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Abstract

Classic decision theories typically assume the presence of explicit value-based outcomes after 

action selections to update beliefs about action-outcome contingencies. However, ecological 

environments are often opaque, and it remains unclear whether the neural dynamics underlying 

belief updating vary under conditions characterized by the presence or absence of such explicit 

value-based information, after each choice selection. We investigated this question in healthy 

humans (n = 28) using Bayesian inference and two multi-option fMRI tasks: a multi-armed 

bandit task, and a probabilistic perceptual task, respectively with and without explicit value-based 

feedback after choice selections. Model-based fMRI analysis revealed a network encoding belief 

updating which did not change depending on the task. More precisely, we found a confidence-

building network that included anterior hippocampus, amygdala, and medial prefrontal cortex 

(mPFC), which became more active as beliefs about action-outcome probabilities were confirmed 

by newly acquired information. Despite these consistent responses across tasks, dynamic causal 

modeling estimated that the network dynamics changed depending on the presence or absence of 

trial-by-trial value-based outcomes. In the task deprived of immediate feedback, the hippocampus 

increased its influence towards both amygdala and mPFC, in association with increased strength 

in the confidence signal. However, the opposite causal relations were found (i.e., from both 

mPFC and amygdala towards the hippocampus), in presence of immediate outcomes. This finding 

revealed an asymmetric relationship between decision confidence computations, which were based 

on similar computational models across tasks, and neural implementation, which varied depending 

on the availability of outcomes after choice selections.
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1. Introduction

In classic decision-making theories, the presence of explicit outcomes (e.g. based on values) 

after a choice selection is considered a crucial source of information for belief updating 

and behavioral adaptability, e.g. by triggering prediction error signals (Glimcher, 2011; 

Rangel et al., 2008). This line of research has yielded fruitful results, most prominently in 

the identification of the neurocomputational mechanisms underlying reinforcement learning 

(Dabney et al., 2020; Schultz et al., 1997) and belief updates in changing environments 

(Behrens et al., 2007; McGuire et al., 2014; Soltani and Izquierdo, 2019). In real life, 

however, decisions are often made in opaque environments where outcomes can be sporadic 

or temporarily inaccessible. Despite this opacity, we can still form and update beliefs about 

how likely our chosen actions are to deliver what we need or want, based on other sources 

of information (Ma and Jazayeri, 2014; Pouget et al., 2013). For instance, previous studies 

have reported that, in probabilistic environments without explicit outcomes, the anterior 

hippocampus monitors the entropy in sequences of visual or auditory events in order to 

generate expectations regarding future stimuli and guide behavior accordingly (Harrison et 

al., 2006; Krug et al., 2014; Strange et al., 2005; Tobia et al., 2012). However, it is yet to be 

determined whether action-outcome belief updating, under different conditions of access to 

immediate feedback, relies on different neural patterns or network dynamics.

In Bayesian terms, beliefs are represented as probability distributions associating one’s 

actions with one or more known outcomes (Fleming and Daw, 2017; Kording and Wolpert, 

2006; Payzan-LeNestour and Bossaerts, 2011). These distributions of probabilities are 

taken into account in decision-making (Orban and Wolpert, 2011; Sanders et al., 2016) 

and are encoded by the activity of neuronal populations (Ma et al., 2006; Pouget et al., 

2013; Rich et al., 2015). In this sense, decision confidence (c), and its complementary 

decision uncertainty (Adler and Ma, 2018; Atiya et al., 2020; Meyniel et al., 2015a, 

2015b), respectively describe the estimated subjective probability that a chosen action 

will produce a desired outcome, given prior beliefs [formally: p(desired outcome | priors, 

action)] and the complementary probability (1-c) it will produce any outcome but the 

desired one. In continuous decision making, these estimates are updated on the basis of 

new evidence, generating posterior beliefs, which are available for future choice selections. 

Under conditions in which sensory stimuli are unambiguous and reliable (Ma and Jazayeri, 

2014), confirming accumulating evidence leads to narrow distributions and precise action-

outcome beliefs, whereas conflicting information leads to wide distributions and imprecision 

(Meyniel et al., 2015a, 2015b; Payzan-LeNestour et al., 2013; Pouget et al., 2016).

Here, we aimed at investigating the neural dynamics underlying the update of these 

estimated probabilities or beliefs, with or without immediate value-based outcomes. To 

this end we modified (Fig. 1; cf. Fiore et al., 2021) a probabilistic perceptual task, which 
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does not provide value based feedbacks after choice selections (Adams et al., 2018; Huq 

et al., 1988; Phillips and Edwards, 1966), and a non-stationary multi-armed bandit task, 

which provides stochastic value-based feedbacks after each choice (O’Doherty et al., 

2017; Robbins, 1952; Sutton and Barto, 1998). We used a multi-option design instead 

of the traditional two-option setup to allow for non-binary decision-making (Churchland 

and Ditterich, 2012; Churchland et al., 2008; Tajima et al., 2019), thus preventing the 

participants from using any exclusion/confirmation criterion as a strategy for decision-

making. The tasks also employed three categorical types of data and identical volatility (i.e. 

average number of trials before reversal), therefore conflating noise and surprise (McGuire 

et al., 2014; Nassar et al., 2016, 2019) and providing participants with discrete evidence 

for the belief update. This design was conceived to foster nuanced transitions between trials 

characterized by high model-estimated subjective confidence (i.e., near certainty in one’s 

mind that a chosen selection will yield a desired outcome) and those characterized by low 

model-estimated subjective confidence, or high uncertainty (i.e., all available actions are 

estimated to yield the desired outcome with a probability close to chance). To allow a 

comparison across tasks, we employed two similar Bayesian learner models to estimate 

subject-specific, trial-by-trial, belief updating and associated choice-related confidence, 

replicating the actual behavior recorded in healthy volunteers (N = 28) being scanned with 

functional magnetic resonance imaging (fMRI). Finally, in consideration of unavoidable 

structural differences characterizing the two tasks, due to the presence or absence of the 

explicit value-based outcomes, we also considered the possibility that different decision-

making processes might have controlled the choice selections in the two tasks. Therefore, 

we compared the performance of our Bayesian learner model with those of three more 

computational models, in which decision processes were determined by heuristics, volatility 

monitoring or prediction-error learning, respectively.

Previous investigations have revealed a number of brain regions involved in the 

computations of belief updating and the associated decision confidence (Meyniel and 

Dehaene, 2017; Morriss et al., 2018; Pouget et al., 2016). For instance, the medial prefrontal 

cortex (mPFC) (Bang and Fleming, 2018; Matsumoto and Tanaka, 2004; Yoshida and 

Ishii, 2006) has been shown to be responsible for processing self-monitoring, action 

evaluation and choice confidence in goal-oriented behavior. At the subcortical level, the 

anterior hippocampus (aHip) has been implicated in monitoring expectations, predictability 

and entropy reduction in changing environments (Harrison et al., 2006; Rigoli et al., 

2019; Strange et al., 2005), whereas the amygdala (Amg) has been associated with 

value representation and risk estimation in stochastic environments (Bechara et al., 1999; 

Dolan, 2007; Jung et al., 2018). Consistent with this literature, we found a neurocircuitry 

encompassing mPFC, hippocampus and amygdala, which supported belief updating across 

both tasks and became more active as decision confidence increased. We then used 

dynamic causal modeling (DCM) (Friston et al., 2003; Stephan et al., 2010; Zeidman et 

al., 2019) to estimate the directed influence or effective connectivity among the nodes of this 

neurocircuitry and highlight differences associated with the two tested task environments.
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2. Materials and methods

2.1. Participants

We recruited 28 healthy volunteers (16 females), age 24.8 ± 7.0. Participants taking any 

medication, or with a history of mental disorder or drug abuse were excluded from the study. 

One subject was excluded from all fMRI analysis involving the Cards task, due to excessive 

movement. The study was approved by the Institutional Review Board at the University 

of Texas, Dallas and University of Texas Southwestern Medical Center. Informed written 

consent was obtained from all subjects and all participants were informed that they could 

withdraw from the study at any point.

2.2. Experimental design: 3-options continuous choice tasks

In a first task (Fig. 1A), termed Beads task (modified from: Huq et al., 1988; Phillips and 

Edwards, 1966), a new visual stimulus (a red, blue or green bead) was presented at each 

trial, adding a confirming (e.g. a red bead after another red one) or conflicting (e.g. a blue 

bead following a green one) visual stimulus in a sequence of colored beads. Participants 

had 2 s to decide from which of three jars displayed on the monitor the bead had been 

drawn. The jars were illustrated on screen as containing beads of three colors in a ratio of 

80%−10%−10%. After each button press, the selected jar would be highlighted with a black 

rectangle, for the remaining time on the clock allowed for the choice selection, plus 0.5 s. 

The last five extracted beads were always present on screen (Fig. 1A), and the participants 

could make the first choice selection starting from the 5th bead extraction. Between trials, a 

gray square would appear to conceal the new extracted bead for a variable time of 2 to 3.5 s. 

Participants had access to immediate value-based outcomes during a training session, which 

would show that each correct guess would result in accumulating 100 points. However, no 

outcome was provided during the MRI task and the participants were made aware that the 

accumulated points would be disclosed only at the end of the task.

In the second task, termed Cards task (Fig. 1B) (modified from: O’Doherty et al., 2001; 

Robbins, 1952), the participants had 2 s to select among three cards presented on the screen 

and characterized by three geometric figures (randomly selected among triangle, square, 

circle, star and diamond). Each card was assigned a different predominant value among 

the three possible outcomes of 100, 10 and 0 and after selecting a card, the screen would 

display a stochastic outcome, highlighted in green (variable duration: 1–2.5 s), with assigned 

probability of 80%, for the predominant value, and 10% for each of the remaining outcomes. 

A second message on screen also signaled the amount won on white screen (fixed interval: 

0.5 s), followed by a fixation cross (variable interval: 1–2.5 s), which would precede a new 

trial. The total amount of points accumulated, per block, was always displayed in the lower 

part of the screen.

For both tasks, participants were compensated with $1 for every 500 points, selecting the 

points accumulated during one random block per task. Both tasks consisted in 3 blocks 

of 71 trials each, so the participants were told that the maximum amount of bonus they 

could gain consisted in about $15 dollars from each task. Three identical sequences -one per 

block- were used for all subjects, for both the bead colors and the card-value associations. 
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Task order and block order were counterbalanced across subjects. The choice selections 

were recorded using a magnet compatible response box, consisting of three buttons arranged 

horizontally, so to map the three available choices on the screen. The participants were 

allowed to hold the response box with both hands and generally used both thumbs to 

perform their choice selections. Finally, the participants were instructed that the computer 

would randomly change the jar from which it extracted beads, or the card-value associations. 

The pace of these pseudo-random changes was determined in an interval of 6 ± 1 trials for 

both tasks (in total across the three blocks: 10 reversals took place after 5 trials, 15 after 

6 trials and 8 after 7 trials) and it was independent of the performance of the participants 

(cf. Fig. 1D,E and Fig. 2). The participants were not instructed explicitly about the number 

of trials characterizing the interval among reversals, but they familiarized with the task 

structure by running a training session, consisting of an entire block of trials, outside of 

the scanner. The distribution of probabilities of the task related events (i.e., beads extracted 

from a jar or value-based outcomes yielded after a card selection) was identical across 

tasks (80%−10%−10%). This feature, jointly with the use of three categorical evidence and 

the relative stability of the pace of reversals, was meant to avoid computations of large vs 

small prediction errors (cf. McGuire et al., 2014), or sudden changes in the environment 

volatility (cf. Behrens et al., 2007). By this means the task design was aimed at focusing 

the participants’ decision process on the probabilistic perceptual evidence, in the Beads task 

(Adams et al., 2018; Huq et al., 1988; Phillips and Edwards, 1966), and on value-based 

feedbacks, in the Cards task (O’Doherty et al., 2017; Robbins, 1952; Sutton and Barto, 

1998).

2.3. Bayesian learner model

We used two similar computational models to estimate: 1) in the Beads tasks, the trial-by 

trial subjective probability assigned to each jar, as the source of extraction of the latest 

bead visible on screen; 2) in the Cards task, the trial-by trial subjective probability that 

each card would be associated with the highest chance to yield 100 points. We then used 

the model-estimated probability assigned to the selected jar or card, per trial, to determine 

subject- and trial-specific choice-confidence (c).

To update the estimated subjective probabilities the model relied on a Markov chain: 

in each trial t, the estimates defined at time t-1 were incrementally updated into the 

new probabilities, depending on the latest available evidence (e) and the subject-specific 

assumptions about the likelihood (λ) of events in the environment. This update process can 

be summarized as:

P Jart ∣ Jart−1, e, λ (1.1)

P Cardt+1 ∣ Cardt, e, λ (1.2)

For instance, if one assumed the environments were characterized by low stochasticity (i.e., 

vast majority of beads in the jars are of a single color and the vast majority of the value-

based feedbacks after a card selection match the assigned value), she would quickly adapt 

to any change of bead color or card selection outcome, i.e., the behavior would rely largely 
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on the latest presented evidence. Conversely, an environment assumed to be characterized by 

high stochasticity would result in a slow adaptation, as conflicting evidence would have to 

accumulate to be sufficient to trigger a change in subjective estimates and choice selections. 

In Bayesian terms, the probability of an event to occur, assuming a hypothesis is true, 

defines the likelihood. In the Beads task, the likelihood represents the three events can occur 

after a bead is extracted from a jar: e.g., P (beadblue, beadred, beadgreen | Jarblue). Similarly, 

in the Cards task, three events can occur, after each choice selection, e.g., P (outcome100, 

outcome10, outcome0 | Card100). Participants were not aware of the exact distribution of 

colored beads in the jars or outcome stochasticity associated with card selections. Therefore, 

we considered each subject would rely on their own assumptions about these likelihoods, 

which would be kept constant through the task, as the task instructions explicitly mentioned 

the probability distributions would not vary depending on performance or other measures. 

For simplicity, the model assumed the participants relied on likelihoods characterized by a 

dominant event for each hypothesis [e.g., P(beadblue | Jarblue) or P(outcome100 | Card100)], 

and two, equally probable, secondary events [e.g., P(beadred | Jarblue) = P(beadgreen | Jarblue) 

= ((1 - P(beadblue | Jarblue))/2) or P(outcome10 | Card100) = P (outcome0 | Card100) = ((1-

P(outcome100 | Card100))/2)]. Finally, we also assumed that dominant events associated with 

each of the three hypotheses, per task, were identical [i.e., P(beadblue | Jarblue) = P(beadred 

| Jarred) = P(beadgreen | Jargreen) or P(outcome100 | Card100) = P(outcome10 | Card10) = 

P(outcome0 | Card0)]. For instance, given the structure of the tasks, an ideal player would 

assign ~80% probability to all dominant events and ~10%, to each of the two secondary 

events. As described, participants assuming a high probability for the dominant event (i.e., 

close to deterministic environments) would quickly update their beliefs, whereas participants 

assuming equally distributed events would show a slow update of prior beliefs. This update 

process of prior probabilities into posterior probabilities was carried out following a standard 

Bayesian rule (see step by step examples of computations in the supplementary materials):

P Jarj t ∝ P beadt ∣ Jarj P Jarj t−1 (2.1)

P Card100j t+1 ∝ P outcomet ∣ Card100 P Card100j t (2.2)

These computations were used to estimate the trial-by-trial subjective probabilities assigned 

to the three jars (j), as the source of the latest extracted bead, or to the three cards (j), as the 

most likely to yield 100 points. Finally, these three dimensional probability estimates were 

transformed -after the calculation of the error required for parameter regression- to avoid any 

selection to reach ~0% probability, which would have hindered future incremental updates, 

as follows: 
max . 05, Jarj, t

∑max . 05, Jarj, t
 and 

max . 05, Card100j, t + 1
∑max . 05, Card100j, t + 1

.

We used a Monte Carlo method (i.e., random search within the space of parameters) 

to estimate the value of the dominant probability in the likelihood, per each task, that 

would better match real choice selections expressed by each of the 28 participants. For 

the regression, we coupled the trial-by-trial model-estimated distribution of probabilities 

across the three available choices with the actual choice selection of each participant. This 
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value (c) was used to generate an error score per trial, which was computed as |log(c)|. 

The regression method tested 103 randomly generated values for the parameter λ, in a 1
31

interval, searching for the value that minimized the total error across all sequences, per task 

(Fig. 1c).

2.4. Alternative computational models

The performance of the Bayesian learner model was compared with three computational 

models. These were all based on a similar Markovian principle of trial-by-trial update 

but relied on significantly different computational processes for the simulation of the 

participants’ choice behavior. The comparison among the models was deemed necessary 

for two reasons: first, to control for the possibility that the participants were not in fact 

relying on Bayesian inference and confidence estimations to perform their choice selections. 

Second to control for the possibility that different, non-comparable, computational processes 

would be responsible for the choice behaviors in the two tasks.

2.5. Heuristic model

In a first alternative model, we considered the possibility that the participants used simple 

heuristics to guide their actions, as these computations would make complex considerations 

about choice confidence less relevant. We employed a mechanism that would increment or 

decrement, at each trial, the probability associated with a jar or a card by a subject-specific 

constant H:

Jarj, t = min 1, max 0, Jarj, t − 1 + H (3.1)

Card100j, t + 1 = min 1, max 0, Card100j, t + H (3.2)

where H is a vector ([− ℎ
2 , h, − ℎ

2 ]), so that in the Beads task the jar of the same color of 

the latest extracted bead would increase its estimated probability by a value of h (with a 

maximum value of 1), whereas the remaining two jars would decrease their probability by 

− ℎ
2  (with a minimum value of 0). Similarly, in the Cards task, a 100 point outcome would 

trigger an increase of probability for the selected card, decreasing the probabilities assigned 

to the non-selected cards, whereas the opposite process was employed for 10 points and 0 

points outcomes. The value of h was regressed for each subject to find the value that would 

reduce the model-estimated error.

2.6. Volatility model

In a second model, we considered the possibility that the participants were able to monitor 

the volatility of the task environments to determine when a reversal occurred. This in turn 

could be used to estimate, on a trial-by-trial basis, which information could be ignored 

or which might require behavioral adaptation, depending on the estimated probability that 

a reversal might have just occurred or not. This model employed computations similar 

to the ones already described for the Bayesian learner model, with the key difference of 

relying on a dynamic pace of update, rather than a fixed one (cf. Behrens et al., 2007). To 
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this end, we assumed that the subjective likelihoods (λ in Eqs. (1.1) and 1.2) would vary 

trial-by-trial, thus varying the evidence-to-prior beliefs ratio and generating a dynamic belief 

update process. The changes in the λ values were determined as a function of the estimated 

probability assigned to the occurrence of a reversal P(Rt | Rt-1, V), where the value of V was 

fixed per subject and represented a subjective volatility. The task structures did not allow 

to compute this value on the basis of changes in the stochasticity of the environments (cf. 

Cavenaghi et al., 2021), or thanks to the presence of large or small errors (cf. McGuire et 

al., 2014). Therefore, the model assumed that reversal could be monitored in terms of the 

subjective likelihood that an event at trial t could be found to differ from an event at trial t-1 

(see step-by-step update computations in the supplementary materials).

P (R)t ∝ P Bead¬it ∣ Beadit − 1 P (R)t−1 (4.1)

P (R)t+1 ∝ P  Oucome ¬it ∣ Outcome it − 1 P (R)t (4.2)

Note two significant differences in these computations when comparing the two tasks. The 

estimation of the probability of a reversal was updated before a choice selection in the 

Beads task and after a choice selection in the Cards task. Furthermore, a repeated event 

(which would mark a decrease in the estimated probability for a reversal to occur, P(R)) 

in the Beads task simply consisted in the display of two consecutive beads of the same 

color, any other combination of colored beads determined an increase in the estimated 

P(R). Conversely, in the Cards task, we considered a combination of action selection 

and outcomes, so that a repeated event consisted of two consecutive outcomes of 100 

points, under the condition that the choice selections had been repeated as well. Any other 

combination of choice selections and events increased the estimated P(R). The trial-by-trial 

P(R) was then used (scaled in a 1
31  interval) to determine the trial-by-trial likelihood (λ) 

of the task-related dominant events, which in turn allowed for the computations described 

for the Bayesian learner model to be adjusted dynamically affecting belief updating. High 

estimated P(R) resulted in increased weight on the new evidence, whereas low estimated 

volatility resulted in increased weight on prior beliefs. Finally, as described for the Bayesian 

learner model, the P(R) was filtered 
max . 05, Rt

∑max . 05, Rt
.

2.7. Reinforcement learning model

In a third model, we considered the possibility that participants relied on prediction error 

estimations to guide their actions. Thus, we used a reinforcement learning approach, 

characterized by the learning rule:

rt = rt−1 + αV (5)

where r represents the expected reward or outcome, per trial, α is the learning rate, estimated 

in each subject, and V is the prediction error, computed with a standard Rescorla-Wagner 

learning rule. In the Beads task, where no explicit reward is provided, we assumed that 

a bead at trial t of the same color of the chosen jar at trial t-1 would be considered by 

the participant as an outcome of 100 (i.e. confirming the previous choice was correct). 
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Conversely, an inconsistency between the present bead color and the previous choice of 

jar color would be encoded as an outcome of 0. In both tasks, choice selection was then 

determined using a linear transformation (cf. Behrens et al., 2007):

f(r, γ) = max[0, min[1, (γ(r − 0.5) + 0.5)]] (6)

The parameter γ, which was also estimated in each subject, represents whether the 

participant was risk averse (>1) or risk prone (<1) in their choice selections.

Finally, we compared the predictions of the models in terms of BIC score. Limited to the 

model comparison, to allow for comparable BIC scores, we used a softmax transformation 

of the trial-by-trial estimated probabilities (τ=0.1 for all models) and relied on the maximum 

likelihood (controlled by the Matlab function fmincon) for the parameter regression, across 

models. We estimated the likelihood twice, with independent measures for a linear and a 

logarithmic computation of the trial-by-trial error (cf. supplementary Fig. 1). The Bayesian 

learner outperformed all the other tested models in both tasks (Table 1), under both 

conditions of error estimation, and was therefore used for the fMRI and DCM analysis.

2.8. fMRI data acquisition and preprocessing

Functional MRI data were acquired using a Philips 3-Tesla MR scanner at the Advanced 

Imaging Research Center at University of Texas Southwestern Medical Center. The 

anatomical scan sequence (multiecho MPRAGE) was carried out with a resolution of 1 

mm, Multi Parametric Maps. Functional images (EPI) were acquired with a resolution of 

3.4 × 3.4 × 4 mm, repetition time of 2000 milliseconds, echo time of 25 milliseconds, 38 

axial slices, flip angle=90°, and a field of view of 240 mm. We used standard Statistical 

Parametric Mapping algorithms (SPM12, Wellcome Department of Imaging Neuroscience; 

www.fil.ion.ucl.ac.uk/spm/) for data preprocessing, including motion realignment to the first 

volume, coregistration to the participant’s anatomical scan, MNI normalization, and spatial 

smoothing, using an isotropic 8-mm full-width at half-maximum (FWHM) Gaussian kernel.

2.9. Model-based fMRI

We considered choice confidence encompasses several steps in a process, each responsible 

for part of the probability estimation in a choice selection (Ma and Jazayeri, 2014; Meyniel 

et al., 2015b), from sensory estimation to motor execution (Orban and Wolpert, 2011; 

Wolpert and Landy, 2012), or outcome evaluation (Bach et al., 2011; Meyniel et al., 2015a), 

when at all available. Thus, for the GLM analysis, we used default SPM12 functions 

to observe BOLD signals associated with the on-sets of choice selections (i.e. button 

presses). This is consistent with our computational definition of confidence (Meyniel et 

al., 2015b), which was meant to investigate this phenomenon in association with a choice, 

i.e. the estimated probability a selected action would deliver a desired result. We convolved 

a canonical hemodynamic function (HRF), which is a synthetic hemodynamic response 

function composed of two gamma functions (Friston et al., 1998, 1994) in SPM, with 

task regressors related to all onset of choice selections. In each task, we used a GLM 

to identify the relationship between the -parametrically modulated- task events and the 

hemodynamic response. For this analysis, we used the RTs as trial-by-trial covariates and 

choice confidence (c) as parametric modulator. The three blocks were concatenated in both 
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tasks. Whole brain activations were determined using a threshold of P<.005, uncorrected 

(Fig. 3A,B).

2.10. Dynamic causal modeling (DCM)

For the DCM estimation, we relied on SPM12 default functions. Our model based GLM 

revealed three nodes in the network subserving the signal of confidence (aHip, Amg, mPFC; 

Fig. 3A,B). We extracted fMRI time series from individual ROIs, using their principal 

eigenvariates: we relied on group-level anatomical maps manually generated for the Amg 

and the aHip (available at: https://neurovault.org/collections/9720/), and we used spherical 

ROIs (8 mm radius) for the mPFC. These were centered on task-specific, group-averaged, 

peaks activity, at the following coordinates: mPFC (bead: [−9, 56, −1]; card: [−9, 56, −1]). 

We also included the visual cortex as a network input region (cf. Friston et al., 2003; 

Stephan et al., 2007, 2008), with ROIs centered on task-specific peaks of activity, at the 

following coordinates: bead: [−18 −94 2] [18 −94 2]; card: [−18 −91 11] [18 −91 11]. 

The time series extracted in the visual cortex ROIs were derived from a baseline BOLD 

activity, before the use of covariates and parametric modulators. In the Beads task, we 

found significant bilateral BOLD response to the signal of confidence, whereas the response 

recorded in the Cards task was limited to the ROIs in the left hemisphere. Thus, we focused 

the DCM analysis on the left hemisphere only.

For the network architectures, we restricted the DCM analysis to those architectures that 

would better inform about changes in directional relationships among the active ROIs. 

This was not meant to try to exhaust all possible model structures, but rather to aim at a 

good balance between accuracy and complexity, thus affording a sufficient generalizability 

(Pitt and Myung, 2002; Stephan et al., 2010). Therefore, we compared neural architectures 

that fulfilled two criteria: 1) they presented different targets for the modulatory signals; 

and 2) they were computationally comparable in terms of the number of free parameters 

(i.e. comparable number of node-to-node and modulatory connections (cf. Yu et al., 2020). 

These two requirements led to develop eight models (Fig. 4), characterized by variations 

in only one of the three key matrices that define network architectures in a DCM analysis 

(Friston et al., 2003; Penny et al., 2004; Stephan et al., 2010). In particular, we used a 

fixed, fully connected, A-matrix across all models, so to define a common baseline network 

of connections, where the nodes could propagate information among one another. We also 

used a fixed C-matrix across all models, thus defining a constant target for the “driving 

input”: in this case the presence of the visual stimuli would directly affect the activity 

of the node representing the visual cortex (e.g. see: Gu et al., 2015a, 2015b). Finally, 

we generated eight B-matrices, defining eight configurations of targets for the modulatory 

input (the trial-by-trial signal of confidence, c), so allowing context- and time-dependent 

variations of the effective connectivity in the targeted connections of the baseline A-matrix. 

We assumed that these modulatory inputs would affect self-connectivity for all four nodes 

and the connectivity between visual cortex and the main three ROIs, bidirectionally, for all 

models. However, the modulatory signal would target the connectivity between the main 

three ROIs in one direction only. Thus, the eight models did not differ in the overall number 

of targets of modulatory inputs (10 fixed and 3 variable), but in the combination of selected 
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targets (i.e., 2 possible directions for 3 pairs of nodes, as illustrated in Fig. 4, where the 

targets of the modulatory signal are highlighted in red).

We used a Bayesian family-wise random effect approach to estimate the directed 

connectivity between each pair of nodes within the two network triplets, grouping the 

eight models each time into two families of four models, each family characterized by one 

common modulated directed connectivity. This method allowed comparing, for instance, 

the four models with an aHip-to-mPFc modulated connectivity (with varying connectivity 

between aHip and Amg and between Amg and mPFC, Fig. 4) vs the four models 

characterized by an mPFC-to-aHip modulated connectivity (and varying connectivity for 

the remaining couples of nodes). The method allowed to assess the likelihood a modulatory 

signal would affect the information flow in a specific direction, within a single pair of nodes, 

independent of the presence of a single winning model that would have emerged in a single 

model comparison.

2.11. Data availability

Single subject behavior, datacode of the 4 models described, GLM results and associated 

DCM estimations are fully available in the form of a G-node repository [https://gin.g-

node.org/G-Node – link provided upon acceptance].

3. Results

Both tasks posed a significant challenge to the participants, due to the fast pace of the 

reversals, combined with the presence of three options for the choice selections. The 

choice selections expressed by the participants indicated they were able to track the correct 

extraction jar in the Beads task with high accuracy (74.8%±7.4), whereas the Cards task 

resulted in a lower performance, albeit significantly above chance level, in the attempt 

to track card-value association reversals (accuracy: 55.36%±7.6). This difference is likely 

due to the need to explore the deck of cards after each reversal, which required a few 

probing trials. Indeed, if this analysis of behavioral accuracy is limited to the three trials 

before each reversal, the gap between the two tasks is significantly reduced (79.5%±13.7 

and 71.67%±11.5, for the bead and Cards task, respectively), indicating the participants 

eventually adapted to the continuous changes in the environments with high accuracy, across 

tasks. Differences between tasks are also apparent when comparing the behaviors in terms 

of the probability of changing choice selections in the trials following each reversal (Fig. 

2). In both tasks the peak of changes in choice selections takes place during the initial trials 

after a reversal, with a delay for the Cards task, due to task structure (cf. Fig. 2A,B). In 

the Beads task (Fig. 2C,D), a comparison between trials characterized by either confirming 

or conflicting beads (respectively, a bead color at trial t of the same or different color, 

compared with the bead at trial t-1) revealed higher probability of a change of selections 

in association with conflicting beads, in comparison with confirming ones, limited to the 

fifth, sixth and seventh trial after a reversal (Fig. 2C,D). In the Cards task (Fig. 2E,F), 

high outcomes (i.e., 100 points) were rarely (<5%, on average) followed by a change in 

selection, irrespective of the trial position after the reversal. Similarly, low outcomes (i.e., 

10 or 0 points) were associated with a high probability (>65%) of triggering a change in 
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choice selections across all trials, despite the significant decrease in the total number of low 

outcomes, as the participants usually identified the optimal selections a few trials after the 

reversals.

These behavioral differences suggested the presence or absence of explicit outcomes 

significantly affected the choice behavior of the participants and they indicated that different 

computational processes might have been guiding the behaviors in the two tasks. Therefore, 

we compared the Bayesian learner model with three alternative computational models to 

control for the possibility that choice selections in either of the two tasks could be better 

explained using simple heuristics, a method to monitor the volatility of the environment 

or prediction-error based learning. Model comparison and parameter recovery (Table 1 

and supplementary Table 1 and 2) confirmed the presence of qualitative differences in the 

participants’ behaviors across tasks, as similarities emerged between the Bayesian learner 

and either the Heuristic models or the Reinforcement learning model, in the Beads and 

Cards task, respectively. Importantly, the Bayesian learner model significantly outperformed 

any other tested model in matching the participants’ behavior, in both tasks, thus allowing 

to use this model for a comparison across tasks. In particular, the Bayesian learner model 

represented subject-specific behavioral differences in terms of variations of the parameter 

controlling the estimated likelihoods. Within-subject comparison revealed the Beads task 

was characterized by significantly lower λ values (i.e., slower pace of belief update) in 

comparison with the Cards task (Beads task: λ =0.869±.065; Cards task: λ =0.92±.074; 

d(27)= 3.35, p=.0024; Fig. 1C). These values resulted in optimized Bayesian inferences that 

provided a mean behavioral prediction accuracy of 83.5%±6.08% for the Beads task and 

72.23%±7.41% for the Cards task (chance≈33%).

A correlation analysis revealed that the estimated confidence (c) was negatively correlated 

with the reaction times (RTs) in the Beads task for 27 participants out of 28, whereas in 

the Cards task only five participants showed any significant correlation (cf. Fig. 1D,E; see 

supplementary Table 3). Next, we included RTs values as covariates and we examined the 

neural activations associated with the estimated confidence (c) as parametric modulators in 

separate GLMs for each task (Fig. 1D,E). Consistent with previous literature (Meyniel and 

Dehaene, 2017; Morriss et al., 2018; Payzan-LeNestour et al., 2013; Pouget et al., 2016), we 

found that confidence was encoded in the mPFC, aHip and Amg, bilaterally, in the Beads 

task, and limited to the left hemisphere, in the Cards task (Fig. 3, visible at cluster size>50, 

P<.005, uncorrected, cf. Supplementary Fig. 2A). A within subject comparison of β values 

extracted from these ROIs across tasks confirmed the strong similarities of BOLD neural 

responses, irrespective of the presence of explicit value-based outcomes, as no significant 

difference was found across tasks. Consistent responses across tasks were also found as 

decreased activations in association with the signal of confidence (or, symmetrically, as 

increased activations in association with the complementary probability of 1-c), highlighting 

BOLD activity in the anterior insular, dorsal anterior cingulate and dorsolateral prefrontal 

cortex (cf. Supplementary Fig. 3A,B). Finally, a whole brain contrast between the two tasks 

revealed increased activity (peak: [27 47 20]) in the right lateral frontopolar cortex (Koechlin 

and Hyafil, 2007; Mansouri et al., 2017) as well as in the putamen, bilaterally (peaks [24−4 

5] and [−30 2 8]), when comparing Bead vs Cards task BOLD activity (visible at cluster 
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size>50, P<.005, uncorrected, Supplementary Fig. 2B), but this result would not survive 

FWE correction.

Next, we used DCM to investigate the directional dependencies among confidence-encoding 

regions. Family-wise model comparison was used to test pair-wise directed connectivity 

among Amg, aHip and mPFC, in the left hemisphere across tasks, grouping the eight 

tested models (Fig. 4) into two competing families of four models, depending on the 

tested connectivity. Limited to the tested model architectures, this analysis revealed that the 

modulated effective connectivity associated with the signal of confidence were found to 

change depending on value-based outcome availability. In the Beads task, when immediate 

value-based outcome was absent, confidence primarily modulated the connections from the 

aHip to other regions (exceedance probability, left hemisphere: aHip-to-mPFC: 93% and 

aHip-to-Amg: 90%; Fig. 5A; cf. converging results across hemispheres, supplementary 

Fig. 4), with no clear directionality for the remaining pair-wise analysis (exceedance 

probability, left hemisphere: mPFC-to-Amg: 59%). In contrast, in the Cards task, which 

provided immediate value-based feedback to each choice, the signal of confidence primarily 

modulated mPFC-to-aHip, mPFC-to-Amg, and Amg-to-aHip connectivity (exceedance 

probability, left hemisphere: 99% and 95%, and 89%, respectively; Fig. 5B; cf. model 

exceedance probabilities for both tasks, supplementary Fig. 5). The diverging results did not 

allow to run t-test comparisons for the weight of modulatory connectivity estimated in the 

two tasks (Stephan et al., 2010).

4. Discussion

Humans live in constantly changing environments that are often opaque, as explicit 

outcomes following a choice behavior (e.g., hedonic or value-based) are not always 

available. To compare belief updating in the presence or absence of immediate explicit 

outcomes, we developed a multi-option probabilistic perceptual task, and a multi-option 

non-stationary armed bandit task. Then, we estimated belief updating in a healthy 

control population (N = 28) relying on a Bayesian learner model. The efficacy of 

these computations in replicating the target human behavior was compared against three 

alternative computational constructs, to test whether choice selections could be better 

explained by heuristic decisions, volatility estimates, or prediction-error based learning. 

This comparison indicated the processes based on the Bayesian inference provided a 

more accurate explanation of the choice selections expressed in both tasks, outperforming 

alternative explanations, and allowing for a comparison of neural activity and network 

dynamics. Interestingly, model comparison also revealed similarities for the Heuristics 

model and the Bayesian learner model, limited to the Beads task, and for the Reinforcement 

learning model and Bayesian learner model, limited to the Cards task (cf. Table 1 and 

supplementary Table 1 and 2). This result suggests that: first, the absence of an immediate 

feedback favored simplified decision-making processes over prediction-error based ones. 

However, the non-linear belief updating granted by the Bayesian inference computations 

provided an advantage in replicating the human behavior, in comparison with linear updates 

(i.e., heuristics), as the same information in a probabilistic perceptual task can have a 

varying effect (cf. Fig. 2), depending on the context. Second, the presence of a value-based 

feedback after each choice selection favored value-based decision-making processes relying 
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on prediction error computations. However, the use of categorical outcomes in a multi-

armed bandit task favored again the Bayesian inference, suggesting the outcomes were 

computed as discrete evidence in favor or against a hypothesis, rather than at their face 

values.

Our main findings revealed two important aspects of belief updating in uncertain 

environments with or without immediate outcomes. First, we identified a network that 

responded to the signal of decision confidence (amygdala, anterior hippocampus, mPFC), 

regardless of the presence of immediate value-based outcomes. Second, within the limits 

offered by the network architectures that were tested, DCM analysis suggested that the 

network dynamics changed as a function of feedback availability. Taken together, these 

findings revealed important changes across different Marrian levels of analysis (Marr 

and Poggio, 1976), as the presence of immediate value-based outcomes impacted the 

neural implementation of belief updating in its confidence-building component, despite the 

identical computational mechanisms across conditions of feedback access.

Existing literature on decision-making primarily focuses on choices made in environments 

with immediate explicit feedback, usually value-based outcomes, as it is usually assumed 

that previously experienced outcomes following chosen actions are needed to generate 

subjective values and to guide future choices (Berridge and Kringelbach, 2015; O’Doherty 

et al., 2017; Rangel et al., 2008). This approach has been highly successful in accounting 

for different forms of conditioning, habitual and goal directed behavior and in uncovering 

their underlying neural substrates (Balleine et al., 2007; Balleine and O’Doherty, 2010; 

Dezfouli et al., 2014). The algorithmic formalisation offered by the reinforcement-learning 

framework (Sutton and Barto, 1998) further expanded the domain of decision-making 

investigations in accessible environments, indicating reward prediction-error are encoded 

by dopamine signals (Schultz, 2002; Schultz et al., 1997), and driving model-based analysis 

of neural activity (Daw et al., 2011, 2005; Dolan and Dayan, 2013; Lee et al., 2014). 

Nevertheless, many real-life decisions are made in the absence of immediate, value-based 

outcomes, where agents need to form beliefs based on other sources of information. Partially 

addressing this issue, previous studies on perceptual decision making have explored how 

people make choices based only on sensory evidence, in the absence of outcomes (Hanks 

and Summerfield, 2017; Heekeren et al., 2008). These studies focus on attention processes 

and perceptual uncertainty, as sensory inputs are characterized by ambiguity or noise, 

and have highlighted the roles played by hippocampus and mPFC in assessing sensory 

predictability and the subsequent choice confidence (Bang and Fleming, 2018; Harrison et 

al., 2006; Rahnev et al., 2016; Strange et al., 2005). Instead, here we used tasks deprived of 

sensory uncertainty, aiming at investigating the neural dynamics responsible for the update 

of action-outcome contingencies in the presence and absence of immediate outcomes. 

Both our two multi-option tasks, with and without immediate value-based feedback, were 

characterized by simple sets of rules, categorical and discrete evidence (i.e. the three 

feedback values or the three bead colors), and easy-to-compute distributions of probabilities, 

reducing stimulus uncertainty as well as second-order uncertainty (Bang and Fleming, 2018; 

Fleming and Daw, 2017).
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DCM analysis indicates that the directional influence among brain regions encoding 

decision confidence changed across environments. In the presence of immediate outcomes, 

mPFC and amygdala drove other regions during confidence encoding; but in the absence 

of these outcomes, the hippocampus showed directional influence towards mPFC and 

amygdala. Confidence estimations in the Beads task (no outcome) relied on each colored 

bead in a sequence as discrete evidence, where a sequence of beads of the same color 

signaled that the environment was likely going through a stable phase, therefore allowing 

decision confidence to increase. We speculate that the hippocampus was engaged first, 

so to monitor the predictability of visual stimuli and signal the reduction in entropy of 

the task environment (Harrison et al., 2006; Rigoli et al., 2019; Strange et al., 2005), 

as belief-confirming evidence was accumulating. Subsequently, the mPFC and amygdala 

received this information from the hippocampus (Gluth et al., 2015) and were engaged 

to increase the estimated confidence (Bang and Fleming, 2018; Matsumoto and Tanaka, 

2004; Yoshida and Ishii, 2006) that current choice selections would yield in the future 

a currently inaccessible desired outcome (Bechara et al., 1999; Dolan, 2007; Jung et al., 

2018). Differently, in the Cards task, where stochastic numeric outcomes were immediately 

available, evidence accumulation was based on expected values. Thus, we speculate that 

the mPFC (De Martino et al., 2013; Koechlin and Hyafil, 2007) and amygdala (Bechara 

et al., 1999; Dolan, 2007; Jung et al., 2018) became the driving force in calculating these 

value-based signals and assigning them to the available choices. This information was then 

passed to the hippocampus, to monitor the stability or entropy of the environment.

It is important to highlight a few limitations associated with the interpretation of the 

behavior recorded in the two tasks. Despite the described core of similarities, the two tasks 

differ in a few key features: first, the chronicle of the latest 5 outcomes is only externalized 

in the Beads task; second, the Beads task is observation-based, whereas the Cards task is 

action-based; third, the Cards task presents an increased exploration cost, in comparison 

with the Beads task; finally, it can be argued that different computational models might 

reveal that the participants relied on different cognitive processes to guide choice selections 

in two tasks. Concerning the first three points, in both tasks the update of choice-confidence 

and uncertainty are based on the observation of the latest available data, therefore reducing 

the impact of the chronicle externalization. In the Cards task these observations are limited 

to the choice selections performed in the previous trials, but they either confirm or conflict 

with existing beliefs by the same quantity in both tasks, due to the organization of evidence 

into three distinct categories. After a reversal, the Cards task forces the participants to 

explore the deck to find a new optimal choice, and this behavior was captured by the 

Bayesian learner model in terms of estimated λ values, and associated differences in 

Bayesian inference and belief update. We propose that these differences, while important, 

have a limited impact on the interpretation of our findings, as suggested by the fact that a 

model based only on Bayesian inferences for belief updates was able to replicate the target 

behavior at high level of accuracy, across tasks. Finally, the model comparison indicates that 

the Bayesian inference perspective provides the most effective tool, among those tested, to 

capture key features of the behavior across tasks. Our comparison is of course limited to the 

few tested models, but these cover the computational approaches that are most commonly 

used in association with the choice selections performed in similar environments. Namely, 
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Bayesian inference approach, in a probabilistic perceptual task (Adams et al., 2018; Huq et 

al., 1988; Phillips and Edwards, 1966) or a reinforcement learning approach, in presence of 

non-stationary environments characterized by stochastic outcomes (O’Doherty et al., 2017; 

Robbins, 1952; Sutton and Barto, 1998). All considered, we suggest that these limitations 

call for further investigations, but they do not hinder the interpretation of the key findings 

described in this study.

In conclusion, our findings shed a new light on pervasive computational and neural 

mechanisms underlying belief formation and update. These results represent also an 

important step to inform future investigations into the breakdown of belief update processes, 

such as those observed in addiction (Gowin et al., 2013; Ognibene et al., 2019; Verdejo-

Garcia et al., 2018), mood disorders (Bishop and Gagne, 2018; Huys et al., 2015), as well as 

across several psychiatric disorders (Hoven et al., 2019).

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. 
Experimental paradigm, choice behavior, and model estimations for trial-by-trial confidence. 

(A) Beads task. Participants chose from which of three jars, containing predominantly 

red, blue or green beads (80%−10%−10% ratio), the latest bead was extracted from. 

The latest five extracted beads were always displayed on screen, and no feedback was 

provided after each choice selection. (B) Cards task. Participants chose one card among 

three cards characterized by different geometric figures. Each card yielded 100, 10 or 0 

points (immediate value-based outcome) with a probability distribution of 80%−10%−10%. 

The extraction jar and the card-value associations were changed every 6 ± 1 trials, in 

three pre-established pseudo-random sequences that were used for all participants, in a 

counterbalanced order. (C) Subject-specific values of the parameter λ (grouped in intervals 

Fiore and Gu Page 21

Neuroimage. Author manuscript; available in PMC 2022 February 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



of 0.01 in the scatterplot), used in the Bayesian learner models to estimate trial-by-trial 

subjective choice confidence in the participants (N = 28, in both tasks). Different λ values 

determine different paces of belief update: for instance, the lower the value, the more 

confirming evidence is required to increase confidence and decrease uncertainty. The color 

of each extracted new bead and the feedback provided after each card selection was used 

as discrete new evidence to update the estimated probability distribution or priors of each 

participant. (D-E) The upper rows of the panels illustrate the trial-by-trial choice selections 

expressed by the participants (as percentages). The lower rows of the panels illustrate the 

relation between trial-by-trial reaction times (mean and standard deviation, in gray) and 

the complementary probability of model-estimated confidence (or uncertainty, mean and 

standard deviation, in magenta). At the top of both rows an illustration of the sequence of 

colored bead, extracted in each trial, and an illustration of the sequence of winning cards, per 

trial (i.e., the geometric symbol characterizing the card associated with the highest reward). 

These were the actual sequences used for one of the three blocks in the two tasks. **: 

p<.005.
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Fig. 2. 
Analysis of the Behavior in the trials following a reversal. The error bands represent mean 

and standard deviation describing the probability of a change of choice selection (A, C, E) 

and the absolute number of these changes, recorded in the trials after any reversal (B, D, F), 

across the population of participants (N = 28, in both tasks). (A) In the Beads task the peak 

of changes in choice selections occurs in the initial two trials after a reversal, whereas in 

the Cards task the peak takes place in the second and third trial after a reversal. This delay 

is due to the different task structures. In the Beads task choice selections take place after 

a bead is displayed, so the first evidence that a reversal has occurred can be immediately 

Fiore and Gu Page 23

Neuroimage. Author manuscript; available in PMC 2022 February 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



computed. Conversely, in the Cards task, the first indication that a reversal occurred can 

only be revealed to the participant after a choice selection, so this information can be used 

starting from trial 2 after the reversal. (B) Note the decrease in the overall number of 

changes in choice selections as more evidence is collected after a reversal, consolidating the 

beliefs. In the Beads task, the highest probabilities (C) of a change in choice selections and 

the highest numbers of changes (D) were recorded in the initial trials following a reversal, 

across different types of evidence. Confirming vs conflicting beads were associated with 

similar probabilities to change a choice selection for the first four trials after a reversal. 

Starting from the fifth trial, conflicting beads were found to be significantly more likely 

to trigger a change in policy (trial 5: t(27)=3.27, p=.0029; trial 6: t(27)=4.59, p<.001; trial 

7: t(27)=2.66, p=.0128). In the Cards task (E,F), 100 point outcomes (high reward) were 

followed by a change in choice selection in less than 5% of the events, on average, across 

all trials following a reversal. Conversely, 10 or 0 point outcomes (low reward) triggered a 

change in choice selections with high probability (>65%), across trials following a reversal. 

* Note that, due to the structure of the task, the 6th and 7th trial after a reversal only occur 

23 and 8 times, respectively.
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Fig. 3. 
Model-based BOLD responses encoding Bayesian confidence. fMRI BOLD response 

recorded using the model-estimated signal of confidence as parametric modulator and 

reaction times as covariates, in the Beads task (A; P<.005, k = 50, uncorrected, N = 28), 

in the Cards task (B; P<.005, k = 50, uncorrected, N = 27). The two panels illustrate the 

similarities in the neural response across tasks, as they highlight BOLD signal in the medial 

prefrontal cortex, anterior hippocampus, and amygdala, bilaterally in the Beads task, and 

in the left hemisphere in the Cards task. To be noted that the BOLD responses of each 

single task did not resist FWE correction, whereas the joint activity of the two tasks resists 

PFWE<0.05 correction for all the three regions of interest, limited to the left hemisphere (cf. 

supplementary figure 2)..
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Fig. 4. 
Neural network architectures tested in the family-wise DCM. These neural architectures 

illustrate the eight models used to test the effective connectivity associated with the signal of 

confidence. The same model structures have been tested in both tasks to ease a comparison 

of the results. The general architecture of connectivity (A matrix) remains unchanged, and 

it is represented by all the arrows in the network illustrations. Conversely, the targets of the 

modulatory inputs (B matrix), marked only by the red arrows, are different in each model. 

This differentiation results in the generation of the 8 models, then divided into competing 

families of 4, to allow family-wise comparisons for each pair of nodes in the ROI triplet of 

aHip-Amg-mPFC. For instance, to determine whether the directed modulated connectivity 

from Amg-to-aHip better explains the extracted data, in comparison with the aHip-to-Amg 

connectivity, the models 1 to 4 are considered in a single family against the models 5 to 8 

in a second family. (aHip: anterior hippocampus; Amg: amygdala; mPFC: medial prefrontal 

cortex; VC: visual cortex).
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Fig. 5. 
DCM results using family-wise comparison. Histograms report the family-wise exceedance 

probability for each tested pair-wise connection in each task. On the right, arrows connecting 

the ROIs in the 3d brain rendering illustrate a summary of the results of the pair-wise 

analysis, highlighting the estimated direction of effective connectivity. Missing connectivity 

between ROIs represents those pair-wise analyses for which DCM did not provide a 

conclusive result. In the Beads task, the aHip increases its influence towards Amg and 

mPFC, as the confidence signal increases (A). Conversely, in the Cards task, mPFC and 

Amg exert an increasing influence towards the aHip in association with increased signal 

of confidence (B). aHip: anterior hippocampus; Amg: amygdala; mPFC: medial prefrontal 

cortex.
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