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Abstract
Conventional methods for detecting tumors, such as immunological methods
and histopathological diagnostic techniques, often request high analytical costs,
complex operation, long turnaround time, experienced personnel and high false-
positive rates. In addition, these assays are difficult to obtain an early diagnosis
and prognosis quickly for malignant tumors. Compared with traditional technol-
ogy, electrochemical technology has realized the study of interface charge transfer
behavior at the atomic and molecular levels, which has become an important
analytical and detection tool in contemporary analytical science. Electrochemical
technique has the advantages of rapid detection, high sensitivity (single cell) and
specificity in the detection of tumor cells, which has not only been successful in
differentiating tumor cells from normal cells, but has also achieved targeted
detection of localized tumor cells and circulating tumor cells. Electrochemical
biosensors provide powerful tools for early diagnosis, staging and prognosis of
tumors in clinical medicine. Therefore, this review mainly discusses the develop-
ment and application of electrochemical biosensors in tumor cell detection in
recent years.

Introduction

Tumors, as a nonhereditary genetic disease, can be divided
into benign and malignant tumors, the latter can metasta-
size, grow rapidly, and produce harmful substances,
thereby seriously threatening human health. In addition,
malignant tumors (also named cancers) have developed a
variety of genetic mechanisms to adapt to the stresses of
living environment through genetic mutations, thereby
escaping growth inhibition signals and immune surveil-
lance systems.1,2 During the evolution from normal cells to
tumor cells, there are specific proteins or small molecules
used as markers for tumor diagnosis on the cell surface or
in the serum, which brings good gospel for the early diag-
nosis and treatment of tumors.3 For a long time, histopath-
ological diagnosis has been the gold standard for cancer
diagnosis and the basis for clinical treatment.4 However,
histopathological diagnostic techniques have the disadvan-
tages of high analytical costs, complex operations, long

turnaround time, and high false-positive rates, and it is dif-
ficult for them to meet the requirements for early diagnosis
and prognosis of malignant tumors. Fluorescence imaging
combined with confocal microscopy can directly observe
the rich location information of cancer cells.5–7 However,
the technology cannot meet the requirements of high sen-
sitivity measurement. Therefore, the development of new
tools is in demand. Recent studies have highlighted an
electrochemical technique which has been proven to have
ultra-high sensitivity and accuracy in the quantitative
detection of breast, prostate, liver and cervical cancer
cells.8–10

The most classical application of electrochemical biosen-
sors in the early diagnosis of tumors is the detection of
tumor cells by biosensors based on cell impedance sensing
technology. Cyclic voltammetry (CV), as a commonly used
electrochemical research method, can be used to judge the
microscopic reaction process on the electrode surface, so as
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to detect the change in impedance or microcurrent at the
electrode interface caused by the growth of cells on the elec-
trode surface. Differential pulse voltammetry (DPV) is a
method based on linear sweep voltammetry and staircase
voltammetry which has a lower background current and
higher detection sensitivity. In addition, it displays the highly
stable and specific capture of cancer cells by producing non-
toxic biological modifications on the working electrodes of
electrochemical biosensors, such as with covalently linked
biotin, monoclonal antibodies, lactoglobulin A and aptamer.
Therefore, the detection of tumor cells without lysis and
fixation is made possible, which simplifies the analysis pro-
cess and improves the accuracy of the results. Here, we
review the latest developments in electrochemical biosensors
for the detection of tumors (Table 1). We highlight
four aspects: electrochemical biosensor in tumor cell detec-
tion; electrochemical immunosensors in tumor cell detection;

electrochemical nucleic acid biosensors in tumor cell detec-
tion and detection of circulating tumor cells (CTCs).

Electrochemical biosensor in tumor
cell detection

The electrochemical biosensor consists of an identification
system and a transduction system. The function of the iden-
tification system is to selectively interact with the analyte
and convert the resulting parameters into a certain signal.
The function of the transduction system is to receive signals
and transmit them to the electronic system in the form of
electrochemical signals. The electronic system further
amplifies and outputs, realizing the quantification and
research of the analyte (Fig 1). Because of the advantages of
good selectivity, high sensitivity, simple equipment and low
price, the electrochemical biosensor has been widely used in

Table 1 Detection of tumor cells using electrochemical biosensors

Analyte Detection technique Nanomaterials Performance Reference

MCF-7 Electrochemical impedance Au nanoparticles (AuNPs) LOD: 10 cells/mL Wang et al.11

Hela Electrochemical impedance Multiwall carbon nanotubes
(MWCNTs)

Linear range: 2.1 x 102–2.1 x 107

cells/mL
LOD: 70 cells/mL

Liu et al.12

HL-60 Cyclic voltammetry (CV)
Electrochemical impedance
Differential pulse

voltammetry (DPV)

Multiwall carbon nanotubes
(MWCNTs)

Linear range: 2.7 x 102–2.7 x 107

cells/mL
LOD: 90 cells/mL

Xu et al.13

K562 Cyclic voltammetry (CV)
Electrochemical immunosensors

Au nanoparticles (AuNPs) Linear range: 1.0 x 102–1.0 x 107

cells/mL
Ding et al.14

MCF-7 Electrochemical nucleic acid
biosensors

DNA-AgNC LOD: 3 cells/mL Cao et al.15

MCF-7 Electrochemical nucleic acid
biosensors

Multiwall carbon nanotubes
(MWCNTs)

Linear range: 1.0 x 102–1.0 x 107

cells/mL
LOD: 25 cells/mL

Yazdanparast
et al.16

CTCs Cyclic voltammetry (CV)
Electrochemical impedance

Pt@Ag nanoflowers AuNPs/Acetylene
black

Linear range: 20–106 cells/mL
LOD: 3 cells/mL

Tang et al.17

CTCs Cyclic voltammetry (CV)
Differential pulse

voltammetry (DPV)
Electrochemical impedance

Magnetic Fe3O4 nanospheres
(MNs)

Cu2O nanoparticles (Cu2O NPs)

Linear range: 3.0–3000 cells/mL
LOD: 1 cells/mL

Luo et al.18

CTCs (MCF-7) Cyclic voltammetry (CV)
Electrochemical impedance

Ni micropillars/ PLGA electrospun
nanofbers

Linear range: 10–105 cells/mL
LOD: 8 cells/mL

Wu et al.19

K562 Differential pulse
voltammetry (DPV)

Graphene oxide/ quantum dots (QDs) LOD: 60 cells/mL Zheng et al.20

CTCs Cyclic voltammetry (CV)
Electrochemical impedance

Linear range: 1.0 x 102–1.0 x 105

cells/mL
LOD: 25 cells/mL

Wang et al.21

HepG2 Electrochemical impedance Carbon nanotubes (CNTs) Linear range: 10–105 cells/mL Liu et al.22

CTCs Cyclic voltammetry (CV)
Electrochemical impedance

Linear range: 30–106 cells/mL
LOD: 10 cells/mL

Shen et al.23

HT 29
FR-positive
cancer cells

Electrochemical Functionalized fibrous Nanosilica
(KCC-1)

Linear range: 50–1 x 1.2 x 104

cells/mL
LOD: 50 cells/mL

Soleymani et al.24
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many fields, including food testing, environmental monitor-
ing, clinical medicine, animal disease detection and drug
screening.25–30 One of the most classical techniques in elec-
trochemical biosensor technology is cell impedance sensing.
It is based on the principle that cells growing on the surface
of a microelectrode can change the impedance at the inter-
face of the adherent electrodes, where biological information
related to the physiological functions of cells can be
obtained. Therefore, an electrochemical biosensor based on
cell impedance sensing technology can measure changes in
cell layer resistance caused by cell morphology, cell move-
ment, or cell contact, which can monitor cell dynamic
behavior in real time quantitatively without damage (Fig 2).
Based on the above principles, researchers have constructed
various electrochemical impedance sensors with modified
working electrodes based on the innovative technique of
capturing tumor cells, and the detection of the following
human tumor cells has been demonstrated: HeLa, MCF-7
(breast cancer), HL-60 (human promyeloacute leukemia cell
line), HCT-116 (human colorectal cancer cells) and HepG2
(hepatocellular carcinomas).11–13,22,31–33

The most important step in building the cell electro-
chemical sensor is to fix the cells onto the surface of the
working electrode to produce electrochemical signals. The
traditional fixing method has some disadvantages, such as
low survival rate, poor stability, additional increase in diffu-
sion resistance and so on.34,35 As a kind of biosensor-fixed
matrix with good biocompatibility, no toxicity, superior
protein adsorption and gel-forming ability, gelatin is widely
used in the construction of living cell-fixed and bionic
interface. For example, Zhu et al. obtained c-SWCNTs-
AuNPs-gelatin nanoparticles by ultrasonic assembly using
gelatin, gold nanoparticles and single-walled carbon

nanotubes and successfully achieved in vitro fixation and
highly sensitive electrochemical detection of human leuke-
mia HL-60 cells.36 Li and coworkers wrapped gelatin on the
surface of Au nanoflowers (AuNFs) to produce
AuNFs@gelatin and combined it with cationic conjugated
materials to fix and image HeLa cells.37

Sensitive biosensors based on various electrochemical
techniques have been widely used in the detection of can-
cer cells. In 2017, Feng et al. gave a detailed review of elec-
trochemical detection of tumor cells, and summarized the
analytical performance of biosensors used to detect cancer
cells. In recent years it has been pointed out that the inte-
gration of electrochemical sensors into mobile sensitive
detection devices is a widely explored direction in the
future.38 In addition, we still need to develop new electro-
chemical probes using new nanobiomaterials to improve
the capture rate, develop new nanomaterial-modified elec-
trodes to improve conductivity, and detect cancer cells with
high sensitivity in a short time in a simple way.

Electrochemical immunosensors in
tumor cell detection

An electrochemical immunosensor is a product based on
the combination of antigen-antibody specific reaction and
electrochemical technology. The basic principle is that the
antigen-antibody, as a molecular recognition element, is in
direct contact with the electrochemical sensing element
and converts the signal of a certain or a certain kind of

Figure 1 The recognition system selectively interacts with the analyte
and converts the resulting chemical parameters into a certain signal.
The transduction system receives the signal and transmits it to the elec-
tronic system in the form of an electrochemical signal, and the elec-
tronic system further amplifies the output.

Figure 2 Cells that grow on the surface of microelectrodes can change
the impedance at the interface of the electrode, thus obtaining biolog-
ical information related to the physiological functions of the cells. (a)
Glassy carbon electrodes are modified by composite materials com-
posed of carbon nanotubes (CNTs) and gold nanoparticles (AuNPs) to
improve their sensitivity and detection range (control). (b) Cancer cell is
adhered to a composite modified glassy carbon electrode, and the
change in cell layer resistance is detected (experiment).
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chemical concentration into the corresponding electrical
signal through the sensing element (Fig 3a). Therefore, bio-
sensors constructed on the basis of specific reactions
between antigens and antibodies, specific recognition func-
tion of adapters and the cell impedance principle have suc-
cessfully achieved high-sensitivity linear detection of
various cancer cells, including human liver cancer cell line
HepG2, human breast cancer cell line MCF-7, small cell
lung cancer, lung adenocarcinoma, squamous cell cancer,
skin cancer, prostate cancer and breast cancer.39–41 In addi-
tion, glycosyls on the cell surface play an important role in
cell recognition, adhesion, immune response, and the
occurrence and migration of cancer cells.42–44 Therefore,
the cell electrochemical sensor based on surface-specific
glycosyls of cancer cells has also successfully achieved the
specific recognition and linear detection of HeLa cells,
polysaccharide-rich K562 leukemia cells, and MDA-MB-
231 cells.14,45–48

Folic acid (FA) receptor is a cell surface receptor that is
excessively expressed on most human tumor cells and
rarely expressed or not at all in normal organs. Therefore,
FA is often used as a target for antitumor drugs.49–52 Using

the high affinity of FA and FA receptors, researchers used
hydrothermal synthesis of functionalized fiber nanosilica
(KCC-1), which was then functionalized with FA mole-
cules to produce KCC-1-NH2-FA nanoparticles. Based on
the excellent bleaching stability and excellent surface area
to volume ratio of KCC-1-NH2-FA nanoparticles, a more
sensitive cell sensor was designed for the detection of can-
cer cells HT-29 with a detection range of 50 to
1.2 x 104 cells/mL and the lower limit of detection is
50 cells/mL (Fig 3b).24

As shown in Table 2, we briefly summarize the common
and hazardous tumor markers, apart from the tumor
markers mentioned in the article, the remaining tumor
markers and tumor markers to be discovered provide
broad prospects for the specific detection of tumor cells by
electrochemical immunosensors. However, in the prepara-
tion of electrochemical immunosensors, the fixation of
antigen and antibody is an important factor affecting the
performance of the sensor, which directly affects the ser-
vice life, reproducibility and detection limit of the sensor.
Due to the specific reaction of antigens and antibodies,
electrochemical immunosensors have higher specificity and
selectivity than other biosensors, and have been widely
used and applied.

Electrochemical nucleic acid
biosensors in tumor cell detection

Electrochemical nucleic acid biosensors use nucleic acid mol-
ecules as molecular recognition elements, whose principle is
to fix a single strand of oligonucleotides on the electrode and
hybridize with the target DNA, and detection of target sub-
stances by detecting changes in electrochemical parameters
before and after hybridization. The target substances can be
DNA, miRNA, or other biological molecules (Fig 4a).
Aptamer is a synthetic nucleic acid with high specificity and
affinity, and ease of biological and chemical modification that
has been screened by the screening technique SELEX in vitro
(Systematic Evolution of Ligands by Exponential Enrich-
ment). A nucleic acid adapter shows highly specific binding
to tumor cell surface target molecules and is easy to use,
which has been widely used in the construction of cell sen-
sors in recent years,62–65 greatly improving the target recogni-
tion ability of sensors and detection selectivity to tumor
cells.66–69 For example, Li et al. used MUC1 to bind an
aptamer for detecting MUC1 proteins on the surface of
tumor cells while identifying their CEA proteins with nano-
meter CdS-labeled carcinoembryonic antigen (CEA), which
effectively reduced the occurrence of false positives in the
detection of tumor cells.58 Studies have shown that ITO elec-
trodes with good light transmittance and electrical conduc-
tivity were first modified by the AS1141 aptamer, which can
selectively bind to the overexpressed nucleolins on the

Figure 3 Schematic diagram: (a) Electrochemical immunosensor. (b)
Specific antibody is covalently linked to a modified glassy carbon elec-
trode for specific capture of cancer cells.
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surface of breast cancer cells McF-7. Then, the mucin-1 anti-
body (anti-muc1) and DNA-AgNCs complexes with unique
fluorescent and electrochemical properties template silver
nanocluster (DNA-AgNCs) bind to the MUC1 on the sur-
face of McF-7 cells to form the sandwich structure. The
strong red fluorescence of DNA-AgNCs shows the presence
of cancer cells, the strong conductivity of DNA-AgNCs can
improve the sensitivity of quantitative analysis, making the
detection limit up to 3 cells/mL.15 In addition, the sensitivity
and specificity of tumor cell detection can be improved by
using the electrochemical sensor constructed by a dual-
aptamer. For example, human epidermal growth factor
receptor 3 (HER-3) binding aptamer and MUC1 aptamer
were used to simultaneously detect MUC1 protein and HER-
3 receptor on the surface of breast cancer cells, which not
only kept the probe stable in the complex system, but also
had good selectivity and sensitivity for the detection of
MCF-7 cells. The linear calibration range of this electro-
chemical method was 1.0 x 102 to 1.0 x 106 cells/mL, and the
detection limit 100 cells/mL (Fig 4b).56 The research group
of Qu et al. directly combined the aptamer TLS1c through
the flexible linker and the aptamer TLS11a through the rigid
linker to the surface of glassy carbon electrode (GCE) to cap-
ture MEAR cancer cells; the linear range of detection was
1–14 MEAR cells, and the detection limit was 1 MEAR cell
in 10 whole blood cells.70 In the study by Yazdanparast et al.

biocompatible nanocomposite consisting of multiwall carbon
nanotubes (MWCNT) and poly(glutamic acid) was placed
on a glassy carbon electrode (GCE), then a mucin
1 (MUC1)-binding aptamer was first immobilized on the
surface of modified GCE. In order to enhance the selectivity,
another aptamer (labeled with silver nanoparticles) was used
for secondary MCF-7 cell recognition, which building a kind
of electrochemical sensors with high selectivity, sensitivity,
stability and reproducibility. Under optimal conditions, the
detection range of the sensor was 1.0 x 102 to 1.0 x 107 cells/
mL, and the detection limit was 25 cells/mL.16

Quantum dots (QDs), also known as semiconductor
nanocrystal, has been a hot new type of luminescent
nanomaterials in recent years, with unique optical and
electrical properties. In addition, QDs has active electro-
chemical properties, and its metal components can show
very sharp redox peak signals after voltammetry analysis.
Therefore, QDs can be used as an electroactive substance
with signal amplification for the construction of a variety
of biosensors. In recent years, for electrochemical cell sen-
sors, QDs and aptamer are usually combined to capture
cells, and electrochemical analysis of the metal components
of QDs is used to achieve the purpose of quantitative
detection of cells (Fig 5). For example, in 2011, Zhu et al.
directly assembled complementary DNA (cDNA), aptamer
and QDs onto the surface of the gold electrode to achieve

Table 2 Summary of the common and serous tumor markers

Tumor cells Cell-surface/serum markers Reference

Liver cancer stem cell CD13 Sun et al.53

Hepatocellular carcinoma Assessing serum α-fetoprotein (AFP)
Des-γ-carboxyprothrombin (DCP)
AFP-L3
Glypican-3 (GPC3)
Golgi protein-73 (GP73)

Tsuchiya et al.54

Lung cancer cell line Carbonic anhydrase 9 (CA9)
G protein-coupled receptor 87 (GPR87)
LYPD3
SLC7A11
CXorf61

Cohen et al.55

Breast cancer cell line Human epidermal growth factor receptor 3 (HER-3) Lv et al.,56 Chiu et al.57

Breast cancer cell line Carbohydrate antigen125 (CA125)
Human epidermal growth factor receptor-2 (Her-2)
Cytokeratin5/6 (CK5/6)
E-cadherin (E-cad)
carcinoembryonic antigen (CEA)
MUC1

Liu et al.,58 Jafari et al.59

Gastric cancer cell line Folic acid (FA)
GRP78
anti-CD146 MAb
BRCAA1 MAb

Liu et al.60

Acute myeloid leukemia (AML) CD123, CD45, CD34, CD38, MLL-AML, core binding factor, among
others

Prada-Arismendy et al.61

HT-29 Folic acid (FA) Soleymani et al.24
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highly sensitive detection of tumor cells with a detection
limit of 100 cells/mL.71 In recent years, in order to achieve
high selectivity and sensitivity of cancer cells to capture
and detect, glassy carbon electrodes were firstly modified
by multiwall carbon nanotubes (MWCNT), gold
nanoparticles (AuNPs), polydopamine (PDA), graphene
oxide (GO), polyaniline (PANI) and concanavalin A (Con
A) using a layer-by-layer technique. Subsequently, the
aptamer-DNA concatamer-CdTe quantum dots (QDs) as
the signal amplification probe was covalently connected to
the surface of the modified electrode, making a sensor with
high stability, selectivity and sensitivity, with a detection
limit reaching 50–60 cells/mL.20,72

The detection technology of tumor cells based on an
aptamer electrochemical probe has been widely used. In
2019, Chen et al. published a detailed review of the appli-
cation of aptamer-based electrochemical cytosensors in
tumor diagnosis.73 However, in vitro screening technique
SELEX is still needed to obtain more specific aptamers to
improve the detection range and limit of electrochemical
sensors.

Detection of circulating tumor cells
by electrochemical biosensors

Circulating tumor cells (CTCs) were first discovered in
1869 by Ashworth who found similar tumor cells in
peripheral blood during an autopsy of a patient who died
of cancer. The main cause of death from malignant tumors
is when tumor cells are released from a primary or meta-
static lesion into the peripheral blood or lymphatic circula-
tion, resulting in CTCs and metastasis in other parts.
Previous studies have shown that CTCs can be a new diag-
nostic target for tumor staging and prognosis (fewer CTCs
indicate longer survival) and can provide information for
treatment evaluation.74–77 Therefore, it is becoming more
and more important to detect CTCs rapidly and accurately
in peripheral blood for the clinical treatment of tumors
and prognosis.
As a fast and efficient detection tool, electrochemical

biosensors have been widely used in the detection of tumor
cells. However, the average density of tumor cells in the
blood is 200 cells/mL, which accounts for only 0.004% of
the number of cells. Therefore, it is necessary to develop
highly specific and sensitive tools to capture CTCs at low
concentrations in the blood. In 2014, Costa et al. reviewed
isolation and detection with high sensitivity to circulating
tumor cells (CTCs) through various biosensors, and
pointed out that compared with other biosensors, an elec-
trochemical biosensor has higher sensitivity, simplicity and
low cost. Different new nanomaterials are being used to
modify electrodes to amplify biometric event signals, nar-
row detection range and improve detection sensitivity; at

Figure 5 Electrochemical probes based on quantum dot-aptamers
were constructed to detect tumor cells. (a) Construction of electro-
chemical probe. (b) Working electrode was modified by
nanomaterials. (c) The probe captures the tumor cells. Nitric acid
digests probes that specifically bind to tumor cells for electrochemical
detection.

Figure 4 Schematic diagram: (a) Electrochemical nucleic acid
biosensors. (b) Specific aptamers is covalently linked to the modified
glassy carbon electrode to enhance the specificity of cancer cell
capture.
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the same time, more specific electrochemical probes need
to be constructed to improve the ability to capture circulat-
ing tumor cells (CTCs); both are still challenges for
researchers.78 For example, in the report by Shen et al. a
label-free electrochemical impedance biosensor based on
the specific recognition between specific epithelial cell
adhesion molecules (EpCAM) overexpressed on the cell
membrane and EpCAM aptamer was constructed to detect
CTCs. First, 6-mercapto 1-hexanol (MCH) was fixed on
the gold electrode; second, the capture probe was
directionally inserted in MCH interspaces; the detection
range of the sensor was 30 to 106 cells/mL, and the detec-
tion limit was 10 cells/mL.23 Tang et al. designed a novel
ultrasensitive immunoassay protocol by using Pt@Ag nan-
oflowers (pt@AgNFs) and AuNPs/Acetylene black
(AuNPs/AB) nanomaterial to detect CTCs.17 Pt@AgNFs
had high specific surface area and good biocompatibility,
and were not only used as the carriers of signal antibodies
(Ab2) but also catalyzed the reduction of H2O2 to amplify
the current signal. AuNPs/AB nanomaterial was used as a
substrate material to increase the specific surface area and
conductivity of the gold electrode. The detection range of
the sensor was 20 to 1.0 x 106 cells/mL, and the detection
limit was 3 cells/mL.17 In addition, researchers have clev-
erly combined photoexcitation and electrochemical detec-
tion processes to construct photoelectrochemical (PEC)
biosensors with higher detection sensitivity for the detec-
tion of circulating tumor cells. In this study, a PEC biosen-
sor was proposed based on hexagonal carbon nitride tubes
(HCNT) as photosensitive material, and magnetic Fe3O4
nanospheres were used for efficient magnetic capture of
CTCs, and Cu2O nanoparticles were used for signal ampli-
fication, making the detection range of this sensor range
from 3 to 3000 cells/mL, with a detection limit down to
1 cell/mL.18

With the development of science and technology, the
basic operating units such as sample preparation, reaction,
separation and detection of biological, chemical, and medi-
cal analysis processes are integrated into microscale chips,
which automatically completes the entire analysis process
and combines with electrochemical sensing for the detec-
tion of CTCs. In 2007, Nagrath and coworkers used a
microfluidic chip modified with an epithelial-specific adhe-
sion molecule (EpCAM) antibody to successfully separate
untreated peripheral blood CTCs for the first time.79 At
present, the microfluidic chip based on an antibody as the
trapping probe has successfully detected CTCs.80–83 At the
same time, as an artificial small molecule that is easier to
preserve and modify than antibodies, the aptamer is more
suitable for functional modification of microfluidic chips.
For example, the microfluidic chip modified by nucleic
acid aptamer sgc8 has successfully achieved the separation
and capture of target cells from many samples with a

capture efficiency of 80% and a specificity greater than
97%. In addition, different aptamers can be used to sepa-
rate and capture different target cells.84,85 On the basis of
earlier studies, Soper et al. and Tsing et al. used aptamers
that identified PSMA and A549 cells to perform functional
modifications on microfluidic chips, and constructed
microfluidic devices to capture tumor cells, and they were
able to detect CTCs in the blood of cancer patients.86,87

However, in these studies, the length of the aptamers mod-
ified on the surface of the microfluidic chip exposed to the
solution was only a few nanometers, which makes micro-
fluidic chip detection inefficient and difficult to capture
cells in high-speed flowing liquid. To overcome this short-
coming, researchers continue to explore the use of cyclic
DNA templates and connected primers at the end of the
template, and then in the presence of polymerase and
dNTP, each primer extends along the cyclic DNA template
to finally generate a single-stranded DNA consisting of a
plurality of aptamers in series as a capture probe, which
can effectively enhance its ability to capture the CTCs.21

With the rapid development of micro/nano manufactur-
ing technology, the analysis method based on three-
dimensional (3D) bionic interface has become a hot
research topic in nanotechnology and life sciences. Micro/
nanostructure-based devices have been identified as the
simplest and most effective technologies for capturing
CTCs. Chen and coworkers showed a nickel
(Ni) microcolumn cell sensor deposited by electro-textile
nanofibers. First, ultralong poly (lactic-co-glycolic acid)
(PLGA) nanofibers were laterally stacked on the surface of
nickel micropillars by electrospinning to construct a 3D
biomimetic interface for capturing CTCs, which would be
connected with quantum dot (QD). The functionalized
anti-EpCAM antibody (QD-EpCAM) was modified at the
3D biomimetic interface to successfully achieve the highly
specific detection of MCF7 breast cancer cells as a CTC
model. The detection range was 101 to 105 cells/mL, and
the detection limit was 8 cells/mL.19 In summary, the com-
bination of electrochemical sensing technology and micro-
fluidic chip technology can provide a powerful, rapid and
easy-to-use tool for the clinical detection of CTCs.

Conclusions and perspectives

Compared with normal cells, tumor cells, especially malig-
nant tumors, exhibit abnormal movement and migration
capabilities, rapid cell division, and cytoskeletal abnormal-
ities.88–90 At the same time, existing studies have shown that
persistent inflammation can also trigger and exacerbate
malignant tumors.91 These characteristics not only give
researchers new ideas on how to treat cancer; for example,
by inhibiting the activity of microtubule motor
proteins, blocking mitosis or development of inflammatory
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factor-related inhibitors (such as histone deacetylase
6 [HDAC] inhibitors), achieving the purpose of anticancer
agents, they also provide valuable reference to assist with the
early diagnosis of tumors.63,92,93 Electrochemical biosensor
technology, as a new type technology of tumor detection, has
achieved breakthrough results after decades of development.
In particular, the emergence of cell electrochemical sensors
provides convenient tools for cell counting, cell classification,
and the detection of tumor cells.94,95 Among the many break-
through results, the detection of tumor cells has not only
achieved high sensitivity (limit of detection of 10 tumor cells
in 250 μL samples96) and high specificity, but has also made
it possible to detect double antigen on the tumor cell surface,
successfully avoiding false positive results. However, in the
process of sensor configuration and application research,
some deficiencies and improvements have also been found.
First, with the advent of nucleic acid adapters and

microfluidic chips, the problem of efficient and specific
trapping of tumor cells has been solved. However, during
the application of the electrochemical sensors, an irrevers-
ible chemical reaction occurs between recognition elements
and target on the surface of tumor cells, or the recognition
element is contaminated with blood impurities which
greatly reduces the reuse rate of the sensors and recogni-
tion ability of the identification elements. Therefore, the
recognition elements of the sensors are chemically treated
with different regenerative solvents in different situations
to restore the recognition function in time for the purpose
of reuse.
Second, in the preparation of nanomaterials and the

preparation of functionalized nanocomposites,
nanomaterials with high catalytic properties should be
combined with carbon nanotubes and peptide carbon nan-
otubes to improve sensitivity, selectivity and stability of
nanocomposites. In terms of biocatalytic induction of
nanomaterials, a new biosensor interface should be
explored further for the assembly of biomolecules and
nanometer microarray so as to achieve high specificity and
high sensitivity detection of CTCs in complex blood sam-
ples. In addition, the manufacturing process of future sen-
sors could be more delicate, which will not only improve
the performance of future sensors but will also promote
the miniaturization of sensors to meet the needs of specific
situations.
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