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Abstract

Background: Cord blood is a commonly used tissue in environmental, genetic, and epigenetic population studies
due to its ready availability and potential to inform on a sensitive period of human development. However, the
introduction of maternal blood during labor or cross-contamination during sample collection may complicate
downstream analyses. After discovering maternal contamination of cord blood in a cohort study of 150 neonates
using Illumina 450K DNA methylation (DNAm) data, we used a combination of linear regression and random forest
machine learning to create a DNAm-based screening method. We identified a panel of DNAm sites that
could discriminate between contaminated and non-contaminated samples, then designed pyrosequencing
assays to pre-screen DNA prior to being assayed on an array.

Results: Maternal contamination of cord blood was initially identified by unusual X chromosome DNA
methylation patterns in 17 males. We utilized our DNAm panel to detect contaminated male samples and
a proportional amount of female samples in the same cohort. We validated our DNAm screening method
on an additional 189 sample cohort using both pyrosequencing and DNAm arrays, as well as 9 publically available cord
blood 450K data sets. The rate of contamination varied from 0 to 10% within these studies, likely related to collection
specific methods.

Conclusions: Maternal blood can contaminate cord blood during sample collection at appreciable levels across multiple
studies. We have identified a panel of markers that can be used to identify this contamination, either post hoc after DNAm
arrays have been completed, or in advance using a targeted technique like pyrosequencing.
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Background
Neonatal blood from the umbilical cord at the time of de-
livery is increasingly being collected for both research and
medical purposes. In research, interest in the developmen-
tal origins of health and disease has made cord blood a
popular choice for genetic, epigenetic, and environmental
studies [1]. Cord blood has several physiological differ-
ences from adult blood, such as the presence of nucleated
red blood cells and fetal hemoglobin, and is an excellent

window into the in utero environment, free of confound-
ing post-natal exposures [2, 3]. Medically, cord blood is
banked for transplantation as a source of progenitor cells
for replenishing the hematopoietic system [4]. Cord blood
can be collected after caesarian or vaginal delivery, either
preceding or following delivery of the placenta. Both pro-
cesses typically involve venipuncture of the umbilical ar-
tery and collection into a blood bag by gravity [4].
Problems can arise when the collected cord blood be-
comes contaminated with other cells, most frequently ma-
ternal white blood cells [5, 6]. In some cases, maternal
blood cells may enter fetal circulation through the placenta.
Previous studies have shown that such contamination can
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occur relatively frequently, estimated at 2–20% of collected
samples, but it makes up a very small fraction of fetal blood,
with ~10−4 to 10−5 fetal nucleated cells estimated as mater-
nal [7–10]. This small amount of contamination should
have negligible effects on the assessment of DNA or RNA.
However, contamination in larger amounts, which could
occur through mixing of blood during collection, is of
greater concern.
Previous techniques for identifying larger amounts of

maternal contributions to collected cord blood have in-
cluded PCR on highly variable mini satellites or specific
polymorphic alleles and fluorescent in situ hybridization
(FISH) or TaqMan assay to detect two X chromosomes
[7, 9, 11]. Neither technique is universally unambiguous,
as mother/child pairs may not be informative for tar-
geted genetic variants, and FISH or TaqMan analysis can
only be performed on male children, as they differentiate
XX maternal cells from XY child cells [5, 7–9, 11, 12].
DNA methylation (DNAm) is another potential

method by which to identify maternal contamination
of cord blood, as it is highly different between new-
borns and adults [13, 14]. DNAm is an epigenetic
mark where a methyl group is covalently bound to
DNA, primarily at CpG dinucleotides. It is stable
under a variety of collection and storage methods,
and often employed to identify epigenetic patterns
associated with specific environmental or develop-
mental exposures [15–17]. If present at considerable
amounts, maternal contamination of cord blood is of
concern to studies of DNAm data, as it could mask
signals from cord blood or introduce signals present
in the maternal blood. This contamination would be
differentially observable in male and female children.
Since the X chromosome has highly distinct male-
and female-specific patterns of DNAm, XX blood
from mothers would be more apparent when mixed
with XY male children than XX females.
In this study, we initially observed a high propor-

tion of cord blood samples evidently contaminated
with maternal blood in the quality control phase of
an epigenome-wide association study. Using DNAm
data from the genome-wide Illumina 450K array, we
created a method by which to identify contaminated
samples using 10 CpGs that correctly discriminated
contamination status. We also showed that a subset
of three CpGs were sufficient for screening DNA
using pyrosequencing. While it cannot accurately
predict the proportion of contamination, this process
is capable of detecting levels that appreciably affect
the output of common methods for assessment of
DNA methylation. This method can be used to pre-
screen prior to running the samples on a DNAm
array, or in cases where it is important to identify
maternal contamination, such as cord blood banking.

Results
Detection of maternal contamination
Our first indication of potential maternal contamin-
ation of cord blood came from unusual patterns in
the DNAm data during quality control. Quality con-
trol MDS plots of un-normalized data showed 17 of
86 male participants’ DNAm profiles clustered with
female children or in between male and female,
which was confirmed by plotting principal compo-
nents 1 and 2 (Fig. 1a). Investigating the X and Y
chromosome probes prior to probe filtering and
normalization in more detail, we observed that these
male children showed a DNAm pattern on the X
chromosome that was intermediate between the nor-
mal male and normal female patterns (Fig. 1b). To-
gether, this was suggestive of female blood being
mixed with the cord blood of the newborn males,
which could have occurred across the placenta dur-
ing labor or after delivery.
Investigation of the cord blood collection procedure

revealed that maternal contamination of the resulting
cord blood after delivery was the most likely hypothesis
to explain these unexpected DNAm patterns. With this
insight, we then divided samples into three groups based
on principal component 2 (PC2) of the full data and
DNAm at cg05533223 on the X chromosome. As ini-
tially observed, PC2 clearly separated male from female
samples, but was not associated with the major variables
in the sub-study, ethnicity (ANOVA p > 0.8) or trauma
exposure (t test p > 0.3). The CpG used, cg05533223, in
the X-inactivation specific transcript (XIST) should be
highly methylated in males and ~50% methylated in fe-
males [18]. Based on these two criteria, 17 males were
contaminated (C), 64 were not contaminated (NC) and
5 were unclear (U) (Additional file 1: Figure S1 in Add-
itional file 1). As we relied on X chromosome methyla-
tion levels, which would not differ between XX mothers
and their XX daughters, this method was only applicable
to XY male children. Since it called approximately 20%
of male samples contaminated, we hypothesized that a
similar proportion (approximately 13/64) of female chil-
dren would also be contaminated. There was no reason
to expect that the amount of maternal contamination
due to sample collection would differ by sex, as all col-
lection occurred in the same hospital using the same
standard procedures.

Using epigenetic age and genotyping no-calls to identify
contaminated samples
We thus sought a way of discriminating contaminated
females using other data. First, we tested epigenetic age
by comparing the C and NC male samples using pub-
lished methods [19]. As epigenetic age of cord blood
samples has been demonstrated to be below 1 year, we
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hypothesized that mixing with maternal blood would re-
sult in an increase in epigenetic age of the whole sample.
Though the DNAm age means were significantly differ-
ent between C and NC, (two-sided Student’s t test
p = 0.025), the large confidence intervals (−14.714880 to
−1.077678) meant that this was not a sufficiently accur-
ate test, despite the identification of at least 4 females
who were likely contaminated (Additional file 1: Figure
S2A). Using a similar method that estimates gestational
age from DNAm data, we found similarly poor predict-
ive value (Additional file 1: Figure S2B) [20].
Next, we used genotyping data to see whether a higher

number of “no calls” from the Illumina PsychChip was
associated with contamination. Our rationale was that
mixing two blood samples together, even if genetically
related, would result in a higher number of un-callable
genotypes with signals falling between the three normal
genotype groups. While performing better than epigen-
etic age, the extreme confidence intervals (34,281.73–
10,811.97, p value <0.001), difference in basal number of
no calls between males and females, and potential lack
of genotyping data in other studies meant, in our opin-
ion, this was not a suitable discriminatory screen either
(Additional file 1: Figure S2C).

Identification of CpGs indicative of contamination
We next reasoned that since DNAm has been shown to
be highly different between neonates and adults, it might
serve to discriminate contaminated samples. Using linear
modeling followed by a random forests approach, we

determined that 10 CpGs could discriminate between con-
taminated and non-contaminated male samples at 99%
confidence (Additional file 1: Figure S2A, Additional file 1:
Table S2). Importantly, the calculated thresholds for identi-
fying contaminated samples were sensitive to normalization
method, and so we present thresholds for two common
normalization methods; SWAN and BMIQ [21, 22].
To identify the contaminated female samples, we ap-

plied the thresholds of these 10 CpGs to all of our samples
(Fig. 2b). This method identified 13 females as contami-
nated, including the 4 previously identified by epigenetic
age, in line with the approximately 20% expected based on
proportion of contaminated males, and all 5 unclear males
were categorized as non-contaminated (Fig. 2b). This
showed that these 10 CpGs were sufficient for screening
previously generated DNAm data to identify maternal
blood contamination in male and female children. How-
ever, we wished to refine this panel so that samples could
be screened prior to being run on an array in cases where
contamination might be expected.

Verification of screening CpGs using pyrosequencing
To ensure that this pre-screening method was quick and
cost-effective, we focused on pyrosequencing and re-
duced the 10 identified CpGs to 3. These three CpGs
had the best discrimination between contaminated and
non-contaminated male samples and were sites for
which a robust pyrosequencing assay could be designed
(Table S2). After selecting cg25556035, cg15931839, and
cg02812891, we performed pyrosequencing of these 3
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sites on our original 150 samples (Fig. 2c). Interestingly,
the assay that measured cg02812891 also measured
cg13138089 as these CpGs are in close proximity. As
these two CpGs were strongly correlated (r = 0.977)
within the assay, we deemed cg13138089 to be redun-
dant for the purpose of designing a minimal screen,
though other groups may consider its inclusion in the
screening process. A strict cut-off requiring all 3 CpGs
to surpass the contamination threshold identified 14
male samples as contaminated, all consistent with the
array and X chromosome data. A less stringent cut-off
of 2 CpGs identified 17 male samples, with 1 false posi-
tive and 1 false negative. In females, the less stringent
2 CpG cut-off predicted 11 of the 13 samples called

contaminated using the 450K array data, and the strict
method predicted 6; neither had false positives. While
this screen is not as accurate as the 10 CpG method
from the 450K array data, it is sufficient to identify and
eliminate the worst contaminated samples. All predic-
tion methods and results are summarized in Fig. 3.

Validation on second data set
To validate this screening method, 189 additional sam-
ples from the same cohort study were screened using
the pyrosequencing assays. Eighteen males and 15 fe-
males were identified as contaminated using the 2 CpG
cut-off, again approximating the 20% contamination rate
we initially observed (Fig. 4a). We ran all 156 uncontam-
inated samples and 2 contaminated male samples on the
EPIC array. We chose male samples as validation, as we
could use sex-specific differences in DNA methylation at
XIST on the X chromosome as independent confirm-
ation of our screening method. Initial principal compo-
nents plots showed that only the two known
contaminated male samples demonstrated the inter-
mediate DNAm pattern indicative of contamination (Fig.
4b). We then examined the 10 CpGs identified in our
discovery data set and, as expected, only the 2 known
male samples were identified as contaminated (Fig. 4c).
This supports that 3 CpGs are sufficient to correctly
eliminate contaminated samples prior to running on
an array.

Validation on publicly available data
To address the frequency with which maternal blood con-
tamination occurs in DNAm studies, we used nine pub-
lished cord blood DNAm data sets (GSE30870,
GSE54399, GSE62924, GSE66459, GSE74738, GSE79056,
GSE80310, GSE83334, and PREDO). We applied our post
hoc maternal contamination assay with 10 CpGs across
these studies and identified 2 data sets with contaminated
samples (Fig. 5). GSE54399 had 2/24 (~10%, 1 male and 1
female) samples indicating contamination, and PREDO 8/
834 (~1%, 4 males and 4 females). Across all studies, ma-
ternal blood contamination was present at a frequency of
approximately 1% (10/1014), but the study-specific pattern
suggests that contamination may be related to specific
collection methods.
Finally, we examined our discovery samples, validation

samples, and the publicly available data together to de-
termine whether our 10 CpG method was affected by
batch or technology. We compared the residuals of each
sample’s methylation to thresholds of each of our 10
CpGs (Additional file 1: Figure S3). We observed similar
distributions for each CpG in all studies except for the
validation cohort, the only one to use the EPIC array.
These data were normalized with methods consistent
with the GEO data, so the effect is due to technology
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and not normalization method. This suggests that, des-
pite successfully identifying the known contaminated
samples in our EPIC cohort, the 10 CpG method is in-
fluenced by array technology and thus using all 10 CpGs
is highly recommended when working with EPIC data.

Discussion
The popularity of cord blood collection for both re-
search and medical purposes means that it is more im-
portant than ever to ensure that the collected blood is
free of contaminating maternal white blood cells. In this
study, we initially observed unusual patterns in a pre-
normalization MDS plot driven by X chromosome
DNAm in male cord blood samples. After consulting the
collection procedure, we strongly suspected that mater-
nal blood contamination was present in a subset of the
cohort. We developed a universal screen for identifying
maternal contamination of cord blood using DNAm at a
subset of CpGs in the genome. This screen can be ap-
plied to already-generated DNAm data from the 450K

or EPIC microarray platforms, but perhaps more inter-
estingly, simple pyrosequencing at a subset of CpGs was
highly efficient at identifying contaminated samples. This
approach could then be used to screen DNA from sam-
ples destined for many purposes, including genotyping
or gene expression methods or even cord blood banking.
The described methods can reliably detect maternal

blood contamination at levels that would confound gen-
etic or epigenetic analyses. The amount of contamin-
ation observed in all three studies could interfere with
DNAm data analysis, but our proposed 10 CpG post hoc
screen accurately identified and removed contaminated
male and female samples. The three CpG pyrosequenc-
ing screen will be useful primarily for: (a) cord blood
that is not destined for DNAm assessment, such as
genotyping or gene expression studies, (b) when the ex-
pected rate of contamination is high, or (c) if it is par-
ticularly disadvantageous to run a possibly contaminated
sample. Our method has significant advantages compared
to other methods of detection of maternal contamination.
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For example, FISH requires whole cells, and most
TaqMan assays require DNA samples from both
mother and child [5–8, 11, 23]. For our DNAm-based
detection of contamination, neither is required, how-
ever, this does mean that we were not able to bench-
mark our method against these others, as we did not
have the required sample types.
While standard procedures exist for the collection of

cord blood, our results suggest that maternal contamin-
ation is still observed. In our cohort study, the rate of con-
tamination was 20%, and we observed two other studies
with appreciable levels of contamination, at 10% and 1%
of samples. This suggests that maternal contamination is
considerable overall, but importantly might occur more
frequently in some studies. Our samples were collected
from rural communities in a region near Cape Town,
South Africa, and the publically available study with the
highest ratio of contaminated samples (GSE54399) was
collected in the Congo [24]. Collection procedures used in
studies with less experience, many collections per day, or
with fewer resources may be more prone to introducing
maternal contamination in cord blood.
As our study used real collected cord blood samples, it

is difficult to estimate the specific detection limit of our
screening method. Since the differences in DNAm are
proportional to the amount of contamination, any samples

that fail to meet the recommended cut-offs must contain
at most a small contribution of maternal blood. This un-
certainty is reflected in our attempt to use either epigen-
etic age or number of no calls in genotyping data to
screen for maternal contamination. Both methods identi-
fied some but not all contaminated samples, and had very
high variability. It is thus unclear whether these methods
are inherently less predictive than the 10 CpGs we identi-
fied, or if the amount of contamination in our samples
was too small to detect by these methods. To determine
exact proportions of contamination detectable by these
methods, a follow-up study may consider creating known
dilutions of cord blood spiked with maternal blood, and
assessing epigenetic age, genotyping no calls, as well as
our 10 and 3 CpG methods. Thus while our proposed
method cannot guarantee that all maternal contamination
is eliminated, it should assure that the most contaminated
samples are identified and that any remaining contamin-
ation has a minimal impact on downstream applications.
Finally, given that we recognized the contamination

issue during routine quality control, it is possible that
many researchers already find and remove some contami-
nated samples from their cord blood DNAm studies.
However, our inability to identify contaminated female
samples during QC and the fact that we detected contami-
nated samples in published data demonstrate that normal
QC is not sufficient to completely eliminate contamin-
ation, particularly of female samples. The 10 CpG panel is
then useful to ensure the removal of any contaminated
samples once DNAm data has been generated.

Conclusions
In conclusion, we have created a screen to test for ma-
ternal contamination in cord blood that has two inde-
pendent applications: first, a simple and cost-effective
method to screen DNA from cord blood using pyrose-
quencing, and second, a way to identify contaminated
samples post hoc from DNAm arrays. Both clinicians
and researchers should be aware of the possibilities of
cross-contamination of maternal and cord blood, and
the CpGs we have identified will allow for easy identifi-
cation and removal of contaminated samples.

Methods
Cord blood collection
In the Drakenstein study, cord blood was collected by
trained staff after delivery of the baby but before delivery
of the placenta. The cord was clamped and cut, then the
clamp was released and cord blood drained by gravity
into a kidney dish, then collected using a syringe for
processing and storage.
Samples used in this analysis were selected from the

full Drakenstein cohort for a sub-study on exposure to
maternal traumatic stress, and approximately 30% of
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children had been exposed to maternal trauma. The
Drakenstein cohort general inclusion criteria are de-
scribed elsewhere [25]. Study participants with available
neuroimaging data were preferentially selected where
feasible. Only samples of offspring whose mothers had
provided informed consent for the collection, storage,
and future analyses of DNA were eligible for inclusion.

DNA methylation data
In the discovery data set, DNAm was measured on 150
samples (86 males, 64 females) using the Illumina Infi-
nium HumanMethylation450 bead array (Illumina, San
Diego, USA), per manufacturer’s instructions and previous
work [26]. Next, we imported the raw data into Illumina
GenomeStudio Software for background subtraction and
color correction, then exported it for processing using the
lumi package in R (version 3.2.3) [27]. Initial quality con-
trol and identification of maternal contamination in male
samples by multi-dimensional scaling (MDS) plotting and
X chromosome DNAm occurred prior to removal of any
probes. We then removed rs probes, X and Y chromo-
some probes, probes with detection p values above 0.05,
probes with less than three beads contributing to signal,
and previously identified cross-reacting probes, for a total
of 421,993 probes remaining [28]. Quantro analysis indi-
cated that quantile normalization was allowable, so we
first normalized with the lumi quantile method, then with
SWAN for probe type correction [21]. Finally, we used
ComBat to remove chip and row effects [29].
For validation data, analysis was identical with three

exceptions: first, data were generated using the Infinium
HumanMethylationEPIC (Illumina, San Diego, USA) on
158 samples (89 males, 69 females). Second, we used
BMIQ normalization, and only performed ComBat on
the chip effects [22]. Third, we only retained the 10
probes identified as indicators of contamination.
Publicly available data were downloaded from GEO

(GSE30870, GSE54399, GSE62924, GSE66459, GSE74738,
GSE79056, GSE80310, and GSE83334), pre-processed as
above, and data from the PREDO study were provided by
coauthors [30].

Genotyping data and no calls analysis
Genotyping data were generated using the Illumina Psy-
chChip (Illumina, San Diego, USA) per manufacturer’s
instructions then raw data were imported into Geno-
meStudio using the PsychChip cluster file. Genotypes
were called by default methods in the GenomeStudio
software by comparing the sample intensities at each
locus to expected genetic clusters, and a default quality
metric represented a sample’s distance from the ex-
pected cluster. The standard cut-off of 0.15 was used to
establish a threshold, outside of which samples were too
far from the cluster and the GenomeStudio software did

not call a genotype at that locus. p values and 90% confi-
dence intervals for differences between contaminated
and non-contaminated samples were assessed using two
sided Student’s t test with the t.test function in R statis-
tical software [27].

Epigenetic and gestational age analysis
Epigenetic age was determined using two epigenetic
clocks, one which outputs chronological age and is de-
signed for adults, and the other which outputs gesta-
tional age and is designed for newborns [19, 20]. Both
methods use a panel of CpGs whose collective DNA
methylation status is strongly predictive of chronological
age. As above, p values and confidence intervals for the
difference between contaminated and non-contaminated
samples was calculated using two sided Student’s t test
with the t.test R package [27].

Identification of sites used to detect contamination
To discover CpGs capable of identifying maternal con-
tamination, we first performed linear modeling on whole
cord (GSE## to be determined) and adult (Flow.sorted.-
blood.450K R package) blood DNAm data to identify
sites that were most different between cord and adult
blood [31, 32]. With thresholds of adjusted p value
<1 × 10−20 and mean beta value difference greater than
0.2, we identified 2250 DNAm sites that were differen-
tially methylated between cord and adult. Though these
sites were all statistically significant, they were redun-
dant in their multiplicity, and we wished to reduce the
number of sites to make assessment more feasible. Thus,
we analyzed this large set of 2250 CpGs with a random
forest approach from machine learning [33]. This en-
semble learning method is designed to take advantage of
multiple predictors, while also addressing small-sample
over-fitting. The random forest method ranked the
DNAm sites by mean decrease in accuracy, a measure of
their importance. We then applied binary recursive par-
titioning to choose the threshold values separating con-
taminated from non-contaminated samples [34].

Pyrosequencing verification
We used PyroMark Assay Design 2.0 (Qiagen, Inc.) software
to design bisulfite pyrosequencing assays covering three
identified CpGs (sequences in Additional file 1: Table S1).
DNA was bisulphite converted using the EZ DNA Methyla-
tion Kit (Zymo Research), and PCR and pyrosequencing
performed as previously described [35]. Streptavidin-coated
sepharose beads were bound to the biotinylated strand of
the PCR product and were then washed and denatured to
yield single-stranded DNA. Sequencing primers were then
added for pyrosequencing per manufacturer’s instructions
(Pyromark™ Q96 MD Pyrosequencer, Qiagen, Inc.).
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Additional file

Additional file 1: Table 1. Primer sequences used for pyrosequencing.
Table 2. Beta value thresholds used for DNA methylation arrays and
pyrosequencing. Figure S1. Strategy used to identify contamination in male
samples. Plotting PC2, which separated male from female samples in our data,
against DNA methylation at a CpG in XIST on the X chromosome, revealed
three populations of male samples: contaminated, non-contaminated, and a
group of five samples which were unclear. Figure S2. Neither epigenetic age
(A), gestational epigenetic age (B) nor number of genotyping “no calls” (C)
were sufficient to identify maternal blood contamination of cord blood. In all
cases, contaminated and non-contaminated males showed high overlap, indi-
cating insufficient discrimination. Figure S3. Across-batch differences in DNA
methylation level support the use of multiple predictive CpGs for identification
of contamination. Residual plot of discovery data (A), validation data (B),
publically-available data (C), and PREDO (D) indicate technical spread across
samples and studies. In particular, EPIC data (second cohort, top
right) shows greater variability and higher baseline levels than the
450K data sets. (PDF 759 kb)

Abbreviations
DNAm: DNA methylation; FISH: Fluorescent in-situ hybridization; GEO: Gene
expression omnibus; MDS: Multi-dimensional scaling; PCR: Polymerase chain
reaction
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