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Abstract: Jujube (Ziziphus jujuba Mill.) has attracted increasing attention because of its fruits’ high nu-
tritional and medicinal value, which produce pentacyclic triterpenoids with valuable pharmacological
activities beneficial to human health. However, the dynamic accumulation and metabolism pathway
of triterpenoids remain unknown in jujube. Here, we performed metabolite assays of triterpenoids
and expression analysis of genes involved in the corresponding metabolic processes on cultivated ju-
jube (Z. jujuba cv. Junzao) and one type of wild jujube (Z. jujuba var. spinosa cv. Qingjiansuanzao). Our
results showed that the triterpenoids accumulate predominantly in young leaves, annual stems, buds,
and white-mature and beginning red stage fruit. Besides, the total triterpenoid content, ceanothic acid,
oleanonic acid, and 3-ketoursolic acid were higher in ‘Qingjiansuanzao’ than in ‘Junzao’. Moreover,
we found 23 genes involved in terpenoids metabolism were expressed in all organs, and the ZjSQS1,
ZjCYP450/1, ZjCYP450/3, ZjOSC1, ZjFPS, and ZjAACT2 gene expression patterns were consistent
with metabolites accumulation during fruit development. In addition, 100 µM MeJA induced ZjSQS1,
ZjFPS, and ZjHMGR3 expression in leaves and enhanced triterpenoids accumulation. These findings
will help understand the unique metabolism of terpenoids and will benefit further utilization and
breeding of jujube as both edible fruit and functional food.

Keywords: Ziziphus jujuba Mill.; pentacyclic triterpenoid; gene expression; metabolic pathway; MeJA

1. Introduction

Jujube (Ziziphus jujuba Mill.) and wild jujube (Z. jujuba Mill. var. spinosa Hu.) are
two representative species and subspecies of the Rhamnaceae family [1]. They originated
in China and have a long history of cultivation and utilization in China. Both jujubes
have been known as delicious fruit and functional food, ascribed to the diverse nutri-
tional and bioactive metabolites produced in plants [2–4]. Additionally, the jujube fruit
also benefits human health, due to its anti-tumor, anti-human immunodeficiency virus,
antiviral, and hepatoprotective properties. Various primary and secondary metabolites,
including carbohydrate, nucleotide, triterpene, alkaloid, polysaccharides, and flavonoids,
have been identified in jujube [5,6]. In particular, triterpenoids, the most valuable bioac-
tive metabolites in jujube, improve sleep quality and regulate the digestive system [7].
Therefore, understanding the accumulation and biosynthesis of triterpenoids in jujube
would improve the understanding of the medicinal function of jujube and enhance the
selection of secondary metabolites in jujube breeding [8]. However, there are few studies on
the triterpenes’ accumulation characteristics and their metabolism in jujube’s tissues and
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developmental stages. The lack of knowledge also limits the improvement of the functional
quality of jujube trees.

Triterpenoid acids belong to terpenoids and a diversified structure of triterpenoids has
been found in plants [9]. Triterpenoids play key roles in plant defense against herbivores
and microbes, and they may also influence fruit flavors. For example, triterpenoids and
glycosides induce bitterness in jujube [10,11]. Jujube‘s 41 annotated triterpenes (and their
glycosides), the main medicinal component classes of red dates, are divided into five
distinct subcategories, including dammarane, lupane, oleane, ursane, and ceanothane types
are unique to the genus Ziziphus [12]. Previous studies showed that triterpenoids were
negatively selected during jujube domestication, and the ursolic acid biosynthesis pathway
has been elucidated [8]. However, the biosynthesis pathway and gene identification of
triterpenes in jujube is limited to partial genes. The complete metabolic pathway is still
unclear. Terpenoids’ biosynthesis pathway began from the mevalonate (MVA) pathway
in most higher plants [13]. 3-hydrocy-3-methylglutaryl-CoA reductase (HMGR), farnesyl
pyrophosphate synthase (FPS), squalene synthetase (SQS), squalene epoxidase (SQE), and
oxidosqualene cyclases (OSCs) are essential enzymes in triterpenoid biosynthesis [14].
SQS and SQE synthesize squalene and 2,3-oxidosqualene, important intermediates of the
various triterpenes. The precursor of 2,3-oxidosqualene could be further catalyzed to
triterpenoids by oxidosqualene cyclases (OSCs) cyclization and several cytochrome P450s.

The plant hormone methyl jasmonate (MeJA), which is involved in plant defense,
usually performs as a signaling molecule to resist different biotic and abiotic stresses [15],
and plays a vital role in plant growth and development regulation [16]. MeJA can regulate
the genes and transcription factors related to the biosynthetic pathway, and enhance
triterpenes accumulation [17]. For example, MeJA could induce the expression of genes
in triterpenoid biosynthesis in birch and ginsenoside, and the Lamiaceae family [18–21].
Therefore, genetic response to MeJA treatment may help us better identify the key genes
of the triterpenoid pathway and enrich our understanding of the potential regulatory
mechanism of triterpenoids.

Hence, triterpenoids continue to be of interest because of their pharmacological prop-
erties and biological activities. This study aimed to explore triterpenoid metabolites’ spatial
and temporal distribution in a jujube cultivar ‘Junzao’ and a wild jujube accession ‘Qingjian-
suanzao’. We conducted genome-wide identification of triterpenoid metabolic pathway
genes. Transcriptional expression analysis revealed triterpenoid metabolic-associated gene
expression in different tissues and developmental stages. We also analyzed the induction
of MeJA on triterpenoid synthesis. This study highlights spatial metabolic accumulation
characteristics and candidate genes underlying jujube’s triterpenoid metabolism. The
findings lay a foundation for revealing the unique terpenoid metabolic pathway of jujube.
It will help understand the unique metabolism of terpenoids and provide a reliable basis
for resource utilization and breeding of jujube as both edible fruit and functional food.

2. Materials and Methods
2.1. Plant Materials

The jujube cultivar ‘Junzao’ and a wild jujube ‘Qingjiansuanzao’ were grown at the
Jujube Experimental Station of Northwest A&F University in Qingjian, Shaanxi, China.
Fruits of different developmental stages at 30, 50, 80, 90, 100, and 110 d after pollination
(DAP) were carefully collected. These stages were designated as young fruit (YF), enlarge-
ment (EF), white mature (WM), beginning red (BR), half red (HR), and full red ripening
stages (FR), respectively. Samples of different tissues, flowers (Fl), buds (Bd), young leaves
(YL), mature leaves (ML), and stems (St) were collected. The plant tissues and fruit samples
(at least 20 fruits per sample) were immediately frozen in liquid nitrogen and stored at
−80 ◦C for subsequent analysis. ‘Qingjiansuanzao’ jujube seedlings were grown in a light
incubator under 16 h light (24 ◦C) and 8 h dark (18 ◦C) cycles.
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2.2. Determination of Total Triterpenes

Total triterpenes content (TTC) was determined according to Wei et al. [22]. Firstly,
approximately 0.3 g of powdered freeze-dried sample was ground, and dissolved in 3 mL
90% (v/v) methanol/H2O. The mixture was ultrasonicated for 40 min and stored at 4 ◦C
overnight. The supernatant was collected for further analysis.

A total of 20 µL plant extract or standard ursolic acid (Shanghai Yuanye Reagent Co.,
Shanghai, China) (5–40 µg) and 150 µL acidic vanillin reagent (5 g vanillin in 100 mL glacial
acetic acid) was mixed. Perchloric acid (500 µL) was added to the reaction mixture and
heated in a water bath for 15 min at 60 ◦C. Further, all reaction mixtures were placed on
an ice bath at room temperature, and equal to 2.25 mL of glacial acetic acid was added.
Absorbance was measured at 548 nm and results were calculated as mg ursolic acid
equivalents (UAE)/g extract.

2.3. Identification and Quantification of Pentacyclic Triterpenes

Freeze-dried jujube fruit samples (approximately 0.5 g) were extracted with 5 mL
of 90% MeOH in an ultrasonic bath for 35 min, mixed well, placed at 4 ◦C overnight
in the dark, and centrifuged at 12,000 rpm for 10 min. The supernatants were filtered
through a 0.22 µm nylon filter film for high-performance liquid chromatography (HPLC)
analysis following Guo et al. with some modifications [23]. The extraction methods of the
freeze-dried tissues were the same as above. Three replicates were used for each sample.

The HPLC system (1260 Infinity II, Agilent, USA) was equipped with a C18 analytical
column (250 mm × 4.6 mm, 5.0 µm, GL Sciences Inc., Tokyo, Japan). The mobile phases
were (A) 100% MeOH and (B) 0.5% ammonium acetate in water. The elution gradient
established was 83% A and 17% B for 45 min. The temperature was controlled at 30 ◦C,
and the flow rate was 0.8 mL/min with an injection volume of 10 µL. The post-run time
was 10 min, and the monitoring of triterpenoids acid was carried out at 210 nm. The mixed
standard solution (ceanothic acid, corosolic acid, betulinic acid, oleanolic acid, ursolic acid,
oleanonic acid, 3-ketoursolic acid) was prepared using MeOH.

The triterpenoid acid compounds were identified by comparing the HPLC retention
times with those of the standards. The triterpenoids quantification was based on a linear
calibration diagram of the peak areas’ logarithm versus the concentration’s logarithm.

2.4. Quantitative Real-Time PCR (qRT-PCR) Analysis

Total RNA was isolated using a Plant RNA extraction kit (Accurate Biology, Hunan,
China). The concentration was measured using a NanoDrop-2000 (Thermo Fisher Scientific
Inc., Waltham, MA, USA). The first-strand cDNA was synthesized using 200 ng total RNA
following the Prime Script TM RT reagent kit protocol with a gDNA Eraser (Accurate
Biology, Haikou, Hunan, China). The qRT-PCR analysis was performed using a LightCycler
96 assay system (Roche Diagnostics GmbH, Germany, Switzerland). According to the
manufacturer’s protocol, all reactions were performed using the TB Green® Premix Ex
TaqTM II (TakaRa Biotechnology Inc., Kusatsu, Shiga, Japan). The reaction procedure was
as follows: 1 cycle at 98 ◦C for 30 s, 40 cycles at 95 ◦C for 5 s, 56 ◦C for 30 s, and finally
72 ◦C for 30 s. The expression levels were analyzed using the 2−∆∆CT method using the
ZjUBQ1 and ZjUBQ2 genes as internal standards [24,25]. All results were calculated based
on three biological replicates. Primers used for qRT-PCR are listed in Table S1.

2.5. Methyl Jasmonate (MeJA) Treatment Analysis on ‘Qingjiansuanzao’ Jujube Leaves

Leaves of ‘Qingjiansuanzao’ jujube seedlings were harvested after 100 µM MeJA-
treatment or water control. MeJA solution and the distilled water were sprayed on leaf
surfaces until saturation. Samples were collected at 0, 12, 24, 36, 48, 60, 72, 84, and 96 h
after treatment, frozen in liquid nitrogen, and stored at −80 ◦C for further experiments.
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2.6. Statistical Analysis

The significant differences were calculated by the analysis of variance (ANOVA) and
Duncan’s multiple range test (p < 0.05). Two-tailed Pearson’s correlation coefficients were
analyzed to delineate the correlation between synthetic genes expression level and triter-
penoid accumulation. The pictures were illustrated using TBtools software and OmicShare
Tools online: https://www.omicshare.com/tools/ (accessed on 13 February 2022).

3. Results
3.1. Dynamic Accumulation Characteristics of Triterpenoids in Jujube

‘Qingjiansuanzao’ and ‘Junzao’ jujubes’ total triterpenoid content in different tissues
and fruit developmental stages were determined (Figure 1A). In ‘Qingjiansuanzao’ and
‘Junzao’ jujubes, the total triterpenoid is distributed higher in buds (Bd) and annual stems
(St) than in other tissues (Figure 1B). Both jujube species showed the maximum triterpenoid
content in Bd, reaching 14,979.49 and 13,080.57 mg/kg DW in ‘Qingjiansuanzao’ and ‘Jun-
zao’ jujube. Similarly, Fl showed the lowest accumulation in ‘Junzao’ and ‘Qingjiansuanzao’
jujubes and the content was significantly higher (4.6-fold and 4.2-fold) in Bd than in Fl.
Besides, total triterpenoid content in St (14,481.6 mg/kg DW, 12,022.88 mg/kg DW) of
‘Qingjiansuanzao’ and ‘Junzao’ was slightly lower than Bd. The young leaves showed
a higher accumulation of triterpenoids than in mature leaves in two jujubes. However,
the content was slightly higher in ‘Junzao’ (11,284.05 mg/kg DW, 7319.2 mg/kg DW)
than in ‘Qingjiansuanzao’ (10,016.02 mg/kg DW, 5732.95 mg/kg DW). Besides, there was
no significant difference in the metabolites content from between ‘Qingjiansuanzao’ and
‘Junzao’ tissues.

The dynamic accumulation of total triterpenoid content was further determined dur-
ing fruit development. Results showed a changing pattern of first increasing and then
decreasing in both jujubes. The total triterpenoid accumulation in fruit of ‘Qingjiansuanzao’
and ‘Junzao’ showed a peak at the WM stage (16,057.29 mg/kg DW, 8795.1 mg/kg DW)
(Figure 1C). Moreover, compared to the YF stage, the triterpenoid contents increased by
5.3-fold and 2.9-fold in ‘Qingjiansuanzao’ and ‘Junzao’ jujube, respectively. Moreover,
‘Qingjiansuanzao’ showed a significantly higher accumulation than in ‘Junzao’ after the YF
stage. Total triterpenoid content in ‘Qingjiansuanzao’ was 1.83-fold higher than ‘Junzao’
at the WM stage. These results indicated that ‘Qingjiansuanzao’ and ‘Junzao’ metabolic
patterns were similar during development. Total triterpenoids content in ‘Qingjiansuanzao’
was higher than in ‘Junzao’ during fruit development.

3.2. Metabolic Accumulation Patterns of Individual Pentacyclic Triterpenoids

To better understand the metabolic accumulation patterns of different triterpenoids
in tissues and the developmental stages of ‘Qingjiansuanzao’ and ‘Junzao’, four types of
the seven major pentacyclic triterpenoids (ceanothic acid, corosolic acid, betulinic acid,
oleanolic acid, ursolic acid, oleanonic acid, 3−ketoursolic acid) were determined by HPLC
(Table S2). PCA analysis showed an obvious difference in terpenoid accumulations between
‘Qingjiansuanzao’ and ‘Junzao’ based on different tissues and fruit development data
(Figure 2C).

In different tissues, except ceanothic acid, six triterpenoids mainly accumulated Bd and
YL of ‘Qingjiansuanzao’ and ‘Junzao’. Moreover, ceanothic acid was mainly concentrated
in St with relatively higher than other tissues (Table S2). The results suggested that Bd, St,
and YL were the main tissues of triterpenoid accumulation. The contents of pentacyclic
triterpenoids in YL, Bd, and St were compared next. The concentrations of corosolic acid,
betulinic acid, oleanolic acid, ursolic acid, oleanonic acid, and 3-ketoursolic acid in YL of
‘Junzao’ were higher than in ‘Qingjiansuanzao’. Ceanothic acid, corosolic acid, oleanolic
acid, and ursolic acid contents in Bd and St of ‘Qingjiansuanzao’ were higher than ‘Junzao’.

https://www.omicshare.com/tools/
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Figure 1. Dynamic accumulation patterns of total triterpenoids in different tissues and developmen-
tal stages of ‘Qingjiansuanzao’ and ‘Junzao’. (A) Different tissues and fruit development stages of
‘Qingjiansuanzao’ and ‘Junzao’. (B,C) Total triterpenoid content of ‘Qingjiansuanzao’ and ‘Junzao’ in
different tissues and fruit development stages. Data represent means ± SD of three replicates. Differ-
ent letters (a–f) indicate significant differences at p < 0.05 by Duncan’s test. Fl = Flowers, Bd = Buds,
YL = Young Leaves, ML = Mature Leaves, St = Stems; Developmental stages YF-FR correspond to
days 30, 50, 80, 90,100, and 110 after anthesis; SZ = Qingjiansuanzao, JZ = Junzao.

For the different fruit development stages, the variation in triterpenoid content in-
creased significantly before the WM development stage, and then decreased for all triter-
penoids except tannic acid. Among different stages, the WM and BR were the key synthesis
stages of pentacyclic triterpenoids. In addition, the triterpenoid contents were higher in FR
than in the YF development stage (Figure 2B). We then compared the content differences
between ‘Qingjiansuanzao’ and ‘Junzao’ jujube. Ceanothic acid in ‘Qingjiansuanzao’ was
significantly higher than in ‘Junzao’ before the HR period, and the change patterns of
ceanothic acid in the two jujubes were different. In ‘Junzao’, the ceanothic acid content
increased gradually during fruit development and peaked at the FR stage. The contents
of ceanothic acid, oleanonic acid, and 3-ketoursolic acid in ‘Qingjiansuanzao’ were sig-
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nificantly higher than in ‘Junzao’. Nevertheless, the betulinic acid, corosolic acid, and
ursolic acid contents in ‘Junzao’ were higher than in ‘Qingjiansuanzao’ after the EF stage.
However, their accumulation trend was inconsistent with that of total triterpenoids in
‘Junzao’ and Qingjiansuanzao’. Moreover, the pentacyclic triterpenoid contents in WM and
BR stages differed in ceanothic acid, oleanonic acid, and 3-ketoursolic acid between the
‘Qingjiansuanzao’ and cultivated jujube. These metabolites might be the main differential
triterpenoid metabolite between ‘Qingjiansuanzao’ and cultivated jujube. The contents of
betulinic acid, corosolic acid, and ursolic acid were higher in ‘Qingjiansuanzao’ jujube, and
cultivated jujube indicated these major pentacyclic triterpenoids.

Figure 2. Metabolite profiling of seven pentacyclic triterpenes (ceanothic acid, corosolic acid, betulinic
acid, oleanolic acid, ursolic acid, oleanonic acid, 3−ketoursolic acid) in ‘Qingjiansuanzao’ and ‘Junzao’.
(A,B) Content changes in seven pentacyclic triterpenes in different tissues and developmental stage
of ‘Qingjiansuanzao’ and ‘Junzao’. (C) Principal component analysis of the ‘Qingjiansuanzao’ and
‘Junzao’ based on the triterpenoids content profiles.

3.3. Identification and Expression of Candidate Genes from Triterpenoid Biosynthetic Pathway
during the Developmental Stages of Jujube

Through previous transcriptomic data analysis [8], we identified the expression pat-
terns of 23 structural genes of the triterpenoid acid metabolism pathway during the fruit
development of ‘Junzao’ and ‘Qingjiansuanzao’. The genes were named according to
the annotated information (Figure 3). To verify the reliability of the transcriptomic data,
qRT-PCR analysis was performed on the 10 genes associated the triterpenoid synthesis
(Table S3). Their expression levels were consistent between the qRT-PCR and RNA-seq
data, confirming the veracity of the transcriptomic data.

ZjAACT1, ZjAACT2, and ZjAACT3 mRNA levels increased with fruit development
after the YF stage, and there were similar trends in ‘Qingjiansuanzao’ and ‘Junzao’. ZjH-
MGS1, ZjHMGS2, ZjSQE1, ZJSQE2, ZjSQE3, ZjOSC2, and ZjUGT1 had higher expression
in YF and EF of jujube stage, suggesting these genes play a key role in triterpenoids at the
early stage. ZjHMGR1, ZjHMGR3, ZjSQS1, ZjSQS2, ZjOSC1, ZjP450/1, ZjP450/2, ZjP450/3,
ZjUGT2, ZjUGT3, and ZjUGT4 expressions were higher in WM and BR stages, ZjFPS and
ZjHMGR2 expression patterns were consistent with the development of jujube, showing a
decrease and then an increase along with fruit development.
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Figure 3. Expression pattern of candidate genes from triterpenoid biosynthetic pathway in the jujube
fruit during the developmental stages. The color scale from blue (low) to red (high) represents the
FPKM values measured during jujube fruit development. The red marks represent synthetic genes.
The black below the arrow are substrates in the triterpenoid synthesis pathway.

3.4. Correlation Analysis between Triterpenoids and Genes Controlling Triterpenoid Synthesis

To explore the relationship between triterpenoids and candidate genes, we correlated
the content of seven triterpenoids and the expression of genes controlling triterpenoids
synthesis (Figure 4A). Correlation analysis indicated that corosolic acid, betulinic acid,
and ursolic acid in jujube fruit were positively correlated with the expression of ZjSQS1,
ZjP450/3, and ZjP450/1 (r = 1.98/1.97/1.72, 1.58/1.60/1.47, and 1.86/1.52/1.30, respectively,
p < 0.05). Besides, ZjAACT1, ZjFPS, ZjOSC1, ZjAACT2, and ZjSQS2 are also highly corre-
lated with corosolic acid, betulinic acid, and ursolic acid. Simultaneously, the expression of
ZjP450/2, ZjOSC2, ZjAACT3, ZjHMGR1, and ZjHMGR3 were positively correlated with the
corosolic acid, oleanolic acid, oleanonic acid, and 3-ketoursolic acid contents. However,
the ceanothic acid, oleanonic acid, and 3−ketoursolic acid were weakly correlated with
the expression of ZjSQS1, ZjP450/1, and ZjP450/3 and negatively correlated with ZjAACT3
and ZjHMGR1. Moreover, ZjSQE1, ZjSQE2, ZjSQE3, ZjHMGS1, ZjHMGS2, and ZjHMGR2
expressions were negatively correlated with seven triterpenoids. In contrast, the ZjSQS1,
ZjP450/1, and ZjP450/3 expressions were positively correlated with most triterpenoids
content. In general, the ZjSQS1, ZjP450/1, ZjP450/3, ZjOSC1, ZjFPS, and ZjAACT2 were
highly correlated with triterpenoid content, which suggested that these genes might be key
genes in triterpenoid synthesis.

3.5. Expression of Key Genes in Different Tissues and Fruit Development Stages

We selected genes showing high correlations (Pearson correlations > 1.00) between
metabolite accumulation and gene expression (Figure 4A). To conduct expression analysis
in different tissues and fruit development stages by qRT-PCR to verify the reliability of
candidate genes.
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Figure 4. The correlation analysis of triterpenoids and triterpenoid synthesis−related genes and
the triterpene synthesis−related genes expression patterns of ‘Qingjiansuanzao’ and ‘Junzao’ at
different tissues and developmental stages. (A) Intergroup correlation analysis of triterpenoids and
triterpenoid synthetic genes. (B) qRT- PCR analysis of candidate gene expression patterns in different
tissues and fruit developmental stages. Data represent means ± SD of three replicates.



Genes 2022, 13, 823 9 of 14

In different tissues, the candidate genes expression was higher in Bd, YL, and St than
in Fl and ML, in both ‘Qingjiansuanzao’ and ‘Junzao’. This indicated that these genes were
differentially expressed in tissues. The ZjFPS, ZjSQS1, ZjSQS2, and ZjP450/3 had slightly
higher expression in ‘Qingjiansuanzao’ than in ‘Junzao’ (Figure 4B). Besides, the ZjAACT2,
ZjSQS1, ZjOSC1, and ZjP450/3 genes had high expression levels and tissue differences.

Gene expression of ZjHMGR3, ZjSQS1, and ZjOSC1 reached a peak in the WM stage
of ‘Qingjiansuanzao’ and ‘Junzao’, while ZjSQS1 and ZjSQS2 were also highly expressed in
BR, HR, and FR stages. These expressions are highly correlated with betulinic acid, corosolic
acid, and ursolic acid content. ZjFPS, ZjAACT1, and ZjAACT2 genes expression levels
were high at late fruit development (after WM stage) of ‘Qingjiansuanzao’ and ‘Junzao’.
In addition, the overall expression level of ZjSQS1 and ZjP450/3 was high during fruit
development. Analysis of the candidate genes expression levels in ‘Qingjiansuanzao’ and
cultivated jujube showed that ZjAACT2, ZjHMGR3, ZjSQS1, ZjOSC1, and ZjOSC2 were
highly expressed in ‘Qingjiansuanzao’ jujube. In contrast, ZjFPS, ZjSQS2, and ZjP450/3
genes were highly expressed in cultivated jujube, suggesting that these genes may be
responsible for triterpenoid metabolism differences.

3.6. Expression Changes in Triterpenoid Metabolites and Candidate Triterpene Biosynthetic Genes
in Response to MeJA Induction

The triterpenoid biosynthesis was further analyzed to explore further the response
of triterpenoid synthesis genes and triterpenoid metabolites to MeJA induction (Figure 5).
In response to MeJA, total triterpenoid content increased 2.23-fold after 84 h (Figure 5A).
Additionally, triterpenoids content analysis (Figure 5B), demonstrated that individual triter-
penoids, such as betulinic acid, oleanolic acid, ursolic acid, oleanonic acid, and 3-ketoursolic
acid, showed the most obvious changes 84 h after treatment. The ceanothic acid content
increased significantly at 48 h, while the corosolic acid content responded significantly after
72 h treatment (Table S4). These results showed that triterpenoids content in jujube could
be upregulated in response to MeJA.

We also analyzed the genes related to the biosynthesis of triterpenoid in response
to MeJA, and the results showed that the expression of ZjHMGR3, ZjFPS, and ZjSQS1
were upregulated after MeJA treatment for 84 h (Figure 5C), and ZjSQS1 gene expression
response was particularly significant, ZjSQS2 expression level was down-regulated. The
ZjAACT1 and ZjSQS2 genes responded significantly at 12 h and 36 h, respectively. Besides,
ZjP450/1 expression increased at 60 h. The results suggest that MeJA can induce the
expression of key candidate genes in triterpenoid synthesis to varying degrees.

Moreover, we conducted a correlation analysis on triterpenoid content and the expres-
sion of synthetic genes after MeJA treatment. The result indicated that the triterpenoid
contents of jujube seedlings were positively correlated with ZjSQS1, ZjFPS, and ZjHMGR3
(Figure 5D). Therefore, the MeJA may regulate triterpenoid biosynthesis by mediating these
synthetic genes, and we can speculate further that ZjHMGR3, ZjFPS, and ZjSQS1 play a
key role in MeJA-induced triterpenoid synthesis.
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Figure 5. Effects of exogenous methyl jasmonate (MeJA) on the content of triterpenoids and the
expression of candidate genes in wild jujube seedlings. (A) Effects of MeJA on the total triterpene
content. (B) Effects of MeJA on the contents of the pentacyclic triterpenes. (C) Effects of MeJA on the
expression patterns of the candidate key genes. (D) Intergroup correlation analysis of triterpenoids
and triterpenoid synthetic genes under MeJA treatment. Different letters (a–h) indicate significant
differences at p < 0.05 by Duncan’s test.
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4. Discussion
4.1. Spatial Metabolic Characteristics of Pentacyclic Triterpenoids

A variety of active metabolites in jujube provide broad supplies of energy and nutri-
tion and an indispensable resource with medicinal properties that benefit human health [2].
In recent years, triterpenoid acids have attracted scientific attention due to their anticar-
cinogenic activity, and have been widely used as cosmetics and healthcare products [26].
A variety of pentacyclic triterpenoids have been identified in jujube [27]. However, triter-
penoids’ metabolism mechanism and biosynthesis pathway in jujube are rarely reported.
In this study, we conducted qualitative and quantitative analyses of seven different triter-
penoids (ceanothic acid, corosolic acid, betulinic acid, oleanolic acid, ursolic acid, oleanonic
acid, 3-ketoursolic acid) in a ‘Qingjiansuanzao’ and a ‘Junzao’ at different developmental
stages and tissues (Table S2). The result systematically supplements previous research on
the determination of triterpenoids in jujube [28]. The ceanothic acid, oleanonic acid, and
3-ketoursolic acid were highly accumulated in ‘Qingjiansuanzao’ jujube, while the betulinic
acid, corosolic acid, and ursolic acid were dominant pentacyclic triterpenoids found in
cultivated jujube. The above results indicate the different spatial metabolism differences in
pentacyclic triterpenes and will assist in resource utilization in jujube.

Previous studies have shown that the triterpenoids isolated from jujube have potent
antiproliferative and antioxidant activity. The activity is highest at the white ripening
stage [29], which may be related to the accumulation of triterpenoids in our study at the
WM stage. During the development of jujube, most triterpenoid synthesis genes had the
highest expression levels at the middle and late stages of fruit development, suggesting
that these are the key stages for triterpenoid synthesis in jujube. As for triterpenoid content
in different tissues of jujube, it is mainly synthesized in young leaves, annual stems, and
buds, similarly to the previous report that most of the total triterpenoids were accumulated
in leaves. Our study found that the ceanothic acid was particularly significant in stems,
which indicated that it is the primary triterpenoid acid in the stem. On another level,
the results showed that the total triterpenoids content in ‘Qingjiansuanzao’ jujube was
significantly higher than in cultivated jujube, supporting the previous conclusion that jujube
domestication was related to negative triterpenoid selection [8]. Our study systematically
revealed the spatial metabolic characteristics of pentacyclic triterpenes in jujube, which
provided a basis for exploring the metabolic mechanism of triterpenoids in jujube.

4.2. Expression Analysis of Key Synthetic Genes in the Terpenoid Synthesis Pathway

Exploring the key genes of triterpenoid biosynthesis is an important step in the
efficient synthesis of triterpenoids. AACT, HMGR, SQS, SQE, and OSC genes have been
screened and analyzed in Soybean and Platycodon grandifloras [30], and P450s and UGT
genes have been verified as key regulatory genes of triterpenoid synthesis in various
medicinal plants. Therefore, the metabolic mechanism of early and late pathway portions
of triterpenoids biosynthetic genes is another valuable approach to improve metabolic flow
towards triterpene accumulation [31]. Up until now, some progress has also been made
in the functional validation of triterpenoid synthetic genes. For example, the SQS gene
was reported to be a key gene regulating triterpenoid synthesis in many medicinal plants,
such as Panax ginseng, Polygala tenuifolia, and Poria cocos [32,33], the P450s, AACT, FPS, and
OSC genes have also been verified as essential synthesis genes of triterpenoids in species,
including birch and soybean [34,35]. FPS, AACT, SQS, OSC, and P450 genes play a crucial
role in the triterpenoid biosynthesis of different species.

In this study, the key candidate genes for triterpenoid biosynthesis were screened out
through the correlation analysis between structural genes and the triterpenoid metabolites,
providing a preliminary basis for improving the triterpenoid biosynthesis of jujube at
the molecular level. To clarify the molecular mechanisms underlying the triterpenoid
biosynthesis of jujube, we analyzed the expression patterns of triterpenoid synthesis-
related genes in the MVA pathway. The triterpenes synthesis genes had different expression
patterns during the development of ‘Qingjiansuanzao’ and ‘Junzao’ fruits, explaining the
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differences in metabolite accumulations. Real-time quantitative PCR results showed that
ZjAACT2, ZjHMGR3, ZjFPS, ZjSQS1, ZjSQS2, ZjOSC1, ZjP4501, and ZjP450/3 were highly
expressed in different tissues and fruit developmental stages. Correlation analysis of the
triterpenoid composition, terpenoid content, and terpenoid-related genes showed ZjAACT2,
ZjFPS, ZjSQS1, ZjOSC1, ZjP450/1, and ZjP450/3 are the key candidate genes for triterpene
synthesis in jujube. Therefore, we speculate that these candidate genes as the key structural
genes in synthesizing triterpenoids in jujube. However, the regulatory mechanism is still
unclear, so the function of candidate genes is the most important to exploring triterpenoids
synthesis in jujube.

4.3. MeJA-Induced Metabolite Accumulation and Expression of Genes in Triterpenoid Synthesis

Methyl jasmonate (MeJA) is widely applied to medicinal plants to promote triter-
penoids and other secondary metabolites. Exogenously applied elicitor MeJA stimulates
the biosynthesis of many secondary metabolites [36], and MeJA has been used to enhance
the contents of terpenoid saponins in P. ginseng root and Ganoderma lucidum [37,38]. MeJA
is also the best inducer of triterpenoids synthesis. MeJA treatment induces the expression
of key genes FPS, HMGR, SQS, SQE, OSC, and P450s, thus regulating the triterpenoid
biosynthesis, consistent with results have in ginseng and birch [39]. It is worth mentioning
that transcription factors (TFs) also play a crucial role in inducing specific metabolite biosyn-
thesis and has been confirmed in other species [40–42]. We analyze the response patterns
of key genes of triterpenoid synthesis in the MVA pathway induced under MeJA treatment.
Compared with the control group, the ZjFPS, ZjSQS1, and ZjHMGR3 genes were signif-
icantly responsive to MeJA treatment, and the triterpenoids content of jujube seedlings
was significantly increased. This result further confirmed the reliability of key candidate
genes for triterpenoid synthesis of jujube, providing a molecular basis for MeJA-induced
triterpenoid biosynthesis of jujube.

5. Conclusions

Our study elucidated the spatial metabolism pattern of pentacyclic triterpenes in the
wild jujube ‘Qingjiansuanzao’ and the cultivated jujube ‘Junzao’, ceanothic acid, oleanonic
acid, and 3-ketoursolic acid were highly accumulated in wild jujube, while the betulinic acid,
corosolic acid, and ursolic acid were major pentacyclic triterpenoids found in cultivated
jujube. In addition, the triterpenoids accumulated mainly in young leaves, annual stems
and buds, and in the middle and late stages (after the EF stage) of fruit development.
From 23 identified genes from transcriptome data, ZjAACT1, ZjFPS, ZjSQS1, ZjOSC1,
and ZjP450/3 were identified as key candidate genes for triterpenoid synthesis. Moreover,
triterpenoid acid metabolites and genes respond to the MeJA induction. These studies
deepened the systematic and comprehensive understanding of triterpenoid metabolism in
jujube, laying a foundation for breeding for fruit quality and bioactive functions.
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