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Out-of-hospital cardiac arrest (OHCA) is a devastating disease process with neurological injury accounting for a disproportionate
amount of the morbidity and mortality following return of spontaneous circulation. A dearth of effective treatment strategies exists
for global cerebral ischemia-reperfusion (GCI/R) injury following successful resuscitation from OHCA. Emerging preclinical as
well as recent human clinical evidence suggests that activation of the complement cascade plays a critical role in the pathogenesis
of GCI/R injury following OHCA. In addition, it is well established that complement inhibition improves outcome in both global
and focal models of brain ischemia. Due to the profound impact of GCI/R injury following OHCA, and the relative lack of effective
neuroprotective strategies for this pathologic process, complement inhibition provides an exciting opportunity to augment existing
treatments to improve patient outcomes. To this end, this paper will explore the pathophysiology of complement-mediated GCI/R
injury following OHCA.
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1. Introduction

A dearth of effective treatment strategies exist for global
cerebral ischemia-reperfusion (GCI/R) injury following suc-
cessful resuscitation from out-of-hospital cardiac arrest
(OHCA). OHCA is a devastating disease process with neu-
rological injury accounting for a disproportionate amount of
the morbidity and mortality following return of spontaneous
circulation (ROSC). The incidence of OHCA in industrial
countries ranges from 0.04 to 0.13% of the total population
per year, and only 11–48% of patients admitted to the
hospital are discharged in good neurologic condition. At
present, therapeutic hypothermia is the only neuroprotective
strategy shown to be effective in well-controlled, prospective
trials of OHCA.

Complement, an important component of the innate
immune system, is known to play a central deleterious
role in multiple diverse disease processes. Eculizumab, a
monoclonal C5-antibody, is currently being used to treat
paroxysmal nocturnal hematuria, and pexelizumab, also a
C5-antibody, has been studied as adjunctive therapy in

ischemic heart disease [1, 2]. Emerging preclinical as well as
recent human clinical evidence also suggests that activation
of the complement cascade plays a critical role in the
pathophysiology of GCI/R injury following OHCA [3]. In
addition, it is well established that complement inhibition
improves outcome in both global and focal models of brain
ischemia [4–8]. Due to the profound impact of GCI/R injury
following OHCA, and the relative lack of effective neuro-
protective strategies for this pathologic process, complement
inhibition provides an exciting opportunity to augment
existing treatment to improve patient outcomes. To this end,
this paper will explore the pathophysiology of complement-
mediated GCI/R injury following OHCA.

2. The Impact of out-of-Hospital Cardiac Arrest

Heart disease remains the leading cause of mortality in
the United States, and most frequently presents as sudden
out-of-hospital cardiac arrest (OHCA) [9]. Recent sources
indicate that approximately 166,000–310,000 Americans
experience an OHCA per year [10], with a variable number
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undergoing resuscitation. Given this wide variability in
reported incidence, survival and outcome following OHCA
are difficult to accurately assess [9]. A multitude of factors
has been shown to influence survival following OHCA,
including demographic, clinical, and treatment factors [11–
19] and attempts at influencing those factors that are mod-
ifiable stand to potentially improve outcome. Brain injury
from global cerebral ischemia-reperfusion is a major factor
limiting the survival and functional recovery of patients after
resuscitation from OHCA. In most cases, survivors have
significant impairment of consciousness and may eventually
progress to a persistent vegetative state [14]. The acute and
long-term care for these survivors comes with a staggering
cost to healthcare systems, patients’ families, and society as a
whole [20, 21].

Historically, survival following OHCA has been poor [22,
23], and although the morbidity and mortality of most car-
diovascular diseases have declined over the last 30 years [10]
there has been little improvement in survival post-OHCA
[24, 25]. Even in those patients that are resuscitated and
survive the initial insult, crippling neurological deficits from
the global cerebral ischemia experienced during the arrest
are frequent. Survival for patients with an OHCA has been
reported between 1 to 31% with significant regional variation
[9, 10]. In fact, a recent large, prospective, multicenter obser-
vational study throughout North America demonstrated that
only 7.9% of treated cardiac arrest patients survive until
discharge [9]. Multiple out-of-hospital factors, including
bystander cardiopulmonary resuscitation (CPR), time to
defibrillation, and EMS experience have all been associated
with differences in survival after resuscitation [11, 26–28],
yet the effect of hospital-based postresuscitation care on
outcomes has been largely ignored.

With advances in EMS defibrillation programs, an
increasing number of patients survive to hospital admission
after OHCA. Of those patients, only 11–48% will be
discharged from the hospital with good neurologic outcome
[29]. Recently, in-hospital therapeutic hypothermia was
established as an option to improve neurologic outcome after
OHCA [30, 31]. Another study suggested that hemofiltration
to reduce inflammation after OHCA confers additional
survival benefit, but this remains unproven [32].

3. The Inflammatory Response following OHCA

With arrest of systemic and cerebral blood flow for greater
than 5 minutes, a series of events is initiated, inciting
an inflammatory cascade resulting in significant cerebral
injury [9, 10, 23, 33]. During and after cardiopulmonary
resuscitation, blood coagulation, platelet activation with
formation of thromboxane A2, and an alteration of soluble
E-selectin (sE-selectin) and P-selectin (sP-selectin) have
been described [34–36]. A postresuscitation syndrome,
characterized by hyperthermia, hypotension, and multiple
organ failure is likely the clinical expression of whole-body
ischemia-reperfusion (I/R) injury occurring after return
of spontaneous circulation [32, 37]. This syndrome is
associated with both complement activation and an intense
increase of various inflammatory mediators (IL-1, IL-6, IL-8,

and IL-10) as early as 3 hours after cardiac arrest, and thus
affords potential targets for new treatments [37].

4. Complement and Cerebral Ischemia

The complement system, a phylogenetically conserved com-
ponent of the innate immune system, has been shown to
be significantly involved in ischemia-reperfusion injury in
multiple organ systems, including the central nervous system
(CNS). The complement cascade contains more than 20
proteins and is involved in inflammation, opsonization, and
cytolysis in a wide range of diseases [38–44]. Complement
activation refers to the process of complement cascade
initiation and execution, which results in the production of
inflammatory mediators (C3a, C5a), the opsonization of cells
with components (C3b) for recognition and phagocytosis by
macrophages, and the formation of lethal membrane attack
complexes (MAC, C5b-9) on target membranes [45].

Complement may be activated via one of several ways—
the classical, alternative, and lectin pathways. The classical
pathway is initiated by the binding of C1q to antibody-
antigen complexes while the lectin pathway begins when
pathogen-associated molecules become bound by lectin
proteins, such as MBL. Both of these pathways then catalyze
the cleavage of the C2 and C4 complement components
which form a C3 convertase. Cleaved C3 then is incorporated
into a C5 convertase which leads to the cleavage of C5 and the
subsequent assembly of the MAC. The alternative pathway,
however, relies on spontaneous hydrolysis of C3 to form C3
and C5 convertases which lead to the formation of the MAC.
Also, there are several proteolytic enzymes such as elastases,
kallikrein, and thrombin, which can cleave C3 or C5, directly
[46–48] (Figure 1).

With regards to the central nervous system, activation
of complement has been implicated in the pathophysiology
of several distinct diseases, including multiple sclerosis [49],
development of vasospasm following aneurysmal subarach-
noid hemorrhage [50, 51], as well as stroke [5, 6, 52].

Increasing evidence demonstrates that cerebral ischemia
is followed by an acute systemic inflammatory response
of the host. The complement system plays an essential
and specific role in most pathological inflammatory events
(upregulation of adhesion molecules, neutrophil activation,
chemotaxis, expression of IL-8, and MCP-1 by endothe-
lial cells) which occur shortly after the ischemic insult
[53]. The essential role of complement activation in both
microvascular failure and direct neuronal cell death was
demonstrated in experimental animal models of permanent
and transient middle cerebral artery occlusion (MCAO)
through an increase in the expression of C3a and C5a
receptors and presence of C1q and C3 in the core of
the infarct [54, 55]. Our group subsequently demonstrated
significant reduction of both infarct volume and oxidative
stress after transient MCAO in C3 knock-out mice [6].
Furthermore, treatment of wild- type mice with C3a receptor
antagonist (C3aRA) resulted in reduced stroke volumes and
improved neurologic function following transient cerebral
ischemia [5, 6]. Recently, Arumugam et al. reported that
C5-deficient mice were significantly protected from I/R
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Figure 1: Complement cascade.

injury compared to wild-type littermates, and our group
supported this data by demonstrating that C5a receptor
antagonism reduces infarction volume in mice [56, 57]. In
further rodent experiments, broad spectrum complement
inhibitor cobra venom factor (CVF) [8, 56, 58], intravenous
immunoglobulin [56], C1-inhibitor [59, 60], and sCrry [61]
have all been shown to be protective against experimental
cerebral ischemia via complement inhibition.

Studies investigating complement activation following
human cerebral ischemia have been more limited. Pederson
et al. [54] and Mocco et al. [52] reported elevations of
SC5b-9 and C3a, respectively, in human stroke patients. In a
recent report, Szeplaki et al. further contributed to the body
of knowledge regarding complement activation in cerebral
ischemia by demonstrating early cleavage of multiple com-
plement components and an association between degree of
complement activation and clinical severity and unfavorable
outcome [53]. There is also growing recognition that com-
plement activation contributes to the pathogenesis of global
hypoxic-ischemic (HI) injury in both rodent models and in

human neonates. Circulating C3 is depleted following birth
asphyxia, and it was recently demonstrated that pretreatment
with CVF significantly reduced brain infarcts in p7 rats
subjected to hypoxia-ischemia [45]. Additionally, Hedtjarn et
al. noted that a number of genes involved in the complement
system were induced by HI in the immature brain, including
C3a receptor, C5a receptor, and C1q. Schultz et al. [62]
also demonstrated significant upregulation of C9 in human
infants who developed moderate to severe hypoxic-ischemic
encephalopathy and experimental animal work by our group
[7] demonstrated upregulation of C1q and C3 after an
hypoxic-ischemic insult in mice. We further demonstrated
significant protection in C1q knockout mice compared with
wild-type littermates, highlighting the central role of the
classical complement cascade in global cerebral hypoxic-
ischemic injury. However distinct neonatal physiology may
be, similar results have been found in studies of mature
animals in regards to complement activation in the setting
of transient global cerebral ischemia. Schafer et al. demon-
strated early and widespread upregulation of C1q expression
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in brain microglia and secretion of functionally active C1q
into the CSF in response to experimentally induced global
cerebral ischemia in rats [63].

5. Ischemia/Reperfusion Injury following
out-of-Hospital Cardiac Arrest

Although reperfusion is essential for ultimate tissue survival,
it may exacerbate cerebral injury and thus presents a
treatment paradox [64]. As demonstrated above, activation
of complement plays a critical role in ischemia-reperfusion
injury leading to increased vascular permeability, activation
of the coagulation cascade, free-radical production, and
direct tissue damage [3, 65, 66]. Several models of ischemia-
reperfusion injury have implicated different complement
activation pathways in this pathology, though less is known
how these pathways are initiated in ischemia-reperfusion
[7, 63, 67–71] (Table 1). Cardiac arrest and resuscitation
represent a whole-body I/R syndrome [3], yet the role of
complement in the pathophysiology of OHCA has only
recently begun to be elucidated. Pretreatment with the pro-
teinase inhibitor aprotinin and with heparin, both of which
reduce complement activation [72], increases survival after
cardiac arrest in rabbits [73]. In a swine model, aprotinin
enhanced the recovery of cerebral energy metabolism after
deep hypothermic circulatory arrest [74]. In the sole study
looking at complement levels following OHCA in humans,
Bottiger et al. demonstrated significant systemic upregula-
tion of complement components C3a and SC5b-9 during
cardiopulmonary resuscitation and early reperfusion after
cardiac arrest [3]. The question remains, however, whether
complement activation after cardiac arrest in humans is
mechanistically involved with disease pathogenesis and
impacts neurologic outcome following OHCA [3].

6. Current Management of Global Cerebral
Ischemia-Reperfusion Injury

Recently, two trials demonstrated that induced hypothermia
confers a neuroprotective effect in patients who were resusci-
tated from cardiac arrest [30, 31]. Clinical and experimental
results demonstrate a multifactorial neuroprotective effect of
hypothermia during and after an ischemic insult by simul-
taneous suppression of several damaging pathways [29].
This has since become standard-of-care for select OHCA
patients in centers where therapeutic hypothermia is offered.
The proposed mechanism of hypothermia’s protective effect
has largely been attributed to its preservation of metabolic
substrates, alteration of cerebral blood flow, and prevention
of excitatory amino acid accumulation [75, 76]. Other work,
however, has shown that the profound effects of hypothermia
on ameliorating cerebral injury are not fully explained by
these factors. Some have thus proposed that mild hypother-
mia also has anti-inflammatory effects, although there are
conflicting results in the literature [76–78]. Recently, in an
elegantly designed rodent study, Callaway et al. demonstrated
that hypothermia following cardiac arrest does not alter
serum inflammatory markers, including TNF-alpha, MCP-1,
IL-2, IL-9, and IL-10, suggesting that the beneficial effects

Table 1: Complement pathways in ischemia-reperfusion injury.

Pathway Type of I-R Injury Study

Classical Brain
Schäfer et al. [63],
Ten et al. [7]

Skeletal muscle Weiser et al. [71]

Alternative Gastrointestinal Hart et al. [69]

Renal
Thurman et al. [67],
Zhou et al. [70]

Lectin
Myocardial Jordan et al. [68]

Gastrointestinal Hart et al. [69]

Skeletal Muscle Weiser et al. [71]

I-R: ischemia-reperfusion.

of hypothermia do not arise from attenuation of the
inflammatory response [79]. Nevertheless, they confirmed
a significant acute upregulation of inflammatory markers
following ROSC. An alternate explanation is that the cerebral
inflammatory response following cardiac arrest may not be
accurately reflected in serum measurements of inflammatory
biomarkers [79, 80]. The findings detailed above raise the
possibility of additional therapeutic benefit from targeted
anticomplement and anti-inflammatory strategies combined
with hypothermia in the setting of OHCA.

7. Conclusion

While there exists little data concerning the activation of
complement in humans following OHCA, the importance
of complement activation, and in particular C3, has been
demonstrated repeatedly in the pathogenesis of ischemia-
reperfusion injury in both humans and various animal mod-
els [50, 51]. Selective complement inhibition, particularly
of C3, is therefore an attractive strategy for global cerebral
ischemia-reperfusion injury following OHCA, and may
thereby improve long-term outcomes. While complement
activation may be deleterious in the acute setting, it has
been shown to be involved in modulation of neurogenesis,
as well as the orderly clearance of apoptotic cell bodies,
and therefore may have long-term beneficial effects [81]. As
such, novel compounds that are able to reversibly inhibit
downstream complement components, such as C3 and C3a,
in the acute postischemic period may offer the best chance
for a therapeutic benefit in human OHCA patients.
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