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B-Cell Inactivation of Gpr179 Unmasks Incretin
Dependence of GPR119-Mediated Glucoregulation
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GPR119 was originally identified as an orphan p-cell re-
ceptor; however, subsequent studies demonstrated that
GPR119 also regulates B-cell function indirectly through
incretin hormone secretion. We assessed the impor-
tance of GPR119 for B-cell function in Gpr119~'~ mice
and in newly generated Gpr119%°®"~/~ mice. Gpr119~/~
mice displayed normal body weight and glucose toler-
ance on a regular chow (RC) diet. After high-fat feeding,
Gpr1 197/~ mice exhibited reduced fat mass, decreased
levels of circulating adipokines, improved insulin sensi-
tivity, and better glucose tolerance. Unexpectedly, oral
and intraperitoneal glucose tolerance and the insulin re-
sponse to glycemic challenge were not perturbed in
Gpr119°°®"~/~ mice on RC and high-fat diets. Moreover,
islets from Gpr119~'~ and Gpr119°°®"~/~ mice exhibited
normal insulin responses to glucose and pB-cell secre-
tagogues. Furthermore, the selective GPR119 agonist
AR231453 failed to directly enhance insulin secretion from
perifused islets. In contrast, AR231453 increased plasma
glucagon-like peptide 1 (GLP-1) and insulin levels and im-
proved glucose tolerance in wild-type and Gpr119°°e"—/~
mice. These findings demonstrate that g-cell GPR119 ex-
pression is dispensable for the physiological control of
insulin secretion and the pharmacological response to
GPR119 agonism, findings that may inform the lack of
robust efficacy in clinical programs assessing GPR119
agonists for the therapy of type 2 diabetes.

The prevalence of type 2 diabetes (T2D) has been rising
steadily, with several hundred million individuals world-
wide at risk for developing diabetes-associated compli-
cations (1). These complications include cardiovascular
disease, neuropathy, nephropathy, and retinopathy and

result in extraordinary human and economic costs (2).
Although considerable progress has been made toward
development of new drugs for the management of hyper-
glycemia, many subjects still experience difficulty in at-
taining treatment goals with existing therapies (3). It
seems evident that improved understanding of the path-
ophysiology of diabetes, B-cell failure, and insulin resis-
tance is central to the development of new more effective
agents for the treatment of T2D.

The importance of the B-cell response for maintaining
normoglycemia in the face of chronic nutrient excess and
obesity-associated insulin resistance has refocused at-
tention on how nutrient-derived signals augment insulin
secretion. Indeed physiological characterization of the in-
cretin effect led to the discovery of the glucoregulatory
roles of glucose-dependent insulinotropic polypeptide (GIP),
and later, glucagon-like peptide 1 (GLP-1). Both these pep-
tides act directly through their cognate receptors to aug-
ment glucose-dependent insulin secretion from islet (3-cells,
supporting the development of GLP-1 receptor agonists and
dipeptidyl peptidase 4 inhibitors for the treatment of T2D
4,5).

The validation of two incretin receptors as feasible
drug targets has energized scientific efforts directed at
understanding how (B-cells sense and respond to nutri-
tional cues to amplify insulin secretion. Although several
hundred G-protein-coupled receptors (GPCRs) are ex-
pressed in islets and many are coupled to control of in-
sulin secretion, meaningful progress in identification of
new antidiabetic drug candidates based on functional char-
acterization of islet GPCR expression and activity has been
limited (6,7). Nevertheless, there remains intense interest
in understanding the signals that couple the sensing of
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nutrients after meal ingestion to rapid augmentation of
insulin secretion.

Incretin hormones represent prototypical examples of
how ingested energy indirectly transmits signals to the
endocrine pancreas via a gut—3-cell endocrine axis (8,9).
Nevertheless, the digestion of nutrients yields a complex
mixture of amino acids, carbohydrates, fatty acids, and
metabolites, which in turn function as ligands that directly
or indirectly promote insulin secretion (10). For example,
GPR40, encoded by FFARI, is a fatty acid-sensing receptor
that increases insulin secretion in rodent and human islets,
spurring development of investigational GPR40 agonists
for the treatment of human T2D (11). Other nutrients,
exemplified by the amino acid leucine, enhance insulin se-
cretion through interaction with intracellular protein sen-
sors and B-cell pathways, coupling nutrient sensing and
fuel metabolism to control of ion channel activity, intracel-
lular ion flux, and stimulation of exocytosis.

The complexity of nutrient sensing and control of the
gut-islet axis is highlighted by demonstration that nutri-
ent and chemosensing receptors may be expressed on both
enteroendocrine cells (EECs) and B-cells, enabling overlap-
ping mechanisms for nutrient regulation of insulin secre-
tion. For example, GPR40 and the G protein—coupled bile
acid receptor 1 (also known as TGRS5) agonists promote
GLP-1 secretion from EECs (12), and both GPR40 agonists
and bile acids also directly enhance insulin secretion from
rodent and human islets (13). Bile acids also signal through
the farnesoid X receptor (FXR) to control GLP-1 secre-
tion in EECs, and FXR agonists directly augment glucose-
stimulated insulin secretion (GSIS) in isolated islets (14).
Similarly, cannabinoid receptors control the secretion of
gut hormones (8) and some cannabinoid receptor ligands
directly augment insulin secretion from B-cells, depending
on the species studied and receptor specificity (15).

Among the most extensively studied nutrient response
receptors is GPR119, a Gy,-linked class A GPCR that rec-
ognizes oleoylethanolamide, lysophosphatidylcholine, and
structurally related lipids. Activation of GPR119 leads to
stimulation of cAMP accumulation and increased insulin
secretion directly from islet B-cells (16,17). GPR119 ago-
nists also indirectly augment glucose-dependent {-cell
function through stimulation of incretin secretion from
EECs (16,18-20). These functional properties of GPR119,
coupled with its suitability as a target for development of
orally available small molecule agonists, led to the develop-
ment and clinical testing of multiple GPR119 agonists for
the treatment of T2D. Unexpectedly, the efficacy of these
drugs in human subjects with diabetes was substantially
less than predicted from the results of predinical stud-
ies (21). Here we reexamine the importance of GPR119
for B-cell function in mice, demonstrating that GPR119
activity in B-cells is dispensable for the physiological con-
trol of glucose homeostasis and the acute pharmacological
glucoregulatory response to AR231453, a potent and selec-
tive GPR119 agonist. These findings prompt reevaluation
of the functional importance of GPR119 within B-cells,
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with implications for understanding the pharmaceutical
potential of the GPR119 axis for the treatment of met-
abolic disorders.

RESEARCH DESIGN AND METHODS

Animal Experiments

Animal experiments were performed according to protocols
approved by the Mount Sinai Hospital and The Centre for
Phenogenomics (TCP). Male C57BL/6 mice were purchased
from the in-house colony at TCP. Gpr119~/~ mice were
obtained from Arena Pharmaceuticals (San Diego, CA)
(22) and maintained on a C57BL/6 background. Construc-
tion of targeting vector and generation of a floxed Gpr119
mouse was performed by InGenious Targeting Laboratory
(Ronkonkoma, NY) using homologous recombination of
mouse embryonic stem cells, and subsequent injection into
blastocysts. The resulting mice were rederived at TCP on a
mixed 129/B6 background. The mice were bred with FLP
mice to remove the FRT-flanked Neo selection cassette
and then backcrossed a minimum of seven times onto a
C57BL/6J background. The floxed Gpr11l9 mice were
subsequently crossed with Mip-CreERT mice (23) to gen-
erate mice with B-cell-specific inactivation of Gprll9
(Gpr119%<"~/7). All mice were housed under specific path-
ogen-free conditions in ventilated microisolator cages and
maintained on a 12-h light/dark cycle with free access to
food and water unless otherwise noted. For a list of geno-
typing primers used, see Supplementary Table 1.

Histological Analysis of Islet Morphometry

and Apoptosis

For analysis of [-cell apoptosis, 8-10-week-old age-
matched Gpr119~/~ and littermate controls were fasted
for 4 h before streptozotocin (STZ; 50 mg/kg/day) or
vehicle (0.1 mol/L sodium citrate, pH 5) injection once
daily for five consecutive days as previously described
(24,25). Histology sections from formalin-fixed, paraffin-
embedded whole pancreas were generated and analyzed
as previously described (26-28). Serial sections were
immunostained for insulin and either cleaved caspase-3
or TUNEL to identify apoptotic B-cells, or glucagon to
identify a-cells. Slides were scanned and analyzed using
the ScanScope CS system and software (Aperio Technol-
ogies, Vista, CA) and a-cell/B-cell area quantified as pre-
viously described (27,28).

Chronic High-Fat Diet Studies

Male mice were randomized to receive a regular chow (RC)
diet (18% kcal from fat, Teklad Global Rodent Diet; Harlan
Laboratories) or high-fat diet (HFD) (45% kcal from fat;
Research Diets, Inc.) for a minimum of 12 weeks prior to
experimentation.

Glucose or Insulin Tolerance Tests and Hormone
Analyses

After a 5-h daytime fast, glucose tolerance tests were
performed as previously described (28,29). When specified,
AR231453 (Ab141627; Abcam, Toronto, ON, Canada) or
vehicle (80% PEG-400, 10% Tween-80, 10% ethanol) was
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provided by oral gavage 30 min prior to testing. Blood
samples (50-100 pL) were collected and mixed with
5-10 pL of a chilled solution containing 5,000 kIU/mL
Trasylol (Bayer, Toronto, ON, Canada), 32 mmol/L
EDTA, and 0.01 mmol/L diprotin A (Sigma-Aldrich, St.
Louis, MO), and plasma collected for subsequent assessment
of total GLP-1 (mouse/rat total GLP-1 assay kit; Mesoscale
Discovery, Gaithersburg, MD), total or active GIP (rat/mouse
GIP [total] ELISA kit from Millipore, Billerica, MA; or mouse
GIP ELISA kit from CrystalChem, Downer’s Grove, IL), in-
sulin (Ultrasensitive Mouse Insulin ELISA; Alpco Diagnos-
tics, Salem, NH), and glucagon (Milliplex endocrine assay
from Millipore; or Glucagon ELISA from Mercodia, Uppsala,
Sweden). Insulin tolerance tests were similarly performed in
mice fasted for 5 h using a single intraperitoneal dose of
insulin (lean mice, 1.2 units/kg; obese mice, 1.7 units/kg)
(Humulin R; Eli Lilly and Company, Scarborough, ON).

MRI, Indirect Calorimetry, and Locomotor Activity

For assessment of fat and lean mass body composition,
a whole-body magnetic resonance analyzer was used
(EchoMRI-100; Echo Medical Systems). Measures of O,
consumption, CO, production, respiratory quotient, and
physical activity were obtained using an Oxymax system
(Columbus Instruments) (28).

Gene Expression Analysis

First-strand complementary DNA was synthesized ac-
cording to the manufacturer’s protocol (RNeasy Kit from
Qiagen, Mississauga, ON, Canada; or Tri-Reagent from
Molecular Research Center, Inc., Cincinnati, OH) using
the SuperScript III reverse transcriptase synthesis system
(Invitrogen, Carlsbad, CA) and random hexamers. Quan-
titative PCR was performed with the ABI Prism 7900
Sequence Detection System using the TagMan Gene Ex-
pression Assays and TagMan Universal PCR Master Mix
(Applied Biosystems, Foster City, CA).

Pancreatic Insulin and Glucagon Content

Pancreatic fragments, isolated from the same anatomical
portion of each mouse pancreas, were homogenized in ice-
cold acid-ethanol solution (0.18 mol/L HCl, 70% ethanol).
Insulin and glucagon levels were determined in pancreatic
extracts using the rat insulin RIA kit (Millipore, St. Chatles,
MO) and the mouse Glucagon ELISA (Mercodia).

Islet Perifusion and Hormone Secretion

Isolated islets were allowed to recover overnight at 37°C
in RPMI containing 10% FBS. Medium-sized islets were
then handpicked into a 0.275-mL chamber containing
Krebs-Ringer bicarbonate HEPES buffer (KRBH) solution
containing 0.1% (weight for volume) BSA and perifused as
previously described (28). Perifusion flow rate was 200 pL/min
for insulin measurements and 100 pwL/min for glucagon
measurements. Insulin concentrations are expressed as per-
cent of total islet insulin for each sample and measured
using a Rat Insulin RIA (Millipore). Glucagon concentra-
tions are expressed as fold-change from baseline and mea-
sured by Glucagon ELISA.
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Static Insulin Release

After overnight recovery, groups of five islets were in-
cubated in low-glucose KRBH medium, and then high-
glucose KRBH medium for 1 h each, with or without
AR231453, in triplicate. The supernatant from each 1-h
incubation (2 mL) was collected for insulin measurement
by RIA. Insulin values were normalized to total islet insulin
levels from each group of islets.

Statistical Analysis

All results are expressed as mean = SD. Statistical signif-
icance was assessed by ANOVA and, where appropriate,
two-tailed, unpaired Student t test unless otherwise noted
using GraphPad Prism (version 5; GraphPad Software). A
P value <0.05 was considered to be statistically significant.

RESULTS

Metabolic Characterization of Whole-Body

Gpr119~/~ Mice

To determine the importance of GPR119 for B-cell func-
tion, we assessed the metabolic phenotype(s) of whole-
body Gpr1197/7 mice (22) under basal conditions (18%
fat RC diet). No differences in body weight or fat or lean
mass were observed in Gpr119~/~ versus littermate con-
trol Gprll9+/ " mice (Fig. 1A and B). Moreover, oral glu-
cose tolerance (Fig. 1C) and plasma insulin and incretin
levels were similar in Gpr119 /" versus Gpr119*/* mice
(Fig. 1D-F). Conversely, intraperitoneal glucose tolerance
was slightly improved but not significantly different in
Gpr119_/ " mice (Fig. 1G), associated with increased cir-
culating insulin levels (Fig. 1H). Insulin tolerance and the
glucagon response to insulin-induced hypoglycemia was
not different in Gpr119~'~ versus Gpr119** mice (Fig. 11
and J). To determine the susceptibility of Gpr1i19 '~
B-cells to apoptotic injury, we analyzed islets from mice
after STZ administration. More cleaved caspase-3-immu-
nopositive cells were detected in islets from Gpr119™/~
mice (Supplementary Fig. 1A and B); however, pancreatic
insulin area and {3-cell size were not different (Supplemen-
tary Fig. 1C and D). Collectively, these findings are consistent
with previous reports demonstrating no major metabolic
perturbations in RC-fed Gpr119~’~ mice (16,30).

Improved Glucose Tolerance and Insulin Sensitivity

in HFD-Fed Gpr119~'~ Mice

We next examined whether germline loss of Gpr119 dis-
rupts the adaptive metabolic response to HFD feeding.
Although weight gain was comparable in Gpr119~/~ ver-
sus Gpr119+/+ mice (Fig. 24), fat mass (Fig. 2B) and cir-
culating levels of leptin (Fig. 2C) and resistin (Fig. 2D)
were reduced in Gpr119~/~ mice. Histological analysis
of the pancreas revealed reduced B-cell (but not a-cell)
area in HFD-fed mice (Fig. 2E). Food intake (Supplemen-
tary Fig. 2A) and the nocturnal respiratory exchange
ratio (Supplementary Fig. 2B) were increased in HFD-fed
Gpr119~'" mice, without changes in oxygen consumption
(Supplementary Fig. 2C) or locomotor activity (Supplemen-
tary Fig. 2D).
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Figure 1—Basal metabolic characterization of Gpr119™/~

mice. Gpr119™/~ and littermate control (Gor179**) mice were weaned at 4 weeks of

age and started on RC (18% kcal from fat). A: Weekly body weight. B: Body composition determined by MRI (5-week-old mice). C: Glucose
excursions during oral glucose tolerance test (7-week-old mice). D: Plasma insulin determined 10 min after oral glucose administration. E:
Glucose-stimulated total GLP-1 (T-GLP1) measured 10 min after glucose. F: Circulating total GIP (T-GIP) levels 10 min after glucose load. G:
Glucose excursions during intraperitoneal glucose tolerance test (8-week-old mice). H: Plasma insulin measured 15 min after intraperitoneal
glucose. I: Plasma glucose during insulin tolerance test (9-week-old mice). J: Circulating glucagon levels measured 20 min after insulin admin-
istration. Gpr119**, n = 6-7; Gpr119™~'~, n = 8-10. All data are displayed as mean *+ SD and were analyzed using Student ¢ test. *P < 0.05.

Both oral and intraperitoneal glucose tolerance were
impaired in HFD-fed mice, to a lesser extent in Gpr119~ '~
mice (Fig. 2F and K), associated with lower levels of glucose-
stimulated insulin (Fig. 2G and L). Glucagon levels were
not different after oral or intraperitoneal glucose admin-
istration (Fig. 2H and M). Circulating levels of total GLP-1
(Fig. 2I) were not different; however, total GIP levels (Fig.
2J) were lower in HFD-fed Gpr1197/ " mice. Moreover,
basal rates of gastric emptying and motility were reduced,
and fecal triglycerides trended lower in Gpr119~/~ mice
(Supplementary Fig. 3A-D).

Insulin sensitivity was not different in RC-fed Gpr119™/~
mice but significantly improved in HFD-fed Gpr119™/" mice
(Fig. 2N). Consistent with findings of improved insulin
sensitivity, fasting insulin levels were reduced in HFD-fed
Gpr119~'" mice (Fig. 20); however, plasma glucagon levels
were similar after insulin administration (Fig. 2P). More-
over, pancreas weight was lower and pancreatic insulin
content was reduced in HFD-fed Gpr1197/ " mice (Supple-
mentary Fig. 4A and B). Furthermore, pancreatic levels of
Irs2, Gegr, Glplr, Gprd0, Gck, and Spl mRNA transcripts
were lower in Gpr119~ /" mice (Supplementary Fig. 4C).

Generation and Characterization

of Gpr119°°®'~/~ Mice

Mechanistic attribution of the modest differences in
metabolic and islet phenotypes arising in whole-body
Gpr119™~'" mice is challenging due to pleiotropic roles for
GPR119 in control of B-cell function, gut hormone secre-
tion, gastrointestinal motility, food intake, and lipid ab-
sorption (16,19,22,27,31,32). As GPR119 was originally
described as an orphan B-cell receptor (33) coupled to direct
stimulation of insulin secretion (16,18), we mated floxed

Gpr119 mice with Mip-CreERT mice (23,34,35) to gener-
ate Gpr119ﬁceuf/7 mice, enabling selective conditional
tamoxifen-mediated reduction of Gprl1l9 expression in
adult B-cells (Fig. 3A). Mip-CreERT littermates were used
as controls (denoted as GprllQBceu*/ ") for all studies
analyzing Gpr119%“"™/~ mice (35). Levels of Gpr119
mRNA transcripts in Gpr119P“" ™/~ islets and total pan-
creas were markedly reduced, whereas no decrease in
Gpr119 mRNA expression was detected in mRNA from
colon in Gpr119p’ceu*/7 mice (Fig. 3B).

No difference in body weight or composition was
observed in GprllQBceH_/ " mice (Fig. 3C and D). Further-
more, glucose tolerance, levels of plasma insulin, GLP-1,
and GIP, insulin sensitivity, and the glucagon response to
hypoglycemia were not different in Gpr119%°'~/~ versus
GprllQBceu*/ " mice (Fig. 3E-L). Unlike findings in mice
with germline disruption of Gpr119 (Supplementary
Fig. 1), Gpr119°“"/~ mice did not exhibit enhanced
islet apoptosis after STZ administration (Supplementary
Fig. 5A and B). Moreover, in contrast to the dysregulated
expression of islet genes observed in Gpr119~’~ mice (Sup-
plementary Fig. 4C), levels of Glplr mRNA were increased
but mRNA transcripts for Ins2, Geg, Gegr, Irs2, Gipr, and
Gprd0 were not different in islet RNA from Gpr119P<!~/~
versus Gpr119°“™* mice (Supplementary Fig. 50).

Loss of GPR119 From B-Cells Does Not Alter

the Response to High-Fat Feeding

To determine whether loss of (-cell GPR119 impairs the
adaptation to metabolic stress, we assessed Gpr119P<!~/~
versus Gpr119°°™/* mice after HFD feeding. Body weight
(Fig. 4A) and VO,, VCO,, respiratory exchange ratio, heat
production, and activity were similar (Supplementary
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Figure 2—Gpr119~/~ mice fed a 45% HFD exhibit improved glucose tolerance and reduced fat mass. A: Body weight over time on RC or
HFD (45% kcal from fat). B: Body composition after 18 weeks on diet. C and D: Plasma leptin and resistin after 19 weeks on diet. E:
Histological analysis of B-cell (insulin positive, left) and a-cell (glucagon positive, right) area in pancreata. F-M: Age-matched Gpr?19** and
Gpr119~/~ male mice maintained on 18% RC or 45% HFD for 19-20 weeks prior to oral glucose tolerance test (OGTT) and intraperitoneal
glucose tolerance test (IPGTT), respectively. F: Glucose excursion during OGTT and area under the curve (AUC) of glucose excursion on
right. G: Plasma insulin assessed 5 min after glucose administration. H: Plasma glucagon levels, assessed 5 min after glucose adminis-
tration. Total GLP-1 (T-GLP1) (/) and GIP (T-GIP) (J), determined 5 min after glucose load. K: Glucose excursion during IPGTT and AUC on
right. L: Plasma insulin during IPGTT 15 min after glucose administration. M: Plasma glucagon levels 15 min after intraperitoneal glucose
administration. N: Glucose levels during insulin tolerance test (ITT) of RC- and HFD-fed mice (left and middle) and AUC of relative glucose

levels during ITT (right). O: Fasting insulin prior to start of ITT. P: Plasma glucagon levels 20 min after insulin injection during ITT. Gpr11

9+/+

(RC),n =7; Gpr119~'~ (RC), n = 11; Gpr119*"* (HFD), n = 7; Gpr119™/~ (HFD), n = 14. All data are displayed as mean * SD and analyzed
using ANOVA with Bonferroni posttest. *P < 0.05; “*P < 0.01; **P < 0.001.

Fig. 6A-F); however, fat mass trended lower and lean
mass was increased in HFD-fed Gpr119%°"™/~ mice (Fig.
4B). B-Cell and a-cell area were similar (Fig. 4C) and both
oral and intraperitoneal glucose tolerance and plasma levels
of insulin and glucagon were comparable in HFD-fed
Gpr119P<"~/~ versus Gpr119*“"* mice (Fig. 4D-I). In-
sulin sensitivity was improved (Fig. 4J), with a trend to-
ward higher glucagon levels (Fig. 4K), likely reflecting the
lower relative glucose levels achieved after insulin admin-
istration in HFD-fed Gpr119%°"~/~ mice.

Preservation of Insulin Secretion in Mice With Global or
Selective Loss of GPR119 in B-Cells

The surprising preservation of glucose tolerance in HFD-fed
Gpr119°°"~/~ mice prompted us to further scrutinize in-
sulin secretion in islets lacking GPR119. We first tested

insulin secretory responses in islets isolated from lean
12-week-old Gpr119~/~ and Gpr119** mice. No genotype-
dependent differences in GSIS were detected (Fig. 5A).
Furthermore, both Gpr119~/~ and Gpr119™* islets
responded similarly to the GLP-1R agonist exendin-4
(1 nmol/L) and to 30 mmol/L KCl (Fig. 5A). To eliminate
potential confounding effects arising in whole-body
Gpr119~/~ mice, we assessed insulin secretion in perifused
islets from Gpr119°“"~/~ mice. Insulin responses to glu-
cose, exendin-4, and 30 mmol/L KCl were similar in islets
from GprllQBceu*/f versus GprllQBceu*/+ mice (Fig. 5B).
Moreover, to verify persistent knockdown of Gpr119 in islets
ex vivo, we reassessed Gprll9 expression. Gpr119 mRNA
transcripts were undetectable in RNA from Gpr119~/~ islets
and markedly reduced in Gpr119°"™/~ versus Gpr119P</*
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Figure 3—Characterization of Gpr119°°®"~/~ mice on RC. A: Generation of Gpr119°°®"~/~ mice containing a floxed Gpr119 exon 1, bred
with Mip-CreERT mice. B: Assessment of Gpr119 mRNA levels by quantitative PCR in islets, pancreas, and colon from Gpr11 9Pce~/~ and

Gpr119°°®™"* mice. Values are expressed relative to transcript levels of B-actin (Actb). Islets: n = 6 per group. Pancreas: Gpr11
~~,n=6.C: Body weight. D: Body composition. E: Glucose excursion

n=6; Gpr119°°*"~'~ n =9. Colon: Gpr119°°®"* n =7: Gpr119°°°"

QBceII+/+

from oral glucose tolerance test (OGTT) performed 2 weeks after last tamoxifen (TMX) dose; n = 15-18 per group. F: Glucose-stimulated
insulin during OGTT (15 min after glucose load). G: Circulating total GLP-1 (T-GLP1) (G) and GIP (T-GIP) (H) levels assessed 15 min after
glucose load. I: Intraperitoneal glucose tolerance test 1 week after last TMX dose; n = 9-11 per group J: Plasma insulin 15 min after

intraperitoneal glucose. K: Glucose profile during insulin tolerance

test. Values are expressed relative to fasting glucose; n = 13-18 per

group. L: Circulating glucagon levels measured 20 min after exogenous insulin administration. *P < 0.05.

islet mRNA, whereas Glplr expression was unaffected (Fig.
5C and D).

As some but not all studies have demonstrated that
GPR119 agonists directly stimulate insulin secretion from
rodent islets (16,27,36), we assessed insulin release from
perifused mouse islets in the presence or absence of
AR231453, a highly selective GPR119 agonist that fails
to lower glucose or stimulate insulin levels in Gpr119~/~
mice (16). No AR231453-dependent enhancement of in-
sulin secretion was observed in wild-type (WT) islets (Fig.
6A), irrespective of the timing and dose of AR231453
exposure during the perifusion period (Supplementary
Fig. 7A and B). Moreover, insulin release was not consis-
tently increased after AR231453 treatment of static cul-
tures of mouse islets (Fig. 6B). Furthermore, in separate
experiments, AR231453 did not modify glucagon secre-
tion from perifused islets; in contrast, glucagon levels rose
robustly after exposure to arginine (Fig. 6C).

GPR119 Agonism Enhances Insulin Secretion in Mice

As AR231453 did not directly regulate insulin or glucagon
secretion in islets, we reassessed its bioactivity in vivo.
Administration of an oral dose (20 mg/kg) of the same

batch of AR231453 used in islet studies (Fig. 6D) produced
a rapid reduction in glycemic excursion and increase in
plasma insulin levels after an oral glucose challenge in
WT mice (Fig. 6E and F). Furthermore, AR231453 robustly
lowered glycemic excursions (Fig. 7A) and increased plasma
levels of insulin and GLP-1 (Fig. 7B and C), but not GIP (Fig.
7D), in GprllQBceu*/ ~aswell asin GprllQBcell+/ " mice (data
not shown). Taken together, these findings demonstrate
that B-cell GPR119 is not required for the physiological
control of glucose homeostasis or the acute insulinotropic
response to pharmacological GPR119 agonism.

DISCUSSION

The expression of GPR119 in B-cells and EECs, together
with the robust glucoregulatory actions of GPR119 ago-
nists in preclinical studies, raised considerable enthusiasm
for GPR119 as a target for T2D drug development. To better
understand the physiology of GPR119, we first reevaluated
the metabolic phenotype of mice with whole-body germline
disruption of Gpr119. Consistent with previous reports
(22,30), islet morphology and glucose homeostasis were not
dysregulated in RC-fed Gpr119~’~ mice (16,30). Lan et al.
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(30) demonstrated that plasma insulin levels and lean body ~ reduced B-cell secretory demand) in Gpr119~'~ mice com-
mass trended lower in Gpr119/~ mice, consistent with plicates ascertainment of the importance of GPR119 activ-
our current findings. Moreover, we observed improved in- ity in B-cells (31).

sulin and glucose tolerance with lower insulin levels in The essential role(s) of GPR119 in control of the in-
HFD-fed Gpr119~/~ mice. Our findings of increased lean cretin axis further challenges interpretation of B-cell phe-
body mass and improved insulin sensitivity (and hence notypes arising in Gpr119 /" mice. Several studies have
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demonstrated that the glucoregulatory actions arising from
GPR119 activation are dependent in part on enhanced GIP
and GLP-1 secretion (19,22,27). Moreover, whole-body loss
of GPR119 leads to lower circulating levels of GLP-1 in
both RC- and HFD-fed Gpr119™'~ mice, and levels of
GIP also trended lower (30). Consistent with these find-
ings, plasma levels of GLP-1 and GIP were lower after acute
olive oil challenge in Gpr119~/~ mice (32), and plasma GIP
levels were lower in HFD-fed Gpr119~’~ mice studied
herein. Moreover, analysis of islet mRNA from HFD-fed
Gpr119~'~ mice revealed reduced levels of Glplr, Gegr,

and Gpr40 mRNA transcripts, and Gipr mRNA levels
trended lower (Supplementary Fig. 4). Hence, interpreting
changes in B-cell function arising in whole-body Gpr119™/~
mice is complex due to potential compensation arising from
changes in plasma incretin hormones and altered islet ex-
pression of functionally related receptors.

To circumvent the potential confounding importance
of GPR119 for organ formation and cell differentiation
that might produce adaptive compensation in metaboli-
cally sensitive tissues, and to avoid perturbations within
the gut GPR119 EEC system, we generated Gpr119%<!'~/~
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insulin levels by two-way ANOVA.
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mice. We detected ~80-90% knockdown of Gprll9 ex-
pression in islets from Gpr119°<"™/~ mice (Fig. 3A and
Fig. 5C). This level of knockdown in total islets using the
Mip-CreERT mouse to achieve recombination selectively
in 3-cells is consistent with substantial expression of islet
Gpr119 in B-cells, and roughly correlates with the relative
proportion of B-cells within mouse islets. The 10-20%
residual Gpr119 mRNA expression in Gpr119%°!™/~ islets
could be attributed to inefficiency of knockdown in
B-cells, or more likely to residual Gpr1l9 expression in
the non—f-cell islet population.

Surprisingly, Gpr119°°"~/~ mice did not exhibit overt
metabolic defects when studied on RC or after prolonged
HFD feeding. A modest reduction in fat mass, increased
lean body mass, and improved insulin sensitivity in
Gpr119%°"/~ mice resembles phenotypes we described
for Giprp’ceu_/_ mice (28), and likely reflects a role for
B-cell GPR119 as a component of the B-cell response to
lipid ingestion, as recently highlighted in studies of EECs
(32). Furthermore, the B-cell insulin secretory response
to glucose was completely normal in Gpr119’~ and
Gpr119%<"~/~ islets. Equally surprisingly, we were unable
to directly elicit insulin secretion using AR231453 in WT
islets, at doses as high as 300 nmol/L (16), under peri-
fused or static incubation conditions. Similarly, despite
rare reports of GPR119 agonists regulating glucagon se-
cretion in mice (36), we did not detect alteration of glu-
cagon secretion using AR231453 in perifused islets. In
contrast, the same batch of AR231453 robustly lowered
glucose and increased GLP-1 and insulin levels after acute
administration to Gpr119P°"~/~ mice. These findings, to-
gether with our previous studies elucidating the essential
requirements for both incretin receptors in GPR119-
dependent glucose control (27), strongly suggest that
the B-cell GPR119 is not an essential target for the
glucoregulatory activity of GPR119 agonists.

Our data reveal that GPR119 expression within murine
B-cells is not functionally important for the (3-cell response
to hyperglycemia, or for transduction of a direct insulino-
tropic response to pharmacological GPR119 agonism
(36). Despite an extensive literature demonstrating robust
GPR119-dependent incretin and insulin secretion, associ-
ated with reduction of glycemia in preclinical studies, suc-
cessful translation of pharmacological GPR119 agonism for
the treatment of T2D in human subjects has not been re-
alized (21,37). GPR119 agonists increase incretin secretion
from human EECs ex vivo (12); however, these observa-
tions have not been as robustly recapitulated in clinical
studies of human subjects. Although multiple GPR119 ag-
onists have been tested in clinical trials, reported increases
in gut hormones have been modest, and usually not asso-
ciated with robust changes in insulin levels or glycemic
excursion (21,37,38).

Another potential explanation for the failure of GPR119
agonists to effectively lower glycemia and HbA;. in clinical
studies may be related to species differences in islet cell
expression of GPR119. Notably, single-cell transcriptomic
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analysis of individual human islet cells revealed a 10-fold
higher level of GPR119 expression in isolated a-cells, rela-
tive to B- or d-cells (39). Nevertheless, analysis of individual
islet cell transcriptomes consistently detects GPR119 mRNA
transcripts in both mouse and human B-cells, at levels ap-
proximating those obtained for the functionally related
fatty acid receptor FFAR1 (40,41). Our findings, using iso-
lated islets and Gpr119°“"™/~ mice, strongly suggest that
B-cell GPR119 is dispensable for 1) the insulin response
to glucose, 2) the adaptive islet response to HFD feeding,
and 3) the acute glucoregulatory response to pharmacolog-
ical GPR119 agonism. Collectively, these results support the
evolving view that GPR119 functions primarily as an enter-
oendocrine lipid sensor (32,42) and may be much less im-
portant as a direct B-cell target for the stimulation of insulin
secretion.
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