7] in which a global loss
of methylation was reported. In addition to global hypo-
methylation, hypermethylation of individual gene pro-
moters has also been reported in CLL [7–11]. Methylation
of TWIST2 and ZAP-70 exhibited a strong association
with the IGHV-mutated status [9, 12] whereas methylation
of HOXA4 gene was predominantly associated with the
IGHV unmutated status [13]. Further studies employing
genome wide methylation profiling technologies have re-
vealed association of differential methylation patterns with
prognostic subgroups based on the IGHV mutation status
[14–16], CD38 levels [17], ZAP-70 levels [16], immunoge-
netic subsets [18], and 17p-deletion status [19].
Earlier, DNA hypermethylation was thought to affect

the expression of a gene negatively but the emerging re-
search has suggested that the function and effect of DNA
methylation is contextual, and the relationship between
DNA methylation and transcription is more complex [20].
In CLL, although association of differential methylation
patterns with specific prognostic subgroups in earlier re-
ports highlights the potential of altered gene methylation
as a tool to predict clinical outcome, further research is re-
quired to establish the relationship between the epige-
nome and the transcriptome. The present study was
carried out to correlate the DNA methylation patterns
with gene expression profile and to assess the prognostic
implications of such correlations on clinical outcome in
93 early stage CLL patients.

Methods
Patient selection
Treatment naive early stage (Rai 0-II) CLL patients
(n = 100) were enrolled in the study after obtaining
informed consent as per the guidelines of the institute
ethics committee. According to the staging criteria

outlined by Rai et al. [21], 24 patients were in stage
0, 33 were in stage I and 43 were in stage II.
Fourteen randomly selected CLL samples and pooled
CD19+ B-cells from 10 healthy individuals were pro-
filed for methylation. Gene expression profiling was
carried out in 21 CLL samples and pooled CD19+ B-
cells from 10 healthy individuals. All the CLL samples
had at least ≥65% CLL phenotype cells. The clinical
and laboratory characteristics of the CLL patients
analysed using methylation and gene expression arrays
are provided in Table 1. The mRNA expression of 17
of the genes identified to be differentially methylated
and /or differentially expressed was validated using
SYBR-green based RQ-PCR in 93 (Unmutated = 39,
Mutated = 54) CLL patients. The median age of the
CLL patients was 60 years (range 35–80 years). With
a median follow-up time of 22 months (range 1-124
months), 46 patients required treatment [median time
to treatment: 14 months (range 0–92 months)] and
18 patients died. On the basis of international prog-
nostic index (IPI) score [22], 11/93 patients were
assigned as low risk, 34/93 as intermediate risk, 43/93
as high risk, and 5/93 as very high risk patients.

IGHV mutation status
IGHV gene family usage was evaluated as per BIOMED-
2 protocol [23] and the patients were assigned to IGHV
mutated or unmutated subgroups based on the IGHV se-
quence homology (cut-off = 98%) as determined by the
international ImmunoGeneTics database (IMGT; http://
imgt.cines.fr, Montpellier, France).

Methylated CpG island microarrays
Genomic DNA was extracted from the peripheral blood
mononuclear cells (PBMC) of CLL patients (n = 14) and
CD19+ sorted cells pooled from 10 healthy individuals. To
isolate the CD19+ cells, mononuclear cells isolated from
peripheral blood of healthy individuals were incubated
with CD19 +magnetic microbeads and processed accord-
ing to the manufacturer’s protocol (Milteneyi Biotech,
Gladbach, Germany). In healthy individuals, CD19+ cells
constitute 2-3% of the leukocyte fraction and therefore,
sorted CD19+ B-cells from healthy individuals were used.
In the CLL samples evaluated for microarrays, CD19+
cells constituted at least ≥65% of the leukocytes and the
PBMC fraction from CLL patients was used for the study.
For methylated CpG island microarrays, 6 μg of genomic

DNA was digested with Mse I restriction enzyme (New
England Biolabs Inc., Ipswich, MA, USA) and labelled with
anti-5 methyl cytidine antibody (Abcam, Cambridge, UK).
One fraction of the labelled DNA was immunoprecipitated
while the other was used as input DNA. Both the input
and immunoprecipitated fractions were purified followed
by whole genome amplification (WGA, Sigma Aldrich, St.
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Louis, MO, USA), labelled with Cy3- and Cy5-dUTP, re-
spectively, and hybridized on 1x244K human promoter
chIP-on-chip microarray slides as per the manufacturer’s
recommendations (Agilent Technologies, Santa Clara, CA,
USA). The slides were washed and scanned on the Agilent
DNA microarray scanner D and the data was extracted
with Feature Extraction® software FE version 11.5 (Agilent
Technologies, Santa Clara, CA, USA).

Gene expression microarray
Total RNA obtained from PBMC of CLL patients (n = 21)
and CD19+ sorted cells pooled from 10 healthy individ-
uals was amplified and simultaneously labelled with Cy3-
CTP using low input quick amp labelling kit (Agilent
Technologies, Santa Clara, CA, USA). The labelled prod-
uct was finally hybridized to SurePrint G3 Human Gene
Expression 8x60K microarray slide as per manufacturer’s
recommendation (Agilent Technologies, Santa Clara, CA,

USA). The slides were washed and scanned on the Agilent
DNA microarray scanner D and the data was extracted
with Feature Extraction® software FE version 11.5 (Agilent
Technologies, Santa Clara, CA, USA). These samples
included seven CLL samples profiled for DNA methyla-
tion status.

Bisulfite genome sequencing
Genomic DNA (2 μg) was bisulfite modified and purified
using Epitect Bisulfite kit as per the manufacturer’s in-
structions (Qiagen, Hilden , Germany). The bisulfite
converted DNA was amplified for two CpG islands in
PAX9 gene as depicted in Fig. 1 and sequenced with
BigDye Terminator v3.1 Cycle Sequencing kit (Applied
Biosystems, CA, USA) with primers designed using
MethPrimer (http://www.urogene.org/cgi-bin/methpri-
mer/methprimer.cgi). The percent methylation levels
were computed and further analysed with Bisulfite

Table 1 Clinical and laboratory characteristics of the CLL patients evaluated using methylation and gene expression arrays

Characteristics of the patients

Sr. No Sample ID Methylation array GE array Rai stage Age Tumor Percentage IGHV status β2M(mg/L) 17p Deletion IPI Score

1 S1 √ 0 41 67.2 UM 6.56 Absent 4

2 S2 √ √ 0 63 69 UM 4.06 Absent 4

3 S3 √ √ 0 69 88.6 UM 8.42 Absent 5

4 S4 √ √ I 45 95.4 UM 4.6 Present 9

5 S5 √ √ I 60 93.5 UM 3.37 Absent 3

6 S6 √ √ II 50 66 UM 4.78 Absent 5

7 S7 √ II 59 97.2 M 3.54 Absent 3

8 S8 √ 0 57 95.3 M 6.49 Absent 2

9 S9 √ II 65 92.8 M 4.58 Absent 3

10 S10 √ √ 0 61 69.3 M 3.3 Absent 0

11 S11 √ √ II 65 97.2 M 4.48 Present 7

12 S12 √ √ II 67 98 UM 5.69 Absent 6

13 S13 √ √ II 48 92 UM 4.42 Absent 5

14 S14 √ I 58 95.62 UM 6.31 Absent 5

15 S15 √ I 46 79.4 UM 6.78 Absent 5

16 S16 √ II 59 73 UM 4.43 Absent 5

17 S17 √ I 40 90 UM 7.74 Absent 5

18 S18 √ I 67 79.3 UM 2.59 Absent 4

19 S19 √ I 51 80 M 5.44 Absent 3

20 S20 √ 0 57 72.5 M 2.91 Absent 0

21 S21 √ II 65 68.6 M 7.1 Absent 2

22 S22 √ II 52 66 M 3.2 Absent 1

23 S23 √ I 60 92 M 6.56 Absent 3

24 S24 √ I 44 85.1 M 3.62 Absent 3

25 S25 √ II 68 93 M 6.47 Absent 4

26 S26 √ II 80 68.4 M 6.46 Absent 4

Abbreviations used: GE Gene expression, UM Unmutated, M Mutated , β 2 M Beta 2 Microglobulin, IPI International Prognostic index
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Sequencing DNA Methylation Analysis (BISMA) software
(http://services.ibc.uni-stuttgart.de/BDPC/BISMA/).

Real-time quantitative PCR (RQ-PCR)
The mRNA expression based microarray findings were
validated using RQ-PCR in an independant cohort of 93
early stage CLL patients for 17 genes with gene-specific
primers (Additional file 1: Table S1). The experiments
were performed using SYBR Green Master Mix according
to the manufacturer’s protocol on Mx3005P (Agilent
Technologies, Santa Clara, CA, USA). The fold change
was calculated using 2-ΔΔCt method with beta-actin as an
endogenous control. The Receiver’s operating characteris-
tic (ROC) curve-derived cut-off values were used to define
high or low mRNA expression levels.

Bioinformatics analysis and statistics
Methylation array data was analyzed using Genomic
Workbench version 7.0 (Agilent Technologies, Santa Clara,
CA, USA). On the basis of melt temperature, log-ratio data

for each probe was normalized. By taking into account the
Gaussian-fit curves, Z score was generated for each sample
and p values were calculated. The p values were then used
to determine the log-odds score for each probe. The
differentially hypermethylated and hypomethylated probes
between groups were filtered based on the minimum
value of log2-fold change (log2FC) between the
groups =0.25, p < 0.05 and the false discovery rates
(FDR) of 0.2 [24].The probes with log2FC ≤ (-)0.25
were considered hypomethylated and ≥ (+)0.25 were
considered hypermethylated.
The gene expression data across all arrays was log2

transformed and normalized using quantile normalization
and analyzed by the Lima library from R-Bioconductor.
Probes with an adjusted p-value less than 0.05 and log2FC
of 1 were selected.
The correlation of log-odds values obtained from the

DNA methylation arrays (p < 0.05, log2FC = 0.25) and the
expression arrays for the identified genes was used as an in-
dicator of the correlation between DNA methylation and

Fig. 1 Location of CpG islands studied for PAX9 gene methylation. a UCSC browser view of PAX9 gene (chromosome 14q13.3). The probes used for
methylation microarrays were specific for CpG islands 121, 129, 39, and 76. b MethPrimer based CpG prediction and primer design for bisulfite gene
sequencing for two CpG islands (3 and 7) located at PAX9 upstream region. c Bisulfite sequencing of CpG islands 3 and 7 was performed in 21 and 23
CLL patients respectively and in five healthy controls. A representative electropherogram depicting two methylated (C) or unmethylated (T) CpG sites
in island 3 located in 5’ region of PAX9 is shown
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gene expression. The probes showing hypomethylation
(log2FC ≤ (-)0.25, p < 0.05) in conjunction with higher ex-
pression (log2 FC > 1, p < 0.05) between any two compared
conditions were identified. Similarly, the probes exhibiting
hypermethylation (log2FC ≥ 0.25, p < 0.05) in conjunction
with lower expression (log2 FC < (-)1, p < 0.05) were also
identified.
Receiver’s operating characteristic curve was used to cal-

culate the cut-off value to determine the low and high ex-
pression of a particular gene. The differences in mRNA
expression between the groups as obtained from RQ-PCR
were compared using the Mann-Whitney Rank Sum test or
Kruskal-Wallis One Way Analysis of Variance on Ranks.
The relative risk (RR) of treatment initiation was assessed
using the Chi-square statistic with Yate’s continuity correc-
tion. The time to first treatment (TTFT) and overall sur-
vival (OS) were compared between the groups using the
Kaplan-Meier survival analysis followed by the log-rank
test. Hazard ratio (HR) for each variable was calculated
using the Cox proportional hazard regression (Sigma Plot
Version 13.0, Systat Software, Inc.).

Data access
The DNA methylation as well as the mRNA expression
data generated in the study have been submitted to the
NCBI Gene Expression Omnibus (GEO) (http://
www.ncbi.nlm.nih.gov/geo/) under accession number
GSE81937.

Results
Methylation profile
A comparison of differential methylation between CLL
(n = 14) and normal CD19+ B-cells identified a total of
6129 probes to be differentially methylated which were
further classified as hypermethylated (5254 probes, 2505
genes) or hypomethylated (875 probes, 753 genes). The
differentially methylated probes that represented un-
known genes, non-coding RNAs, hypothetical proteins,
chromosomal loci, predicted open reading frames, and
probes associated with sex-chromosomes were excluded
from the downstream analysis. Among the differentially
methylated probes, 53.8% of hypermethylated probes
were located inside known gene bodies, 38.2% in the
promoters, 2.6% in divergent promoters and 5.2% were
located downstream of the known genes (Fig. 2a). The
frequency distribution of the hypomethylated probes
(Fig. 2b) was comparable to the hypermethylated probes.
Of the differentially methylated probes, CpG sites were
found in 73% of the hypermethylated probes and in 81%
of the hypomethylated probes. The details pertaining to
these probes, including the gene name, chromosomal lo-
cation and distribution are provided in Additional file 1:
Tables S2A and S2B.

On the basis of gene functions, the CpG islands in the
promoter regions of the tumor suppressor genes (KLF4,
PTCH1, PAX5, PCDH10, RASSF10, IRX1, TBX5, ID4,
SOX7, SLIT2) and the transcription factors (TWIST1,
KLF4, TAL1, PAX2, PAX9, NR2F2, IRX4, MEIS1) were
found to be hypermethylated. Approximately, 10% of the
hypermethylated CpG promoters were located within the
homeobox genes. Promoter regions of genes such as
FOXD3, FOXE1, FOXG1, ID4, SLIT2, BNC1, SALL1,
RIPK4, HAND2, SOX9, SOX11, NR2F2, TAL1, SIM2,
PAX9, and TBX2 were also found to be hypermethylated
in sync with earlier reported results in CLL [16, 19, 25]. In
addition, hypomethylation was observed in the promoter
region of NFATC1 and inside gene body in NOTCH1,
SFRP1, and GPS as has been reported in earlier studies in
CLL [19, 25]. Using the Database for Annotation,
Visualization and Integrated Discovery (DAVID) func-
tional analysis tool, the differentially methylated genes
were evaluated for the overrepresented Gene Ontology
(GO) categories and the most significant overrepresented
GO biological processes were found to be related to regu-
lation of transcription (p < 0.0001) [26, 27].
To identify the association of differential methylation

profile with the IGHV mutation status, the methylation
array data from 9 IGHV unmutated and 5 IGHV mutated
cases was compared. This analysis elicited a distinct signa-
ture of 56 hypermethylated (p < 0.05, log2FC ≥ 0.25) and
2402 hypomethylated probes (p < 0.05, log2FC ≤ (-)0.25)
in unmutated CLL. The hypermethylated probes were dis-
tributed across 46 genes and spanned promoter regions of
10 genes (Additional file 1: Table S3A).Similarly, the
hypomethylated probes spread across 1332 genes and
spanned promoter regions of 399 genes (Additional file 1:
Table S3B). Differential methylation of several genes previ-
ously reported in the IGHV mutation based subgroups
[NCOR2, KCNJ2, SIX3, CHRM1, [16]], [NRF1, CRY1,
KCNJ2, SOX5 [28]] was also noticed in the present study.
In addition, differential CpG promoter hypomethylation
of genes already known to influence clinical outcome in
other malignancies was observed and includes EMILIN2
[29], TBX5 [30], CBX8 [31],OLIG2 [32], and PCDH10
[33]. The DAVID database was used to identify biological
pathways for the differentially methylated genes. Four of
the Kyoto Encyclopedia of Genes and Genomes (KEGG)
pathways including circadian rhythm pathway (p = 0.002),
calcium signalling pathway (p = 0.03), axon guidance (p =
0.02), and gap junction pathway (p = 0.04) were found to
be significantly affected in the IGHV unmutated Vs. mu-
tated subgroup.

Correlation of methylation and gene expression analysis
To investigate the possible influence of CpG methylation
status on the expression level of the corresponding
genes, the gene expression profiles were integrated with
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the DNA methylation profiles and co-analyzed. On com-
paring the data of CLL patients with healthy individuals,
a negative correlation in CpG methylation and gene ex-
pression was observed for 211genes (Additional file 1:
Table S4). Of these, 149 genes were hypermethylated
and downregulated and 62 genes were hypomethylated
and upregulated including AXIN2, ID4, EBF1, SOX4,
SOX7, TAL1, PMEPA1, SPRY1, CDK6, and MEIS1. Path-
way analysis using the genes having negative correlation
for DNA methylation and gene expression in CLL Vs.
normal CD19+ cells identified significant enrichment of
three KEGG pathways which included p53 signalling
pathway (p = 0.002), pathways in cancer (p = 0.005), and
the cell cycle pathway (p = 0.007).
A comparison of the CpG methylation and gene ex-

pression profiles among the IGHV unmutated Vs. mu-
tated patients identified 64 differentially expressed
genes (Fig. 3) including BMPR2, CRY1, FGFR2, FOSB,

INPP4B, PLD5, PAX9, RGS2, RIC8B, and VIPR1
(Additional file 1: Table S5).
Of the various genes found to be differentially methyl-

ated and/or differentially expressed, a total of 17 genes
(Table 2) were validated using RQ-PCR on a cohort of
93 (22 female: 71 male) early stage CLL patients and
pooled CD19+ B cells from 10 healthy volunteers. The
criteria for selection of these genes was negative correl-
ation between CpG promoter methylation and gene ex-
pression in CLL Vs. normal (MEIS1, PMEPA1, SOX7,
SPRY1, CDK6, ID4, AXIN2, TNRC18) and in the IGHV
unmutated Vs. mutated subgroup (CRY1, VIPR1, PAX9,
RIC8B). Other genes selected for validation included
NFATC1 (hypomethylated in CLL), TBX2, TSHZ3
(hypermethylated in CLL), SPRY2 (upregulated in CLL)
and BIK (downregulated in CLL). We focused on these
five genes as they had previously been shown in the lit-
erature to be epigenetically influenced in CLL [NFATC1

Fig. 2 Distribution of a hypermethylated and b hypomethylated probes in CLL Vs. CD19+ normal controls

Fig. 3 Supervised hierarchical clustering of hypermethylated-dowregulated and hypomethylated -upregulated genes selected on the basis of significant
log2FC values in IGHV mutated (n= 05) Vs. IGHV unmutated (n= 09) CLL. The Euclidean hierarchical clustering was performed using Gene Spring Gx
software version 13.5 and is based on normalized intensity values. Each row represents an individual patient and each column represents a gene. A
gradient color scale ranging between blue (hypermethylated and downregulated) and red (hypomethylated and upregulated) is included
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[11]], or in other malignancies [BIK [34], SPRY2 [35],
TBX2 [36, 37], TSHZ3 [38, 39]]. As expected, MEIS1,
PMEPA1, SOX7, SPRY1, CDK6, TBX2 were significantly
downregulated (p < 0.05) while SPRY2 (p = 0.016), VIPR1
(p = 0.04) and ID4 (p = 0.03) were significantly upregulated
in CLL cells as compared to healthy B-cells. Though not
significant, AXIN2 was upregulated and TNRC18,

NFATC1 and BIK were downregulated in CLL as com-
pared to healthy CD19+ cells (Table 2). The expression of
only CRY1 and PAX9 differed significantly (p < 0.05) with
respect to the IGHV mutation status (Table 2, Fig. 4)
The status of hypomethylation of PAX9 among unmu-

tated CLL was confirmed through bisulfite genome se-
quencing of CpG island 3 in close proximity to CpG110

Table 2 Comparison of mRNA levels of selected genes (median ΔCq and median fold change) as assessed by real time RQ-PCR in
CLL (n = 93; unmutated = 39; mutated = 54) and CD19+ sorted B-cells from healthy individuals (n = 10)

Comparison of levels of mRNA expression of selected genes in CLL

S.No. Gene CLL Vs. normal Mutated CLL Vs. unmutated CLL

Group Median ΔCq Median fold change p value IGHV Mutation status Median ΔCq Median fold change p value

1. CRY1 CLL 8.61 0.75 0.91 Mutated 9.8 0.31 <0.001

19+ Normal 8.29 Unmutated 7.46 1.73

2. MEIS1 CLL 13.03 0.07 0.01 Mutated 12.85 0.05 0.85

19+ Normal 8.87 Unmutated 12.63 0.06

3. ID4 CLL 13.75 4.37 0.03 Mutated 13.51 3.89 0.45

19+ Normal 15.7 Unmutated 13.71 3.2

4. TNRC18 CLL 13.21 0.64 0.43 Mutated 12.93 0.62 0.6

19+ Normal 12.53 Unmutated 13.34 0.59

5. NFATC1 CLL 8.43 0.5 0.47 Mutated 8.86 0.39 0.37

19+ Normal 7.54 Unmutated 8.37 0.57

6. CDK6 CLL 12.65 0.2 0.02 Mutated 12.65 0.25 0.7

19+ Normal 10.48 Unmutated 12.65 0.26

7. VIPR1 CLL 6.62 7.9 0.04 Mutated 6.5 6.96 0.32

19+ Normal 9.34 Unmutated 5.98 11.4

8. SPRY1 CLL 12.75 0.04 <0.001 Mutated 12.18 0.05 0.28

19+ Normal 8.49 Unmutated 12.7 0.03

9. PAX9 CLL 12.29 0.81 0.66 Mutated 12.8 0.37 <0.001

19+ Normal 11.61 Unmutated 9.28 4.61

10. PMEPA CLL 12.33 0.01 <0.001 Mutated 12.32 0.01 0.47

19+ Normal 5.52 Unmutated 11.72 0.01

11. TBX2 CLL 16.92 0.1 0.004 Mutated 16.42 0.08 0.67

19+ Normal 13.45 Unmutated 16.91 0.08

12. TSHZ3 CLL 10.9 1.19 0.81 Mutated 10.57 1.15 0.56

19+ Normal 10.97 Unmutated 11.18 0.82

13. BIK CLL 8.27 0.4 0.5 Mutated 8.4 0.44 0.54

19+ Normal 7.26 Unmutated 8.08 0.53

14. SPRY2 CLL 10.2 6.2 0.02 Mutated 9.78 6.59 0.42

19+ Normal 12.4 Unmutated 10.26 4.6

15. AXIN2 CLL 9.8 6.3 0.23 Mutated 9.2 4.79 0.56

19+ Normal 11.77 Unmutated 8.91 6.66

16. SOX7 CLL 11.93 0.18 0.02 Mutated 11.65 0.18 0.99

19+ Normal 9.23 Unmutated 11.92 0.16

17. RIC8B CLL 8.77 1.85 0.38 Mutated 8.59 1.85 0.78

19+ Normal 9.61 Unmutated 8.72 1.75

The statistically significant p values are shown in italics
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(Fig. 1).While CpG island 7 did not reveal any significant
difference in methylation levels, the average % methyla-
tion at CpG island 3 was found to be 52.74% in mutated
while 24.72% among unmutated CLL. This further cor-
roborates with the reduced expression of PAX9 in
unmutated group of CLL patients as established through
microarray-based observations.

Association between gene expression and clinical
outcome
Of the 17 genes evaluated for mRNA expression, CRY1 (p
= 0.008) and PAX9 (p < 0.001) were expressed at higher
levels in Rai stage I and II as compared to stage 0. A pro-
gressive increase in the expression of CRY1 (p = 0.004)
and PAX9 (p < 0.001) was observed in increasing IPI score
categories ranging from 1 to 4. We further explored the
association between expression level of candidate genes
with relative risk of treatment initiation, TTFT and OS
(Table 3). The relative risk of treatment initiation was signifi-
cantly higher with high expression of PAX9 (p= 0.001) or
CRY1 (p= 0.005). The high expressions of both PAX9 (HR
3.14, 95% CI 1.589–6.205, p < 0.001) as well as CRY1 (HR
3.53, 95% CI 1.789–6.987, p < 0.001) were significantly asso-
ciated with shorter TTFT (Fig. 5). However, high expression
of only PAX9 gene (HR 3.29, 95% CI 1.172–9.272, p= 0.016)
was significantly associated with shorter OS (Fig. 6).

Discussion
Extremely variable clinical course of early stage CLL pa-
tients highlights the importance of well-described prog-
nostic markers for clinical management of these
patients. Various prognostic markers that are currently
in use include IGHV mutational status [2], genomic ab-
normalities [3], expression of ZAP-70 [4], and CD38 [2].
Recent studies have associated specific DNA methylation
signatures with specific prognostic subgroups in CLL
[14–16, 19]. The present study has dealt with the

methylation profiling of early stage CLL patients on the
basis of their IGHV mutational status.
The study has identified differential methylation of

several genes such as NCOR2, SIX3, CHRM1, NRF1,
CRY1, KCNJ2, and SOX5 that have been reported earlier
to be differentially methylated in the IGHV-gene based
subgroups [16, 28]. Besides, an association of promoter
hypomethylation of MYLK with the IGHV unmutated
cases was also observed in the current study. Since,
higher expression of MYLK is known to be significantly
correlated with poor clinical outcome [40], it is plausible
that promoter hypomethylation of MYLK in the IGHV
unmutated cases might be associated with poor progno-
sis. Furthermore, differential CpG promoter hypomethy-
lation of two important hematopoietic transcription
factors MEIS1 and TAL1 which are known methylation
targets in B-cell ALL was also observed [41].
An analysis of signalling pathway network for genes

with perturbed methylation profiles observed among
IGHV unmutated patients indicated the involvement of
calcium signalling pathway. Previous studies have sug-
gested that altered Ca2+ signalling contributes to major
tumor progression events including proliferation, migra-
tion, invasion, and metastasis [42, 43]. Recently, Muggen
et al. [44] demonstrated an association of the IGHV mu-
tational status with the level of basal Ca2+ signalling in
CLL. The present study provides evidence that aberrant
methylation of genes involved in the calcium signalling
pathway might be one of the mechanisms responsible
for net differences in the basal Ca2+ signalling events.
In the present analysis, an inverse correlation between

methylation and gene expression was observed for 209
genes in CLL including transcription factors (ID4,
NFATC1, TBX2, TAL1, MEIS1), SPRY family members
(SPRY1, SPRY2) and SOX family members (SOX4,
SOX7). Correlation of promoter methylation of ID4 gene
with shortened patient survival has been already

Fig. 4 Box-plot representation of mRNA expression fold change as assessed by RQ-PCR for a CRY1 gene in CLL and its IGHV mutated and unmu-
tated subgroups b PAX9 gene in CLL and its IGHV mutated and unmutated subgroups. Box-plot graphs show median (middle line), interquartile
range (box), 25–75th percentile (whiskers) and statistically significant difference (p value) estimated in comparison between different groups
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documented in CLL [45]. An association of methylation
of TBX2 [37] and SPRY2 [35] with disease progression
has also been demonstrated in bladder cancer and B-cell
diffuse lymphoma, respectively, but so far, no studies
have been reported in CLL.
Screening of inversely correlated genes associated

with IGHV mutation status revealed only 21 gene
promoters to be significantly hypomethylated and
upregulated in unmutated cases (Additional file 1:
Table S5). One of these genes encodes for bone mor-
phogenetic protein (BMP) receptor II which is a
serine/threonine receptor kinase and has previously
been shown to be involved in molecular pathogenesis
of hematological malignancies including acute myelo-
monocytic leukemia, acute promyelocytic leukemia,
multiple myeloma as well as CLL [46, 47]. Cell sur-
face expression of BMP receptors (BMPRIA and
BMPRIB) have been shown to be elevated in ad-
vanced stages of CLL [47]. In-vitro studies have
shown that co-expression of BMPRII facilitates BMP
binding to its receptors and therefore contributes to
downstream biological functions [48, 49]. This is in
line with the results of the present study wherein up-
regulated BMPRII gene expression and

hypomethylation of BMPRII gene was noticed among
unmutated subgroup of CLL patients.
Alterations in methylation status and associated gene

expression levels of another gene CRY1 have also been
reported in prognostically distinct subsets of CLL [50] as
well as in CML [51]. Our study confirms the possible in-
fluence of hypomethylation and upregulated expression
of CRY1 in prognostically poor IGHV unmutated CLL
and further emphasises its role as potential biomarker
for relative risk of treatment initiation and TTFT in
early stage CLL. In addition to CRY1, three other circa-
dian rhythm genes NPAS2, BHLHE40, and ARNTL were
also observed to be hypomethylated in the unmutated
subgroup [52].
PAX9 is one of the nine members of "paired box”

(PAX)-containing transcription factor family and its in-
hibition has been shown to induce apoptosis with in-
creased cleavage of caspase-3 and PARP, increased
expression of BAX and decreased expression of BCL-2 in
oral squamous cell carcinoma [53]. In the recent years,
it has emerged as one of the biomarkers of cell prolifera-
tion in lung cancer [54]. A significant association of
PAX9 expression with stage, IPI score, relative risk of
treatment initiation, TTFT and OS in the present study

Fig. 5 Kaplan-Meier survival curves representing time to first treatment (TTFT) in early stage CLL patients with a low (n = 47) and high (n = 46)
mRNA expression of CRY1 b low (n = 46) and high (n = 46) mRNA expression of PAX9 and; c unmutated (n = 39) and mutated IGHV genes (n = 54)
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strengthens its role as an important marker of prognosis
in CLL as well.
Since levels of expression of either PAX9 or CRY1 did not

show significant difference in CLL patients when compared
to healthy controls but rather between patients subgrouped
on the basis of the IGHV mutational status, it is plausible
that these two genes may be involved in progression of
CLL rather than development of the disease. This explan-
ation is further supported by progressively increasing gene
expression levels of PAX9 and CRY1 in coherence with ad-
vanced Rai stage and higher IPI scores. The mechanism(s)
underlying such an influence of these two genes in CLL
pathogenesis are not known but might involve apoptotic
[53, 55–57], or analogous pathways involved in cancer.
Besides, several aberrantly methylated genes were also

identified in IGHV mutational status based subgroups
which could serve as potential markers in CLL. The
major limitation of the present study was that a limited
number of genes were evaluated in a small cohort of
early stage CLL patients. Further studies on large
cohorts of early stage CLL patients for expression pat-
terns of additional set of genes are required that may
help in characterizing the functional role of the genes
identified in the present study. Identification of relevant
epigenetically influenced genes that have an impact on
gene expression as well as clinical outcome may pave

way for identification and development of therapeutically
relevant drug targets.

Conclusions
The present study confirms the prognostic role of CRY1
in CLL as its aberrant methylation and expression is as-
sociated with high risk of treatment initiation and
shorter time to first treatment. In addition, this study
highlights PAX9 as a novel marker of prognostication in
CLL as its expression was significantly associated with
high risk of treatment initiation, shorter time to first
treatment and overall survival.
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Table S2A. List of probes hypermethylated in CLL in comparison to CD19+
cells from healthy individuals. Table S2B. List of probes hypomethylated in
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hypermethylated in unmutated in comparison to mutated CLL. Table S3B.
List of probes hypomethylated in unmutated CLL in comparison to mutated
CLL. Table S4. List of genes having negative correlation for methylation and
gene expression in CLL as compared to normal 19+ cells. Table S5. List of
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