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Sesquiterpene pyridine alkaloids are a large group of highly oxygenated sesquiterpenoids, which are characterized by a mac-
rocyclic dilactone skeleton containing 2-(carboxyalkyl) nicotinic acid and dihydro-β-agarofuran sesquiterpenoid, and are believed
to be the active and less toxic components of Tripterygium. In this study, 55 sesquiterpene pyridine alkaloids from Tripterygium
were subjected to identification of pharmacophore characteristics and potential targets analysis. Our results revealed that the
greatest structural difference of these compounds was in the pyridine ring and the pharmacophore model-5 (Pm-05) was the best
model that consisted of three features including hydrogen bond acceptor (HBA), hydrogen bond donor (HBD), and hydrophobic
(HY), especially hydrophobic group located in the pyridine ring. It was proposed that 2-(carboxyalkyl) nicotinic acid part
possessing a pyridine ring system was not only a pharmacologically active center but also a core of structural diversity of alkaloids
from Tripterygium wilfordii. Furthermore, sesquiterpene pyridine alkaloids from Tripterygium were predicted to target multiple
proteins and pathways and possibly played essential roles in the cure of Alzheimer’s disease, breast cancer, Chagas disease, and
nonalcoholic fatty liver disease (NAFLD). .ey also had other pharmacological effects, depending on the binding interactions
between pyridine rings of these compounds and active cavities of the target genes platelet-activating factor receptor (PTAFR),
cannabinoid receptor 1 (CNR1), cannabinoid receptor 1 (CNR2), squalene synthase (FDFT1), and heat shock protein HSP 90-
alpha (HSP90AA1). Taken together, the results of this present study indicated that sesquiterpene pyridine alkaloids from
Tripterygium are promising candidates that exhibit potential for development as medicine sources and need to be promoted.

1. Introduction

Traditional Chinese medicine (TCM) and natural products
represent a huge source of diverse new drugs due to their
potent and highly varied physiological activities. Plants in
the genus Tripterygium, such as Tripterygium wilfordii
Hook. f. (TWHF), a typical traditional Chinese medicine
plant, have been widely used to treat autoimmune diseases
and neurodegenerative diseases including rheumatoid ar-
thritis, systemic lupus erythematosus, and Parkinson’s
disease in China [1–3]. Chemical and pharmacological

studies have demonstrated that alkaloids, diterpenes, tri-
terpenes, and lignans were major bioactive components
found in T. wilfordii responsible for the overall curative
effects [4–6]. Triptolide and celastrol are considered as
predominantly active natural products of TWHF and are
used as a remedy for inflammatory and autoimmune
diseases [7, 8]. As the most promising bioactive compound
obtained from TWHF, triptolide has attracted considerable
interest recently, especially for its biosynthesis [9]. How-
ever, toxicity restricts the further development of triptolide
and celastrol [10].
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Alkaloids with diverse structures are an important class
of chemical components in TWHF [11]. A total of 161 al-
kaloids have been reported in TWHF, which mainly include
sesquiterpene pyridine alkaloids, sesquiterpene non-
macrocyclic lactone alkaloids, and a few other types of al-
kaloids [12–14]. Importantly, sesquiterpene pyridine
alkaloids are the most abundant in TWHF. From the per-
spective of structural characteristics, they can be divided into
two categories: sesquiterpene pyridine alkaloids, in which
pyridine ring 2′,3′ position is connected to macrocyclic and
pyridine ring 3′,4′ position is connected to macrocyclic. .e
diversity of the positions of the connectable groups of the
sesquiterpene part and the complexity of the substitutable
groups lead to a wide variety of compounds.

Sesquiterpene pyridine alkaloids from Tripterygium have
been extensively studied due to their potential role in a wide
spectrum of pharmacological activities, such as anti-in-
flammatory, antimicrobial and antitumor activities. TWHF
alkaloids are less toxic than diterpenoids and have significant
medicinal effects [15, 16]. .ese results suggested that ses-
quiterpene pyridine alkaloids from Tripterygium could be
utilized as a valuable chemical probe or a chemical moiety
for the dissection of complex biological processes, discovery
of unknown molecular relationships, and identification of
therapeutic target molecules and pathways, which were
worthy of in-depth study. .e molecular mechanisms in-
duced by sesquiterpene pyridine alkaloids from Tripterygium
and the resulting changes in cellular phenotypes are rarely
studied.

Network pharmacology is emerging as a promising
strategy which is closely related to the application of multiple
omics- and systems biology-based technologies [17]. It is a
valuable tool for achieving a holistic view and compre-
hensive and systematic insights into the mechanisms of
multi-ingredient medicine. Various molecular networks of
complex ingredients and multilevel target-based protein and
gene interactions have been constructed for predicting their
functions and promoting discovery of active compounds
[18]. Next, the identification of drug targets is preliminarily
validated by molecular docking. After that, molecular bi-
ology experiments are conducted to further explore and
accelerate the drug discovery processes.

.ese findings prompted us to systematically investigate
the sesquiterpene pyridine alkaloids from Tripterygium. As a
result, the greatest structural difference of 55 sesquiterpene
pyridine alkaloids from Tripterygium lied in 2-(carbox-
yalkyl) nicotinic acid part possessing pyridine ring and the
pharmacophore model-5 (Pm-05) was the best model that
consisted of three features including being hydrogen bond
acceptor (HBA), hydrogen bond donor (HBD), and hy-
drophobic (HY), especially hydrophobic group located in
the pyridine ring. 2-(Carboxyalkyl) nicotinic acid part
possessing a pyridine ring system as the pharmacologically
active center and the core of structural diversity of alkaloids
from Tripterygium wilfordii was proposed. Moreover, ses-
quiterpene pyridine alkaloids from Tripterygium were pre-
dicted to target multiple proteins and pathways and possibly
participated in the treatment of Alzheimer’s disease, breast
cancer, Chagas disease, and NAFLD. .ey also had other

pharmacological effects, depending on the binding inter-
actions between pyridine rings of these compounds and
active cavities of the target genes encoding PTAFR, CNR1,
CNR2, FDFT1, and HSP90AA1. .e elaboration of 2-
(carboxyalkyl) nicotinic acid part from macrocyclic dilac-
tone skeleton as an active group and prediction of potential
targets provide a promising resource for further being
utilized as a chemical moiety, lead compound, or active
ingredient for future drug discovery.

2. Materials and Methods

2.1. Collection of Sesquiterpene Pyridine Alkaloids from
Tripterygium. Based on related literature and the HR-MS-
Database of macrocyclic dilactone skeleton alkaloids from
Tripterygium established by our research group, data on
sesquiterpene pyridine alkaloids from Tripterygium were
extracted, and their molecular structures were converted
into the standard Canonical SMILES format using PubChem
database (https://pubchem.ncbi.nlm.nih.gov) and Chem-
Spider database (http://www.chemspider.com/), for target
prediction of compounds [19, 20].

2.2. Pharmacophore Model Construction and Validation of
Sesquiterpene Pyridine Alkaloids from Tripterygium. .e li-
gand-based pharmacophore approach is a standard and very
efficient way to conduct large virtual screening. .ere are
multiple public sources, including OpenPHACTS,
ChEMBL, and PubChem, for collecting compounds and
activity data [21]. Six training set molecules from the ses-
quiterpene pyridine alkaloids from Tripterygium were taken
as starting points for further ligand-based pharmacophore
design and were imported in the same window of Discovery
Studio software 2016 software. .en, a principal value was
set at 2 to make sure that the chemical features of all the
ligands were considered when hypothesis space was gen-
erated, while a MaxOmitFeat value at zero could force to
map all ligand features. Before starting the pharmacophore
generation process, the small molecular structures were
optimized by Minimize Ligands program. .e number of
conformers generated for each ligand was limited to a
maximum number of 200.

.e Pharmacophores module in the Discovery Studio
2016 software was employed to build the pharmacophore
models with qualitative common features [22]. Maximum
pharmacophore hypotheses were set to 10 and the minimum
interfeature distance was set at 0.5, while all the other pa-
rameters were set at default values. .e generated phar-
macophore models were validated by fit values of test set.

2.3. Direct Target Fishing for Sesquiterpene Pyridine Alkaloids
from Tripterygium. .e TargetNet web server (http://
targetnet.scbdd.com) is an open web server that could be
used for netting or predicting the binding of multiple targets
for any given molecule [23]. TargetNet simultaneously
constructs numerous QSAR models based on current che-
mogenomics data to make future predictions. Given a
compound, TargetNet can provide the corresponding target
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genes sorted by the interactions between them in descending
order. Candidate targets of sesquiterpene pyridine alkaloids
from Tripterygium were predicted using TargetNet with
default parameters. To improve the reliability of the target
prediction results, only targets with a high probability score
(≥0.40) were selected.

2.4. Analysis by GeneMANIA. GeneMANIA (http://www.
genemania.org) is a user-friendly and flexible web server,
for generating gene function hypotheses, analyzing gene
lists, and prioritizing genes for functional assays [24, 25].
Given a query list, genes with similar function can be listed
by GeneMANIA, which identifies and shows a functional
relationship network according to available genomics and
proteomics data. GeneMANIA also reports weights that
indicate the predictive value of each selected data set for the
query [24]. Six organisms are currently supported (Arabi-
dopsis thaliana, Caenorhabditis elegans, Drosophila mela-
nogaster, Mus musculus, Homo sapiens, and Saccharomyces
cerevisiae) in GeneMANIA. .e putative target genes were
entered into the search bar after selecting “Homo sapiens”
from the organism option, and the results were further
collated.

2.5. Gene Ontology and Pathway Enrichment Analysis.
.e DAVID database (https://david.ncifcrf.gov/) can be
utilized to thoroughly clarify and understand the functional
and pathway enrichment information of a gene of interest
[26]. Potential candidate targets were submitted to the
DAVID database for enrichment analysis. Results of the
enrichment analysis were illustrated by ClusterProfiler and
ggplot2 package in R [27]. .e R visualization package
GOPlot was used to achieve better visualization of the re-
lationships between genes and the selected functional
categories.

2.6. Interaction Analysis between Putative Targets and Cor-
responding Diseases. .e Online Mendelian Inheritance in
Man (OMIM, https://omim.org/) is a knowledge source and
database for human genetic diseases and related genes [28].
Each OMIM entry includes clinical synopsis, linkage anal-
ysis for candidate genes, chromosomal localization, and
animal models, which has become an authoritative source of
information for the study of the relationship between genes
and diseases. .e predicted target data were imported into
the OMIM to determine the diseases related to the target.
.en, the raw data were screened through manual removal
of symptoms, congenital diseases, pathological processes,
and animal diseases.

2.7. Network Construction. In order to understand the
complex relationships between compounds, targets, and
diseases, we used the network visualization software Cyto-
scape (version 3.6.0) to construct and analyze the two-layer
networks (compound-target network) and three-layer net-
works (compound-target -disease network) [29].

2.8. Molecular Docking Simulation. To verify the binding
affinity of candidate targets to constituent compounds of
sesquiterpene pyridine alkaloids from Tripterygium, a mo-
lecular docking simulation was performed using the pro-
gram LibDock implemented in Discovery Studio 2016. .e
crystal structures of the candidate targets were directly
downloaded from the Protein Data Bank (PDB, http://www.
pdb.org) and their resolutions varying from 1.0 to 3.5 Å were
carefully examined. .e higher the resolution is, the better
the actual locations of separate atoms can be assigned. To
evaluate the binding affinity of each candidate target to the
corresponding compound, a docking score was calculated by
the customizable scoring function of LibDock.

3. Results

3.1. InformationCollection andClassification of Sesquiterpene
Pyridine Alkaloids from Tripterygium. A total of 55 sesqui-
terpene pyridine alkaloids from Tripterygium were collected
and sorted. Detailed information consisting of compound
name, molecular formula, class, and data sources is shown in
Supplementary Table S1. .ey were divided into seven
categories based on the structural differences of niacin de-
rivatives and listed as follows: Type1, Type3, Type4, Type5,
Type6, Type7, and Type8 (Figure 1). .e sesquiterpene
pyridine alkaloids were a large group of highly oxygenated
sesquiterpenoids, all of which possessed a characteristic
macrocyclic dilactone skeleton consisting of a dicarboxylic
acid moiety, 2-(carboxyalkyl) nicotinic acid, and a poly-
oxygenated dihydro-β-agarofuran sesquiterpenoid (Fig-
ure 1). .e sesquiterpene alkaloids were usually formed by
the esterification of their hydroxy groups including acety-
lation, benzoylation, furanoylation, and nicotinylation. And
pyridine ring 2′, 3′ position or 3′, 4′ position connected to
macrocyclic were important factors of complexity of ses-
quiterpene pyridine alkaloids from Tripterygium.

3.2.Characteristics of PharmacophoreModel for Sesquiterpene
Pyridine Alkaloids from Tripterygium. As a continuation of
the chemical studies of Tripterygium sesquiterpene pyridine
alkaloids to mine a pharmacologically active center, phar-
macophore model of alkaloids characterized by macrocyclic
dilactone skeleton from Tripterygium was constructed. .e
model generation was based on the structural information of
six training set molecules. Detailed information on these
molecules is provided in Supplementary Table S2. A ligand-
based pharmacophore model (Pm-01) was developed and
screened using Common Feature Pharmacophore Genera-
tion (HipHop algorithm) of Discovery Studio 2016 and Fit
values (Figures 2(a) and 2(b)). All the compounds of the
training set shared an essential common amide function-
ality. In order to improve the sensitivity of the pharmaco-
phore model, 10 pharmacophore models were validated
using 41 active ligands and seven inactive ligands (Sup-
plementary Table S2), and the best model (Pm-05) was
selected on the basis of heat mapping results depicted by Fit
values, in which the “amide” feature was replaced by a
hydrogen bond acceptor (HBA) feature. .e blue circle,
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where the pyridine ring was formed, might be an important
functional feature of the sesquiterpene pyridine alkaloids
(Figures 2(c) and 2(d)). .ough the establishment of
pharmacophore model of alkaloids containing macrocyclic
dilactone skeleton from Tripterygium, 2-(carboxyalkyl)
nicotinic acid derivatives with functional groups possessing
pharmacophore features were analyzed and proposed.

3.3. Target Identification and Construction of Compound-
Target Network for Sesquiterpene Pyridine Alkaloids from

Tripterygium. For the purpose of target identification of
alkaloids characterized by macrocyclic dilactone skeleton
from Tripterygium, the reverse targeting strategy was firstly
applied to acquire valuable targets. In the compound-target
network of sesquiterpene pyridine alkaloids from Triptery-
gium, 55 compounds yielded 86 candidate target genes after
removing the nonhuman genes, filtering the genes (prob-
ability< 0.4), and eliminating all duplicates. .e detailed
information on these targets is provided in Supplementary
Table S3. Specifically, the network included 148 nodes and
1978 compound-target interactions, suggesting the presence
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Figure 1: Structures of sesquiterpene pyridine alkaloids from Tripterygium: (a) 55 sesquiterpene pyridine alkaloids of which pyridine ring 2′,
3′ position or 3′, 4′ position are connected to macrocyclic; (b) dihydro-β-agarofuran sesquiterpenoid moiety; (c) 2-(carboxyalkyl) nicotinic
acid moiety; (d) macrocyclic dilactone skeleton from Tripterygium.
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of complex correlations among different compounds and
targets (Figure 3(a)).

After the construction of a compound-target (C-T) in-
teraction network and calculation of the four topological
features, “degree,” “betweenness centrality,” “closeness

centrality,” and “clustering coefficient,” 20 known targets
were screened, and their detailed information is provided in
Supplementary Table S4. Starting from this graph, we
generated a target-target (T-T) network with the help of
STRING web server (https://string-db.org/). .e
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Figure 2: Pharmacophore models generated using six alkaloids. (a) Pharmacophore-1 (Pm-01) with three features, including HBA (green),
HBD (pink), and HY (blue). (b) Compound wilfordinine G mapping with pharmacophore-1. (c) Heat map analysis of pharmacophore
model validation. (d) Compound wilfornine E, wilforjine, euojaponine K, wilfordinine H, wilfordinine D, hyponine A, euojaponine L,
hypoglaunine E, wilfordinine E, and hyponine B mapping with pharmacophore-5 (Pm-05).
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Figure 3: Interactions between compounds and targets for sesquiterpene pyridine alkaloids from Tripterygium. (a) Compound-target
network for 55 sesquiterpene pyridine alkaloids. Octagons are alkaloids, and circles (red) indicated seven categories, like Type 1, Type 3,
Type 4, Type 5, Type 6, Type 7, and Type 8. Diamonds (blue) are targets with the node size according to “degree” in the node size mapping.
(b) Target-target interaction network for key interacting genes with the node size according to “degree” in the node size mapping.
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relationship between the targets is shown in Figure 3(b).
.ese identified interacting genes were used for further
investigation that included relationships between com-
pounds and related diseases and their mechanism of action.

3.4. GeneMANIAAnalysis of Putative Targets. Among the 86
key targets and their interacting proteins, 21.12% had
physical interactions, 6.75% showed colocalization, and
29.77% displayed similar coexpression characteristics. Other
results, including pathways and predicted and shared pro-
tein domains and genetic interactions, are shown in Figure 4.

3.5. GO and Pathway Analysis. In order to further study the
86 identified target genes, GO and KEGG enrichment an-
alyses were conducted using DAVID database. GO en-
richment analysis identified 1230 entries, which were

categorized into biological processes, cellular components,
and molecular function (excluding pathways that belong to
the section of human diseases) to be significantly enriched
with putative targets (p≤ 0.05, Supplementary Table S5), in
which the top four functions were used as response to xe-
nobiotic stimulus, cellular response to drug, peptidyl-serine
phosphorylation, and peptidyl-serine modification
(Figure 5(a)). KEGG pathway analysis revealed that the 86
targets were assigned to 210 pathways (Supplementary
Table S6), but the targets participated in 10 KEGG pathways
with significant false discovery rate- (FDR-) adjusted
p-value including neuroactive ligand-receptor interaction
and pathways in cancer, which are shown in Figure 5(b).

3.6. Establishment of the Compound-Target-Disease Network
for Sesquiterpene Pyridine Alkaloids from Tripterygium.

Colocalization 6.75%

Pathway 1.48%

Genetic interactions 1.24%

Coexperession 29.77%

Predicted 29.03%

Physical interactions 21.12%

Shared protein domains 10.61%

Figure 4: Target network of sesquiterpene pyridine alkaloids. Black nodes represented target proteins, and connecting colors indicated
different correlations. Functional associations between targets were investigated using GeneMania. Genes in black circles were query terms,
while the gray circles indicated genes associated with query genes.
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.e network map of potential targets associated with dis-
eases was constructed, as shown in Figure 6. .e network
contained 172 nodes and 2044 edges (86 direct targets and 24
related diseases). .e number of direct targets involved was
86 in the C-T network diagram, but only 25 corresponding
targets were related to human diseases in the compound-
target-disease (C-T-D) network graph. .erefore, 71 targets
did not have related diseases in the network. .e top eight
direct targets were CASP9 (degree� 56), CYP3A4
(degree� 55), PTPN1 (degree� 55), PTAFR (degree� 55),
CNR2 (degree� 55), FDFT1 (degree� 55), NR3C1
(degree� 55), and TBXA2R (degree� 55). .e top four
diseases were D4 (Alzheimer disease, 9), D2 (breast cancer,
6), D3 (Chagas disease, 5), and D5 (nonalcoholic fatty liver
disease, 5). .e detailed information on these targets and
diseases is provided in Supplementary Table S7.

3.7. Molecular Docking Analysis. In order to test and verify
interaction between sesquiterpene pyridine alkaloids from
Tripterygium and their candidate targets, a molecular
docking study was performed using the Libdock module
implemented in Discovery Studio 2016. Molecular docking
analyses on the interactions of the 55 compounds with 20
candidate targets were performed to confirm their binding
abilities, and the three-dimensional (3D) structures of tar-
gets were downloaded in the Protein Data Bank (https://
www.rcsb.org/). Detailed information on these targets is
provided in Supplementary Table S8. Molecular docking
scores indicated that the majority of 55 compounds have
major interaction and binding activity with PTAFR, CNR1,
CNR2, FDFT1, and HSP90AA1(Supplementary Table S9).
.e two-dimensional diagrams (Figure 7) displayed the
interactions of seven alkaloids with the amino acid residues

in the active cavity of FDFT1. Pyridine ring of hypoglaunine
C could bind the Arg 239 and Asp 238 residues of FDFT1 via
Pi-alkyl and hydrogen binding interactions. Pyridine ring of
wilfordinine G could bind the Tyr 27 and Leu 32 residues of
FDFT1 via Pi-alkyl and hydrogen binding interactions. For
euojaponine I, wilfordinine F, and wilforjine, the Tyr 27, Arg
239, and.r 240 residues were critical for their binding with
FDFT1 via hydrogen binding interactions, respectively,
while for alatusinine, Glu 50 residue was critical via Pi-anion
binding interactions. Meanwhile, wilfornine G could only
bind Arg 48, Arg 239, and Tyr 67 residues of FDFT1 via
hydrogen binding interactions.

4. Discussion

As the representative ingredients in Tripterygium plants,
sesquiterpene pyridine alkaloids possess various structures
and many pharmacological activities, which are a research
hotspot [30, 31]. However, the structure-activity relation-
ships of sesquiterpene pyridine alkaloids and their mecha-
nisms of action were obscure.

.erefore, we systematically elucidated the pharmaco-
logical actions and structural characteristics of sesquiterpene
pyridine alkaloids from Tripterygium using computational
methodologies. A schematic diagram of the analysis pro-
cedures for target gene prediction and a clear explanation of
active mechanism is shown in Figure 8. In terms of structure
characteristics of compounds, it was found that distinct
positions connected to macrocyclic and diversity of
substituted groups in the pyridine ring of alkaloid com-
pounds led to the main structural differences. In the same
way, different configuration of carboxyalkyl side chain in the
2-(carboxyalkyl) nicotinic acid moiety was an important
factor in the diversity of Tripterygium wilfordii alkaloids.
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Figure 5: Gene ontology (GO) and pathway enrichment analysis of the putative targets. (a) GO biological function analysis (top 10). (b)
KEGG enrichment analysis of the 86 hub genes (top 10).
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And the more significant one was the pyridine ring. As
previously shown, pyridine and its derivatives (such as
nicotine, nicotinic acid, and picolinic acid), among the most
abundant natural N-heterocyclic compounds, were widely
used in agriculture and pharmaceutical as pharmaceuticals,
herbicides, and pesticides [32–34]. .us, there has been
widespread speculation that variable pharmacological
functions of these sesquiterpene pyridine alkaloids might be
associated with their different structures, especially pyridine

ring. Meanwhile, 2-(carboxyalkyl) nicotinic acid derivatives
oriented by the functional groups of Tripterygium wilfordii
alkaloids may also become an important source of new drug
development.

For further verification of functional groups of sesqui-
terpene pyridine alkaloids, biological effects of small mol-
ecules result from favorable interactions between the
molecules and their target proteins, and chemical func-
tionalities needed for a small molecule to block or activate its
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Figure 7: Schematic contact map of seven alkaloids and the FDFT1 (1.44 Å, PDB code 6PYJ) pocket: (a) hypoglaunine C (docking scores
112.66); (b) wilfornine G (docking scores 98.85); (c) euojaponine I (docking scores 107.11); (d) wilfordinine G (docking scores 120.87);
(e) alatusinine (docking scores 97.51); (f ) wilfordinine F (docking scores 109.26); (g) wilforjine (docking scores 120.19).
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target protein could be represented as pharmacophore
models [21]. Based on the establishment of the pharma-
cophore model in this study, pharmacophore model-5
consisted of three features including HBA, HBD, and HY,
and one of these typical features was in the sesquiterpene
pyridine ring, which was consistent with the analysis results,
and further demonstrated that pharmacophore-5 repre-
sented the common chemical features of sesquiterpene
pyridine alkaloids. Similarly, recent studies have shown that
HBA, HBD, and hydrophobic region were the critical fea-
tures of the hypothesis, based on wilfortrine, wilforgine,
euonymine, and other CYP3A4mechanism-based inhibitors
[35]. HBA, HBD, and hydrophobic region of sesquiterpene
pyridine ring possibly corresponded to the identification of
compound-target interactions. .ese findings would pro-
mote us to deeply investigate key pharmacodynamic char-
acteristics and build more distinct structure-activity
relationship and to conduct the target fishing to forecast
pharmacological action spectrum.

Target gene identification is the first step in drug dis-
covery and elucidation of structure-activity relationship.
Increasing number of active compounds or drugs have been
shown to interact with multiple genes or proteins using
various in silico target identification approaches [36, 37]. As
listed in Supplementary Table S2, 86 potential targets of 55
sesquiterpene pyridine alkaloids were identified using
computational methods. .e results of GeneMANIA pro-
vided information on physical interactions, colocalization,
and coexpression as well as shared protein domains and
implied that the targets and their interacting proteins may
have identical or similar functions. We identified that these
targets participated in pathways related to cancer and in-
flammatory diseases. .e compound-target-disease network
shown in Figure 7 also revealed that the alkaloid compounds
had multiple targets and exerted systematic pharmacological
effects for the treatment of complex diseases by targeting
multiple proteins and pathways, such as Alzheimer’s disease,
breast cancer, and systemic lupus erythematosus.

In addition, the topological analysis of compound-target
network yielded the key targets as follows: CYP3A4, PTPN1,
PTAFR, CNR2, PTPN2, FDFT1, NR3C1, TBXA2R, CNR1,
PLA2G1B, HSP90AA1, PTGDR2, DNMT1, CYP2C9,
CASP9, ABCB1, ACHE, NR3C2, PTPN7, and HMGCR.
Among them, PTAFR located on plasma membrane was
reported to be a chemotactic phospholipid mediator that
possessed potent inflammatory, smooth-muscle contractile
and hypotensive activities [38, 39]. ABCB1 has been con-
sidered as energy-dependent efflux pump responsible for
decreased drug accumulation in multidrug-resistant cells
[40]. And CYP3A4, as the most abundant CYPs in human
liver, which had greater binding activities with wilfortrine
when compared with wilforgine and euonymine, was in-
volved in the metabolism and response of about 50% of all
prescribed drugs [35, 41]. .ese results closely matched the
findings from GO and KEGG analyses.

Under the premise of obtaining significantly functional
groups and potential targets, 55 compounds mapped on all of
the pharmacophoric features present in pharmacophore
model-5 were finally used in a molecular docking study.

Importantly, molecular docking results showed the molecular
docking relationship with LibDock Score value between 90
and 150 points accounted for 80 pairs (75.00%) and also
confirmed that the target genes PTAFR, CNR1, CNR2,
FDFT1, and HSP90AA1 could better combine with most
sesquiterpene pyridine alkaloids through the binding inter-
actions between amino acid residues and pyridine rings and
were mainly focused on NLRP3 inflammasome activation,
IL1B and IL18 secretion, progression of type-2 diabetes,
enzymes of the sterol biosynthesis pathway, and drug resis-
tance [42–44]. We speculated that these potential proteins
might participate in suppressing inflammation and related
diseases and should be followed up with more interest.
Furthermore, interactions of these alkaloids with the amino
acid residues in the active cavity of key targets mainly focused
on pyridine ring, which well corroborated with the phar-
macophore model and prompted us to note that 2-(carbox-
yalkyl) nicotinic acid derivatives assisted in discovering new
potential leads with the treatment of inflammatory disease.

In summary, we analyzed and screened the relevant
pharmacological laws, important targets, and the binding
sites of niacin derivatives that exert their pharmacody-
namics. Sesquiterpene pyridine alkaloids from Tripterygium
are promising compounds for the development of safe and
effective multitargeted anticancer or anti-inflammatory
medicines. .is study also provided novel insights into the
experimental directions and challenges for the follow-up
study on pharmacodynamic material basis of sesquiterpene
pyridine alkaloids from Tripterygium. However, these
findings needed to be further substantiated under the ex-
perimental system.
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