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Proteins are some of the most fascinating and challenging molecules in the universe, and
they pose a big challenge for artificial intelligence. The implementation of machine learning/
AI in protein science gives rise to a world of knowledge adventures in the workhorse of the
cell and proteome homeostasis, which are essential for making life possible. This opens up
epistemic horizons thanks to a coupling of human tacit–explicit knowledge with machine
learning power, the benefits of which are already tangible, such as important advances in
protein structure prediction. Moreover, the driving force behind the protein processes of
self-organization, adjustment, and fitness requires a space corresponding to gigabytes of
life data in its order of magnitude. There are many tasks such as novel protein design,
protein folding pathways, and synthetic metabolic routes, as well as protein-aggregation
mechanisms, pathogenesis of protein misfolding and disease, and proteostasis networks
that are currently unexplored or unrevealed. In this systematic review and biochemical
meta-analysis, we aim to contribute to bridging the gap between what we call binomial
artificial intelligence (AI) and protein science (PS), a growing research enterprise with
exciting and promising biotechnological and biomedical applications. We undertake our
task by exploring “the state of the art” in AI and machine learning (ML) applications to
protein science in the scientific literature to address some critical research questions in this
domain, including What kind of tasks are already explored by ML approaches to protein
sciences? What are the most common ML algorithms and databases used? What is the
situational diagnostic of the AI–PS inter-field? What do ML processing steps have in
common? We also formulate novel questions such as Is it possible to discover what the
rules of protein evolution are with the binomial AI–PS? How do protein folding pathways
evolve? What are the rules that dictate the folds? What are the minimal nuclear protein
structures? How do protein aggregates form and why do they exhibit different toxicities?
What are the structural properties of amyloid proteins? How can we design an effective
proteostasis network to deal with misfolded proteins? We are a cross-functional group of
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scientists from several academic disciplines, and we have conducted the systematic
review using a variant of the PICO and PRISMA approaches. The search was carried out in
four databases (PubMed, Bireme, OVID, and EBSCO Web of Science), resulting in 144
research articles. After three rounds of quality screening, 93 articles were finally selected for
further analysis. A summary of our findings is as follows: regarding AI applications, there are
mainly four types: 1) genomics, 2) protein structure and function, 3) protein design and
evolution, and 4) drug design. In terms of the ML algorithms and databases used,
supervised learning was the most common approach (85%). As for the databases
used for the ML models, PDB and UniprotKB/Swissprot were the most common ones
(21 and 8%, respectively). Moreover, we identified that approximately 63% of the articles
organized their results into three steps, which we labeled pre-process, process, and post-
process. A few studies combined data from several databases or created their own
databases after the pre-process. Our main finding is that, as of today, there are no
research road maps serving as guides to address gaps in our knowledge of the AI–PS
binomial. All research efforts to collect, integrate multidimensional data features, and then
analyze and validate them are, so far, uncoordinated and scattered throughout the
scientific literature without a clear epistemic goal or connection between the studies.
Therefore, our main contribution to the scientific literature is to offer a road map to help
solve problems in drug design, protein structures, design, and function prediction while
also presenting the “state of the art” on research in the AI–PS binomial until February 2021.
Thus, we pave the way toward future advances in the synthetic redesign of novel proteins
and protein networks and artificial metabolic pathways, learning lessons from nature for the
welfare of humankind. Many of the novel proteins and metabolic pathways are currently
non-existent in nature, nor are they used in the chemical industry or biomedical field.

Keywords: artificial intelligence, proteins, protein design and engineering, machine learning, deep learning, protein
prediction, protein classification, drug design

INTRODUCTION

Protein science witnesses the most exciting and demanding
revolution of its own field; the magnitude of its
genetic–epigenetic—molecular networks, inhibitors, activators,
modulators, and metabolite information—is astronomical. It is
organized in an open “protein self-organize, adjustment and
fitness space”; for example, a protein of 100 amino acids
would contain 20100 variants, and a process of
searching–finding conformations in a protein of 100 amino
acids can adopt ~1046 conformation and a unique native state,
the protein data exceedingmany petabytes (1 petabyte is 1 million
gigabytes) (Kauffman, 1992).

Therefore, the use of artificial intelligence in protein science is
creating new avenues for understanding the ways of organizing
and classifying life within its organisms to eventually design,
control, and improve this organization. In this respect, protein
synthesis is a case in point. Indeed, the discovery of the
underlying mechanism of protein synthesis is an inter-field
discovery, that is, “a significant achievement of 20th century
biology that integrated results from two fields: molecular biology
and biochemistry” (Baetu, 2015). More recently, the field of
protein science is, in turn, another inter-field enterprise, this

time between molecular biology and computer science, or
better said, between a cross-functional team of researchers
(biochemists, protein scientists, protein engineers, system
biology scientists, bioinformatics, between others). Nowadays,
it is possible to classify, share, and use a significant number of
structural biology databases helping researchers throughout the
world. Once the mechanism of DNA for protein synthesis is
deduced, it will then be possible to replicate it via computational
strategies through artificial intelligence (AI) and machine
learning (ML) algorithms that can provide important
information such as pattern recognition, nearest neighbors,
vector profiles, back propagation, among others. AI has been
used to exploit this novel knowledge to predict, design, classify,
and evolve known proteins with improved and enhanced
properties and applications in protein science (Paladino et al.,
2017; Wardah et al., 2019;Cheng et al., 2008; Bernardes and
Pedreira, 2013), which, in turn, makes its way to solve complex
problems in the “fourth industrial revolution” and open new
areas of protein research, growing at a very fast speed.

The techniques of machine learning are a subfield of AI, which
has become popular due to the linear and non-linear processed
data and the large amount of available combinatorial spaces. As a
result, sophisticated algorithms have emerged, promoting the use
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of neural networks (Gainza et al., 2016) However, in spite of the
large amount of research done in protein science, as far as we
know, there are neither systematic reviews nor any biochemical
meta-analysis in the scientific literature informing, illuminating,
and guiding researchers on the best available ML techniques for
particular tasks in protein science; albeit there have been recent
reviews such as the work of AlQuraishi (2021), Dara et al. (2021),
and Hie and Yang (2022), which prove that this inter-field is on
evolution. By a biochemical meta-analysis, we mean an analysis
resulting from two processes: identification and prediction. The
former consists of identifying AI applications into the protein
field where we classify and identify active and allosteric sites,
molecular signatures, and molecular scaffolding not yet described
in nature.

Each structural signature, pattern, or profile constitutes a
singular part of the whole “lego-structure-kit” that is the
protein space that includes the catalytic task space and shape
space, which Kauffman (1992) defines as an abstract
representation or mapping of all shapes and chemical
reactions that can be catalyzed onto a space of task. The latter
process is an analysis of the resulting predictions of structures,
molecular signatures, regulatory sites, and ligand sites. Both
processes are related to each other in the sense that the
proteins in the identification process are searching targets of
the 3D-structure for the prediction process that predicts the
protein conformation multiple times from a template family
or using model-free approach. The biochemical meta-analysis
includes formulating the research question, searching and
classifying protein tasks in the selected studies, gathering
AI–PS information from the studies, evaluating the quality of
the studies, analyzing and classifying the outcomes of studies,
building up tables and figures for the interpretation of evidence,
and presenting the results.

This study puts forward the use of ML classes and methods to
address complex problems in protein science. Our point of
departure is the state of the art of the AI–PS binomial; by
binomial, we mean a biological name consisting of two terms
that are partners in computational science as well as in biomedical
or biotechnological science as a “two-feet principle” in order to
understand, enhance, and control protein science development
from an artificial intelligence perspective. Our cross-functional
team aims at accelerating the steps of translating the basic
scientific knowledge from protein science laboratories into AI
applications. Here, we report a comprehensive, balanced
systematic review for the literature in the inter-field and a
biochemical meta-analysis, which includes a classification of
screened articles: 1) by the ML techniques, they use and
narrowing down the subareas, 2) by the classes, methods,
algorithms, prediction type and programming language, 3) by
some protein science queries, 4) by protein science applications,
and 5) by protein science problems. Moreover, we present the
main contributions of AI in several tasks, as well as a general
outline of the processes that are carried out throughout the
construction of the models and their applications. We outline
a discussion on the best practices of validation, cross-validation,
and individual control of testing MLmodels in order to assess the
role that they play in the progress of ML techniques, integrating

several data types and developing novel interpretations of
computational methodology, thus enabling a wider range of
protein’s-universe impacts. Finally, we provide future direction
for machine learning approaches in the design of novel proteins,
metabolic pathways, and synthetic redesign of protein networks.

MATERIALS AND METHODS

A systematic review of the scientific literature found in the period
(until February 2021) was carried out for this study (Figures 1–3)
following the PIO (participants/intervention/outcome) approach
and according to PRISMA declaration (Preferred Reporting
Items for Systematic Reviews and Meta-Analyses)
Supplementary. No ethical approval or letter of individual
consent was required for this research.

PIO Strategy
One of the main objectives is to discuss new information in
the latest findings about the functions of AI in protein design.
Furthermore, this review and meta-analysis intend to include
a wide scope of the status of artificial intelligence in protein
science. The PIO (participants, intervention, and outcome)
strategy was used to systematically search all databases and
was the methodology to address the following research
questions: What is the state of art in the use of artificial
intelligence in the protein science field? What is the use of
neural networks in the rational design of proteins? Which
neural networks are used in the rational design of proteins?
Protein design is currently considered a challenge. As artificial
intelligence makes progress, this is presented as a solution to
various issues toward addressing how this new branch can be
used for the creation of high precision models in protein
design. Following the PIO strategy, the next terms were used
for the research.

Participants: articles about proteins and their MeSH terms in
general were considered for inclusion; we gave special
consideration to protein design and their related terms such as
scaffold (as a main structure or template), rational design, and
biocatalysts (as a main task target for protein evolution and
design in the chemical–biotechnological industry and
biomedical field):

• protein
• protein design
• scaffold
• rational protein design
• biocatalysts

Intervention: studies with any types of algorithms, software,
programming language, platform, or paradigm using alone or in
combination were selected.

Types of algorithms:

• neural networks
• recurrent neural networks
• network LSTM/GRU
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• convolutional neural network
• deep belief networks
• deep stacking networks C5.0
• genetic algorithms
• artificial intelligence
• decision trees
• classification
• prediction C&A

Software:

• Weka
• RapidMiner
• IBM Modeler

Programming languages:

• Python
• Java
• OpenGL
• C++
• Shell

Development platform:

• Caffe
• DeepLearning4j
• TensorFlow
• IBM distributed deep learning (DDL)

FIGURE 1 | A representative decision diagram showing the articles retrieved using the PIO strategy in the PubMed database. P (participants): Protein, Protein
Design, Scaffold, Rational protein design, Biocatalysts. I (intervention): Networks: Neural networks, Recurrent neural networks, Networks LSTM/GRU, Convolutional
neural network, Deep belief networks, Deep stacking networks C5.0; Genetic algorithms; Artificial intelligence; Decision trees; Classification; Prediction C&A; Software:
Weka, RapidMiner, IBM Modeler; Programming Languages: Python, Java, OpenGL, C++ Shell; Development platform: Caffe Deep Learning, TensorFlow, IBM
Distributed Deep Learning (DDL); Paradigm: Supervised Learning, Unsupervised learning, Reinforced learning, new function.
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Paradigm:

• supervised learning
• unsupervised learning
• reinforced learning

Outcomes:

• novel proteins
• protein structure prediction
• novel biocatalysts
• new fold
• evolved protein
• new function

Databases and Searches
The electronic databases used were PubMed, Bireme, EBSCO, and
OVID. The concepts with similarity were searched with “OR,” and
within the groups of each element of the PIO research, they were
searched with the word “AND.” Next, a diagram was constructed
in order to show the history of searches and concepts used (figure
tree diagram). This figure describes in full detail the searching
strategy in the PubMed database as well as all keywords used.
Moreover, it includes the number of resulting articles.
Subsequently, the results obtained from these searches were
recorded. The references themselves were then downloaded into
the Mendeley database. All references were taken, organized, and
saved in Mendeley, eliminating duplicates for the final result.

Biochemical Meta-analysis
The biochemical meta-analysis included formulating the research
question, searching and classifying protein tasks in the 144
selected studies, gathering AI–PS information from the 144
studies, evaluating the quality of the studies (as described in
the systematic review, see flowchart of PRISMA), analyzing and
classifying the intervention and outcome of studies (networks,
software, programming languages, development platforms,
paradigms, novel proteins, novel scaffold, new fold, etc.), and
building up tables and figures for the interpretation of evidence
and presenting the results.

By a biochemical meta-analysis, we mean an analysis resulting
from two processes: identification and prediction. The former
consists of identifying AI applications into the protein field:
classify and identify active and allosteric sites, molecular
signatures, and molecular scaffolding not yet described in
nature, each of which constitute a single part of a grand-type
Lego structure. The latter is an analysis of resulting predictions:
structures, molecular signatures, regulatory and ligand sites, etc.

Biochemical Meta-Analysis and Designing
the Road Map
PRELIMINARY: we determined the formulation of the problem
and objectives of the research within the figure, which includes
the treatment of the data and their applications. Note: the
information was acquired from a list of various databases
from which data were analyzed.

FIGURE 2 | Flowchart of article scaffold. Representation of the process throughout the entire article. The biochemical meta-analysis consists of three main steps:
the systematic review, the road map design, and the road map alignment. In the systematic review, the research question is formulated in order to set the basis and
objectives of the project. It also includes the observation and synthesis of information obtained from a variety of articles and the correlationmade between them. The latter
followed by the quality evaluation of the collected information. The road map design consists of analyzing the outcome of the studies and classifying them, thus
being able to interpret the information recollected and represent it through the usage of figures and tables. This aims to include a wide range of the state of the art or
artificial intelligence. Finally, the roadmap alignment includes the final discussion and further changes for our understanding of protein science using AI and the resolution
of possible protein science application targets.
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TABLE 1 | An overview of the included articles on study and algorithm features based in their characteristics, strengths, limitations, and measure of precision.

Author/Year
of Publication/
Setting

Classes
of machine
learning

Methods Algorithms Protein
Query

Characteristics Strengths Limitations Validation
and performance

Study characteristics and algorithm aspects
Song J., 2021,

China (Song et al.,
2021)

Connectionist
and Symbolist

An ensemble predictor
with a deep
convolutional neural
network and LightGBM
with ensemble learning
algorithm

CNN, LightGBM A sequence-based
prediction method for
protein–ATP-binding
residues, including,
PSSM, the predicted
secondary structure,
and one-hot encoding

The CNN frameworks
are proposed as a multi-
incepResNet-based
predictor architecture
and a multi-Xception-
based predictor
architecture. LightGBM,
as a Gradient Boosting
Decision Tree (GBDT) for
classification and
regression merged by
an ensemble learning
algorithm

The model enriches
the protein–ATP-
binding residue
prediction ability using
sequence information.
Outstanding
performance using
ensemble learning
algorithm in
combination with a
deep convolutional
neural network and
LightGBM as an ATP-
binding tool

Distribution of the
specific weights was
calculated according
to the ratio between
the positive instances
and the negative
instances to solve the
imbalance problem.
The sensitivity
prediction was only
0.189. This can be
attributed by its very
limited prediction
coverage and the
limited number of
sequences in the
training set

AUC (0.922 and
0.902), MCC (0.639
and 0.0642), and 5-
fold cross-validation

Verma N., 2021,
US (Verma et al.,
2021)

Connectionist A DNN framework
(Ssnet), for the
protein–ligand
interaction prediction,
which utilize the
secondary structure of
proteins extracted as a
1D representation based
on the curvature and
torsion of the protein
backbone

DNN Information about
locations in a protein
where a ligand can bind,
including binding sites,
allosteric sites, and
cryptic sites,
independently of the
conformation

Curvature and torsion of
protein backbone,
feature vector for ligand.
Multiple convolution
networks with varying
window sizes as branch
convolution

The model does not
show biases in the
physicochemical
properties and
necessity of accurate
3D conformation while
requiring significantly
less computing time.
Fast computation
once the model is
trained with weights
bare fixed. No
requirement of high-
resolution structural
data

Ssnet being blind to
conformation limits its
capability to account
for mutations resulting
from the same fold but
significant difference in
binding affinity. Ssnet
should be treated as a
tool to cull millions of
drug-like molecules
and not as an exact
binding affinity
prediction tool

AUC, ROC, and EF
scores

Bond. S, 2020,
US (Bond et al.,
2020)

Connectionist CCP4i2 Buccaneer
automated model-
building pipeline

PDB Correctness of protein
residues

Visual examination by
the crystallographer.
Coot provides validation
tools to identify
Ramachandran outliers,
unusual rotamers, and
other potential errors, as
well as an interface to
some tools from
MolProbity

No cutoff has to be
chosen

It may also have
difficulties in that a
residue built into the
solvent 5 A° away from
the structure is no
different than one 10
A° away

COD for main chain
0.751; COD for side
chain 0.613

Kwon Y., 2020,
Korea (Kwon et al.,
2020)

Connectionist A new neural network
model for binding affinity
prediction of a

3D-CNN Protein–protein
complexes in a 3D
structure

Ensemble of multiple
independently trained
networks that consist of
multiple channels of 3D

Higher Pearson
coefficient (0.827)
than the state-of-the-
art binding affinity

For docking power,
the Ak-score-single
model is not as

Spearman and
Pearson correlation
coefficients
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TABLE 1 | (Continued) An overview of the included articles on study and algorithm features based in their characteristics, strengths, limitations, and measure of precision.

Author/Year
of Publication/
Setting

Classes
of machine
learning

Methods Algorithms Protein
Query

Characteristics Strengths Limitations Validation
and performance

protein–ligand complex
structure

CNN layers.
Protein–ligand
complexes were
represented as 3D grids
voxelized binding pocket
and ligand

prediction scoring
functions. Accurate
ranking of the relative
binding affinities of
possible multiple
binders of a protein,
comparable to the
other scoring
functions

prominent as the other
criteria models

Li H., 2020,
France, Hong
Kong (Hongjian
et al., 2021)

Connectionist,
Symbolist and
Analogist

Analyzed machine
learning scoring
functions for structure-
based virtual screening

RF, BRT, kNN, NN,
SVM, GBDT, multi-
task DNN XGBoost

Comparison and review
of machine learning
scoring functions and
classical scoring
functions

Machine learning-based
scoring function
performs better than
classical scoring
functions, outperforming
the average classical
methods

Machine learning-
based scoring
function has
introduced strong
improvements over
classical scoring
functions,
benchmarks for
SBVS.

Current SBVS
benchmarks do not
actually mimic real test
sets, and thus their
ability to anticipate
prospective
performance is
uncertain

N/A

Liang M., 2020,
China (Liang and
Nie, 2020)

Connectionist Method that uses the
relation between amino
acids directly to predict
enzyme function

RN, LSTM State description matrix
containing structural
information by four parts,
amino acid name (N),
angles φ and ψ(A),
relative distance (RD),
and relative angle γ (RA)

A three-layer MLP; a
four-layer MLP; a three-
layer MLP, all with ReLU
nonlinearities. The final
layer was a linear layer
that produced logits for
optimization with a
softmax loss function

Structural relationship
information of amino
acids and the
relationship inference
model can achieve
good results in the
protein functional
classification

The model is currently
only for single-label
classification rather
than multi-label
classification and only
predicts proteins
approximately into six
major classes. The
training has a
considerable time
during the entire
experiment; further
optimization is
necessary to improve
performance

Accuracy, ROC
curve, AUC, 3-fold
cross-validation

Nie J., 2020,
Singapore, Taiwan
(Sua et al., 2020)

Probabilistic
inference,
symbolist, and
analogist

Identification of lysine
PTM site from a
convolutional neural
network and sequence
graph transform
techniques

RF, SVM, MNB, LR,
Max Entropy, KNN,
CNN, MLP

A computational
technique to improve the
identification of reaction
sites for multiple lysine
PTM sites in a protein
sample

Improves the
performance of
identifying lysine PTM
sites by using a novel
combination with
convolutional neural
networks and sequence
graph transform

As the current model
that we are proposing
is a multilabel model, it
is very generalizable,
especially when it
comes to
combinations of
multilabel that the
dataset does not
have. In addition, such
combinations of
multilabel will increase
the test sample size
and provide a better

Deep learning models
are black-box models
and may not be very
useful for trying to
understand the
causes of PTMs and
how to affect them.
We gather that
scientists would like to
know the cause and
effect in order to
propose disease
modification methods,

Cross-validation,
precision accuracy,
recall, Hamming-loss
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TABLE 1 | (Continued) An overview of the included articles on study and algorithm features based in their characteristics, strengths, limitations, and measure of precision.

Author/Year
of Publication/
Setting

Classes
of machine
learning

Methods Algorithms Protein
Query

Characteristics Strengths Limitations Validation
and performance

idea of the accuracy of
the model

rather than just pure
identification of PTM’s

Qin Z., 2020, US
(Qin et al., 2020)

Connectionist Learn method on amino
acid sequence folds into
a protein structure, along
with the phi–psi angle
information for high
resolution of protein
structure

MNNN Prediction with only
primary amino acid
sequence without any
template or co-
evolutional information

Performs labeling of
dihedral angles,
combined with the
sequence information,
allowing the phi–psi
angle prediction and
building the atomic
structure

Prediction consumes
less than six orders of
magnitude time.
Prediction of the
structure of an
unknown protein is
achieved, showing
great advantage in the
rational design of de
novo proteins

Prediction accuracy
can be further
improved by
incorporating new
structure to refine the
model

Prediction
accuracy (85%)

Savojardo C.,
2020, Italy
(Savojardo et al.,
2020a)

Connectionist A method for protein
subcellular localization
prediction

DeepMITO,
1D-CNN

Performing proteome-
wide prediction of sub-
mitochondrial
localization on
representative
proteomes

Its major characteristics
is to combine proteome-
wide experimental data
with the predicted
annotation of subcellular
localization at
submitochondrial level
and complementary
functional
characterization in terms
of biological processes
and molecular functions.
Evolutionary information,
in the form of Position-
Specific Scoring
Matrices (PSSM)

The model allows
users to search for
proteins by
organisms,
mitochondrial
compartment,
biological process, or
molecular function and
to quickly retrieve and
download results in
different formats,
including JSON
and CSV

N/A MCC coefficient

Wang M., 2020,
US (Wang M. et al.,
2020a)

Symbolist A topology-based
network tree,
constructed by
integrating the
topological
representation and
NetTree for predicting
protein–protein
interaction (PPI)

TopNetTree,
CNN, GBT

Protein structures,
protein mutation, and
mutation type

Convolutional Neural
Networks, used in their
Top Net Tree model, as
a second module:
consisting of the CNN-
assisted GBT model

The proposed model
achieved significantly
better Rp than those
of other existing
methods, indicating
that the topology-
based machine
learning methods have
a better predictive
power for PPI systems

Both GBTs and neural
networks are quite
sensitive to system
errors of training of a
model The ΔΔG of
27 non-binders
(–8 kcal mol–1) did not
follow the distribution
of the whole dataset.

Person coefficient
(Rp) = 0.65/0.68 and
10-fold cross-
validation

Wardah W.,
2020, Australia,
Fiji, Japan, US
(Wardah et al.,
2020)

Pattern
recognition

A convolutional neural
network to identify the
peptide-binding sites in
proteins

CNN Amino acid residues to
create the image-like
representations by
feature vectors

Sets of convolution
layers for image
operations, followed by
a pooling layer and a fully
connected layer. The
internal weights of the
network were adjusted
using the Adam
optimizer. Bayesian

The model is able to
predict a protein
sequence with the
highest sensitivity
compared to any other
tool

Improvement and
especially in reducing
the number of non-
binding residues that
get falsely classified as
binding sites. Better
feature engineering to
produce better
protein–peptide-

Sensitivity,
specificity, AUC,
ROC curve, and
MCC coefficient

(Continued on following page)

Frontiers
in

B
ioengineering

and
B
iotechnology

|w
w
w
.frontiersin.org

July
2022

|V
olum

e
10

|A
rticle

788300
8

V
illalobos-A

lva
et

al.
The

S
cience

B
ehind

P
rotein

and
A
I

https://www.frontiersin.org/journals/bioengineering-and-biotechnology
www.frontiersin.org
https://www.frontiersin.org/journals/bioengineering-and-biotechnology#articles


TABLE 1 | (Continued) An overview of the included articles on study and algorithm features based in their characteristics, strengths, limitations, and measure of precision.

Author/Year
of Publication/
Setting

Classes
of machine
learning

Methods Algorithms Protein
Query

Characteristics Strengths Limitations Validation
and performance

optimization uses
calculated values for
configuring the model’s
hyper-parameters
based on prior
observations

binding site prediction
results. More
advanced computing
environment

Yu C., 2020,
Taiwan, US (Yu
and Buehler, 2020)

Connectionist A deep neural network
model is based on
translating protein
sequences and
structural information
into a musical score,
reflecting secondary
structure information
and information about
the chain length and
different protein
molecules

RNN, LSTM A vibrational spectrum of
the amino acid,
comprising amino acid
sequence, fold
geometry, or secondary
structure

The RNN layers, Long
Short-Term Memory
Units are for time
sequence features,
alongside a dynamical
conditioning. The
attention dynamical
conditioning model
monitors the note
velocity changes of the
note sequences

The deep neural
network is capable of
training, classifying,
and generating new
protein sequences,
reproducing existing
sequences, and
completely new
sequences that do not
exist yet. The model
generates new
proteins with an
embedded secondary
structure approach

The method could be
extended to address
folded structures of
proteins by including
more spatial
information (relative
distance of residuals,
angles, or contact
information). As well
as the addition of
combined
optimization
algorithms, like
genetic algorithms

Molecular dynamics
equilibration with
normal mode
analysis

Cui Y., 2019,
China (Cui et al.,
2019)

Pattern
recognition

A deep learning model
sequence-based for ab
initio protein–ligand-
binding residue
prediction

DCNN Protein sequences in
order to construct

several features for the
input feature map

First representation, an
amino acid sequence by
m x d. First convolutional
layer with k x d kernel
size. Stage 1, with

Plain(k x 1,2c) the same
as for Block(k x 1,2c).
Stage 2, with a Block(k x

1,2c) and Layer
normalization-GLU-

Conv block

The convolutional
architecture provides
the ability to process
variable-length inputs.

The hierarchical
structure of the

architecture enables
us to capture long-

distance
dependencies

between the residue
and those that are
precisely controlled.
Augmentation of the
training sets slightly

improves the
performance

The computational
cost for training
increases several
times. Due to the
considerable data
skew, the training

algorithm tends to fall
into a local minimum
where the network
predicts all inputs as
negative examples

Precision,
Recall, MCC

Degiacomi M.,
2019, UK

(Degiacomi, 2019)

Deep machine
learning

Conformational space
generator

Molecular
dynamics, random
forests and
autoencoder
algorithms

Generative neural
network trained on
protein structures
produced by molecular
simulation can generate
plausible conformations

Generative neural
networks for the
characterization of the
conformational space of
proteins featuring
domain-level dynamics

The auto encoder
does great at
describing concerted
motions (e.g., hinge
motions) than at
capturing subtle local
fluctuations; it is most
suitable to handle
cases featuring

This generative neural
network model yet lies
incapable of
reproducing non-
diversity-related
cases, which is a
subject of active
research in the
machine learning
community

Performance
assessed using
different sizes of
latent vector and
optimizer

(Continued on following page)
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TABLE 1 | (Continued) An overview of the included articles on study and algorithm features based in their characteristics, strengths, limitations, and measure of precision.

Author/Year
of Publication/
Setting

Classes
of machine
learning

Methods Algorithms Protein
Query

Characteristics Strengths Limitations Validation
and performance

domain-level
rearrangements

Fang C., 2019,
China, Japan
(Fang et al., 2019)

Connectionist Protein sequence
descriptor, position-
specific scoring matrix,
en DCNNMoRF

DCNN Pinpoint molecular
recognition features,
which are key regions of
intrinsically disordered
proteins by machine
learning methods

Ensemble deep
convolutional neural
network-based
molecular recognition
feature prediction. It
does not incorporate
any predicted features
from other classifiers

The proposed method
is highly performant for
proteome-wide MoRF
prediction without any
protein category bias

It is yet difficult to
predict if the new
models will perform
better only on the
results, referring to the
use of a new dataset.

Sensitivity,
Specificity,
Accuracy, AUC,
ROC curve, MCC
coefficient

Fang C., 2019,
US (Fang et al.,
2020)

Connectionist Deep dense inception
network for beta-turn
prediction

DeepDIN Protein sequence by
creating four sets of
features:
physicochemical,
HHBlits, predicted
shape string and
predicted eight-state
secondary structure

Concatenate four
convolved feature maps
along the feature
dimension. Feed the
concatenated feature
map into the stringed
dense inception blocks.
Dense layer, with
Softmax function

Proposed process for
beta-turn prediction
outperforms the
previous authors

Of the nine cases
used, the amount of
data belonging to
each class may not
produce a model with
the ability to extract
features or to be well
generalized.
Combined features
improve prediction
results than those
features used alone

MCC and 5-fold
cross-validation

Fu H., 2019,
China (Fu et al.,
2019)

Analogist Classification Natural
language prediction
(NLP) task

CNN DL Predict Lysine
ubiquitination sites in
large-scale

Input fragment. Multi-
convolution-pooling
layers. Fully connected
layers

Extract features from
the original protein
fragments. First used
in the prediction of
ubiquitination

DeepUbi is not too
deep. Only two
convolution-pooling
structures

4-, 6-, 8-, and 10-fold
cross-validation
Sensitivity,
Specificity, Acc,
AUC, MCC, Acc
>85% AUC =
0.9066/MCC= 0.78

Guo Y., 2019,
US (Guo et al.,
2019)

Connectionist
and Symbolist

Asymmetric
Convolutional neural
networks and
bidirectional long short-
term memory

ACNNs, BLSTM,
DeepACLSTM

Sequence-based
prediction for Protein
Secondary
Structure (P.S.S.)

The DeepACLSTM
method is proposed to
predict an 8-category
PSS from protein
sequence features and
profile features

The method efficiently
combines ACNN with
BLSTM neural
networks for the PPS
prediction. Leveraging
the feature vector
dimension of the
protein feature matrix

Expensive and time
consuming

CB6133 0.742
CB513 0.705

Haberal I., 2019,
Norway, Turkey
(Haberal and Ogul,
2019)

Connectionist Three different deep
learning architectures for
prediction of metal-
binding of Histidine (HIS)
and Cysteine (CYS)
amino acids

2D CNN,
LSTM, RNN

Three methods, PAM,
ProCos, and BR to
create the feature set
from the frame vector;
applying directly to raw
protein sequences
without any extensive
feature engineering,
while optimizing the

The model is a 2D-CNN
with four convolution
layers, two pooling, two
dropout, and two multi-
layer perceptron layers.
Each convolution layer
has 3 × 3 pixel filters

The good
performance of the
model demonstrates
the potential
application for protein
metal-binding site
prediction. A
competitive tool for
future metal-binding
studies, protein metal

The overall best
results were obtained
for a window of size
15. The lowest result
was obtained in
windows of size 101.
The lowest result for
the ProCos was
obtained with the CNN
model

Precision, Accuracy,
Recall F-Measures
K-fold (k = 3,5) cross-
validation
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TABLE 1 | (Continued) An overview of the included articles on study and algorithm features based in their characteristics, strengths, limitations, and measure of precision.

Author/Year
of Publication/
Setting

Classes
of machine
learning

Methods Algorithms Protein
Query

Characteristics Strengths Limitations Validation
and performance

model for predicting
metal-binding site

-interaction, protein
secondary structure
prediction, and protein
function prediction.
The CNN method
provides better results
for the prediction of
protein metal binding
using PAM attributes

Heinzinger M.,
2019, Germany
(Heinzinger et al.,
2019)

Connectionist Natural language
processing with Deep
learning

ELMo CharCNN
LSTM

Protein function and
structure prediction via
analysis of unlabeled big
data and deep learning
processing

Novel representation of
protein sequences as
continuous vectors
using language model
ELMo, using NLP.

The approach
improved over some
popular methods
using evolutionary
information, and for
some proteins even
did beat the best.
Thus, they prove to
condense the
underlying principles
of protein sequences.
Overall, the important
novelty is speed

Although SeqVec
embeddings
generated the best
predictions from single
sequences, no
solution improved
over the best existing
method using
evolutionary
information

Predictions of
intrinsic disorder
were evaluated
through Matthew’s
correlation coefficient
and the False-
Positive Rate. Also,
the Gorodkin
measure was used

Kaleel M., 2019,
Ireland (Kaleel
et al., 2019)

Connectionist
and Symbolist

Deep neural network
architecture composed
of stacks of bidirectional
recurrent neural
networks and
convolutional layers

RSA. Three-dimensional
structure of protein
prediction

Predicting relative
solvent accessibility
(RSA) of amino acids
within a protein is a
significant step toward
resolving the protein
structure prediction
challenge, especially in
cases in which structural
information about a
protein is not available
by homology transfer

High accuracy in four
different classes (75%
average). They
performed all the
training and testing in
5-fold cross-validation
on a very large, state-
of-the-art redundancy
reduced set
containing over
15,000 experimentally
resolved proteins

The protein structure
prediction challenge
especially in cases in
which structural
information about a
protein is not available
by homology transfer

2-class ACC
0.805 2-class F1
0.80 3-class ACC
0.664 3-class F1
0.66 4-class ACC
0.565 4-class
F1 0.56

Karimi M., 2019,
US (Karimi et al.,
2019)

Pattern
recognition

Interpretable deep
learning of
compound–protein
affinity

RNN–CNN models Development of
accurate deep learning
models for predicting
compound–protein
affinity using only
compound identities and
protein sequences

Using only compound
identities and protein
sequences, and taking
massive protein and
compound data,
RNN–CNN, and GCNN
trained models
outperform baseline
models

Compared to
conventional
compound or protein
representations using
molecular descriptors
or Pfam domains, the
encoded
representations
learned from novel
structurally annotated
SPS sequences and
SMILES strings
improve both

The resulting unified
RNN/GCNN–CNN
model did not improve
against unified
RNNCNN

Inferior relative error
in IC50 within 5-fold
for test cases and
20-fold for protein
classes not included
for training

(Continued on following page)
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TABLE 1 | (Continued) An overview of the included articles on study and algorithm features based in their characteristics, strengths, limitations, and measure of precision.

Author/Year
of Publication/
Setting

Classes
of machine
learning

Methods Algorithms Protein
Query

Characteristics Strengths Limitations Validation
and performance

predictive power and
training efficiency for
various machine
learning models

Li C., 2019,
China (Li and Liu,
2020)

Constrained
optimization and
Connectionist

Feature extractor
techniques for protein-
fold recognition

MotifCNN and
MotifDCNN
SVM CNN

Fold-specific features
with biological attributes
considering the
evolutionary information
from position-specific
frequency matrices
(PSFMs) considering the
structure information
from residue–residue

The predictor called
MotifCNN-fold
combines SVMswith the
pairwise sequence
similarity scores based
on fold-specific features

The model
incorporates the
structural motifs into
the CNNs, aiming to
extract the more
discriminative fold-
specific features with
biological attributes,
considering the
evolutionary
information from
PSFMs and the
structure information
from CCMs

Existing fold-specific
features lack biological
evidences and
interpretability, the
feature extraction
method is still the
bottleneck for the
performance
improvement of the
machine learning-
based methods

2-fold cross-
validation, Accuracy

Lin J., 2019,
China (Lin et al.,
2019)

Analogist and
evolving
structures

A drug target prediction
method based on
genetic algorithm and
Bagging-SVM ensemble
classifier

GA, SVM Protein sequences by
combining pseudo
amino acid, dipeptide
composition, and
reduced sequence
algorithms

GA is used to select the
druggable protein
dataset. The optimal
feature vectors are for
the SVM classifier.
Bagging-SVM ensemble
is for positive and
negative sample sets

Themethod has a high
reference value for the
prediction of potential
drug targets. An
improvement over
previous methods

N/A Acc, MCC, Sn, Sp,
AUC, PPV, NPV, F1-
score,ROC curve
and 5-fold cross-
validation

Pagès G., 2019,
France (Pagès
et al., 2019)

Connectionist Regression structure
atomic depiction with a
density function

3D CNN Protein model quality
assessment

Three convolutional
layers. Fully connected
layers. Use of ELU as
activation function

Competitivity with
single-model protein
model quality
assessment. Trained
to match CAD-score,
on stage 2 of CASP 11

Ornate does not reach
the accuracy of the
best meta-methods.
Scoring time about 1 s
for mid-size proteins

Network running
using a GeForce GTX
680 GPU

Picart-Armada
S., 2019, Belgium,
UK, Spain
(Picart-Armada
et al., 2019)

Pattern
recognition

Network propagation
machine learning
methods

PR, Random
Randomraw EGAD,
PPR, Raw, GM,
MC, Z-scores,
KNN, WSLD,
COSNet, bagSVM,
RF, SVM

Assess performance of
several network
propagation algorithms
to find sensible gene
targets for 22 common
non-cancerous diseases

Two biological
networks, six
performance metrics,
and compared two
types of input gene-
disease association
scores. The impact of
the design factors in
performance was
quantified through
additive explanatory
models

Network propagation
seems effective for
drug target discovery,
reflecting the fact that
drug targets tend to
cluster within the
network

Choice of the input
network and the seed
scores on the genes
need careful
consideration due to
possibility of
overestimation in
performance
indicators

There was a dramatic
reduction in
performance for
most methods when
using a complex-
aware cross-
validation strategy.
Three cross-
validation schemes
were used

Savojardo C.,
2019, Italy

Connectionist A convolutional neural
network architecture to

CNN High prediction on
discriminating four
mitochondrial

Two pooling layers
concatenated into a
single vector with four

Model has a robust
approach with respect
to class imbalance

Adoption of more
complex architecture,
like recurrent layers

10-fold cross-
validation, MCC from
0.45 to 0.65
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TABLE 1 | (Continued) An overview of the included articles on study and algorithm features based in their characteristics, strengths, limitations, and measure of precision.

Author/Year
of Publication/
Setting

Classes
of machine
learning

Methods Algorithms Protein
Query

Characteristics Strengths Limitations Validation
and performance

(Savojardo et al.,
2020b)

extract relevant patterns
from primary features

compartments (matrix,
outer, inner,
intermembrane)

independent output
units with sigmoid
activation function
quantifying the
membership of each
considered
mitochondrial
compartment

and accurate
predictions for the four
classification
compartments

can improve
performance.
However, the use of
recurrent models
leads to bad
performance.
Impossibility to predict
multiple localization for
a single protein
sequence

Schantz M.,
2019, Argentina,
Denmark, Malaysia
(Klausen et al.,
2019)

Connectionist NetSurfP-2.0 NetSurfP-2.0 Predict local structural
features of a protein from
the primary sequence

A novel tool that can
predict the most
important local structural
features with
unprecedented
accuracy and runtime. Is
sequence-based and
uses an architecture
composed of
convolutional and long
short-term memory
neural networks trained
on solved protein
structures.

Predicts solvent
accessibility,
secondary structure,
structural disorder,
and backbone
dihedral angles for
each residue of the
input sequences

The models are
presented with cases
that are neither
physically nor
biologically meaningful

CASP12 0.726
TS115 0.778 CB513
0.794

Taherzadeh G.,
2019, Australia,
US (Taherzadeh
et al., 2019)

Constrained
optimization and
Connectionist

Predictor method of N-
and mucin-type O-linked
glycosylation sites in
mammalian
glycoproteins

DNN, SVM An amino acid sequence
binary vector,
evolutionary information,
physicochemical
properties

DNN uses deep
architectures of fully
connected artificial
neural networks. And
SVM linear kernel for
classification techniques
to predict O-linked
glycosylation sites

N-glycosylation model
performs equally well
for intra or cross-
species datasets

Limitation to typical
N-linked and mucin-
type O-linked
glycosylation sites due
to lack of data for
atypical N-linked and
other types of O-linked
glycosylation sites

AUC MCC,
accuracy, sensitivity,
specificity, ROC
curve, 10-fold cross-
validation

Torng W., 2019,
US (Torng and
Altman, 2019)

Analogist Classification Softmax
classifier for class
probabilities

3D CNN SVM Protein functional site
detection

Protein site
representation as four
atom channels and
supervised labels

Achieved an average
of 0.955 at a threshold
of 0.99 on PROSITE
families. Good
performance where
sequence motifs are
absent, but a function
is known

Loss of specific
orientation data. NOS
structures 1TLL and
1F20 and catalytic
sites in TRYPSIN-like
enzymes not detected

5-fold cross-
validation Precision,
Recall Precision =
0.99 Recall = 0.955

Wan C., 2019,
UK (Wan et al.,
2019)

Connectionist A novel method
(STRING2GO), with a
deep maxout neural
networks for protein
functional predictive
information

DMNN, SVM Protein functional
biological network node
neighborhoods and co-
occurrence function
information

The network
architecture consists of
three fully connected
hidden layers, followed
by an output layer with
as many neurons as the
numbers of terms

Successful learning of
the functional
representation
classifiers for making
predictions

Potential improvement
of predictive accuracy
by integrating
representations from
other data sources
with the current PPI

AUC, ROC, MCC
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TABLE 1 | (Continued) An overview of the included articles on study and algorithm features based in their characteristics, strengths, limitations, and measure of precision.

Author/Year
of Publication/
Setting

Classes
of machine
learning

Methods Algorithms Protein
Query

Characteristics Strengths Limitations Validation
and performance

selected for the
biological process
functional domain. A
sigmoid function is used
as activation function
and the AdaGrad
optimizer is
implemented

network embedding
representations

Wang D., 2019,
China (Wang D.
et al., 2020)

Evolutionary An Artificial Intelligence-
based protein structure
Refinement method

Multi-objective PSO Query sequence
structures as the initial
particle selection for
conformation
representation

Use of multiple energy
functions as multi-
objectives. Initialization,
energy map of the initial
particles. Iteration,
energy landscape of the
4th iteration. Selection of
non-dominated
solutions and added to
the Pareto set. And
selection of the global
best position and the
best position every
swarm has had by the
use of the dominance
relationship of swarms,
moving to the optimal
direction

Success of AIR can be
attributed to three
main aspects: the first
is the anisotropy of
multiple templates.
The complementarity
of multi-objective
energy functions and
the swarm intelligence
of the PSO algorithm,
for effective search of
good solutions. The
larger number of
iterations allows the
algorithm to perform a
more detailed search
on the search space,
which can improve the
quality of the output
models

Restriction of the
velocity of the dihedral
angles in each iteration
to a reasonable range
for balancing the
accuracy and the
searching
conformation. There
are still some
unreasonable
solutions in the Pareto
set. The final step,
which ranks the
structures in Pareto
set, needs more
studies

RMSD value

Yu C., 2019, US
(Yu et al., 2019)

Connectionist Regression musical
patterns by the
extension of protein
designed

RNN LSTM Generation of audible
sound from amino acid
sequence for application
on designer materials

An RNN utilized for
melody generation.
(LSTM) for time
sequence featuring

Mechanism to explain
the importance of
protein sequences. 4.-
It can be applied to
express the structure
of other
nanostructures

N/A N/A

Zhang D., 2019,
US (Zhang and
Kabuka, 2019)

Connectionist Protein sequence pre-
processing,
unsupervised learning,
supervised, and deep
feature extraction

Multimodal DNN Identify protein–protein
interactions and classify
families via deep learning
models

Multi-modal deep
representation learning
structure by
incorporating the protein
physicochemical
features with the graph
topological features
from the PPI networks

The model
outperforms most of
the baseline machine
learning models
analyzed by the
authors, using the
same reference
datasets

If there is a certain type
of PPI that previous
models cannot
handle, the article will
not say if the new
model can

PPI prediction
accuracy for eight
species ranged from
96.76 to 99.77%,
which implies the
multi-modal deep
representation-
learning framework
achieves superior
performance
compared to other
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TABLE 1 | (Continued) An overview of the included articles on study and algorithm features based in their characteristics, strengths, limitations, and measure of precision.

Author/Year
of Publication/
Setting

Classes
of machine
learning

Methods Algorithms Protein
Query

Characteristics Strengths Limitations Validation
and performance

computational
methods

Zhang Y., 2019,
China (Zhang et al.,
2019)

Connectionist A new prediction
approach appropriate for
imbalanced
DNA–protein-binding
sites data

ADASYN Employment of PSSM
feature and sequence
feature for predicting
DNA-binding sites in
proteins

Introduction of new
feature representation
approach by combining
position-specific scoring
matrix, one-hot
encoding and predicted
solvent accessibility
features. Apply adaptive
synthetic sampling to
oversample the minority
class and Bootstrap
strategy for a majority
class to deal with the
imbalance problem

Demonstration that
the method achieves a
high prediction
performance and
outperforms the state-
of-the-art sequence-
based DNA–protein-
binding site predictors

Consideration of some
other physicochemical
features to construct
the model and try to
explain the biological
meaning of CNN filters

Sensitivity,
Specificity,
Accuracy, Precision,
and MCC coefficient

Zheng W.,
2019, US (Zheng
et al., 2019)

Probabilistic
inference,
Symbolist

Two fully deep learning
automated structure
prediction pipelines for
guided protein structure
prediction

Zhang-Server and
QUARK

Starting from a full-length
query sequence
structure

Three core modules:
multiple sequence
alignment (MSA)
generation protocol to
construct deep
sequence-profiles for
contact prediction; an
improved meta-
method, NeBcon, which
combines multiple
contact predictors,
including ResPRE that
predicts contact-maps
by coupling precision-
matrices with deep
residual convolutional
neural networks; an
optimized contact
potential to guide
structure assembly
simulations

Improvement of the
accuracy of protein
structure prediction for
both FM and TBM
targets. Accurate
evolutionary coupling
information for contact
prediction, thus
improving the
performance of
structure prediction.
And properly
balancing the
components of the
energy function was
vital for accurate
structure prediction

Incorrect prediction of
contacts between the
N- and C- terminal
protein regions. Low
accuracy of contact
prediction in the
Terminal regions due
to MSAs with many
gaps in these regions,
as the accuracy of
contact-map
prediction and FM
target modeling is
highly influenced by
the number of effective
sequences in
the MSA.

TM-score and
p-values

Cuperus J.,
2018, US
(Cuperus et al.,
2017)

Connectionist Regression dropout
probability distribution

DNN, CNN, LSTM Predict protein
expression

Hierarchical
representation of image
features from data

Prediction and
visualization of
transcription factor
binding, Dnase I
hypersensitivity sites,
enhancers, and DNA
methylation sites

Measurement of
protein expression
with yeast possessing
only 5000 genes

k-mer feature, Cross-
validation, Held-out
R2 = 0.61

Fang C.,US,
2018 (Fang et al.,
2018)

Pattern
recognition

A deep learning network
architecture for both
local and global

Deep3I A protein secondary
structure prediction
model

A designed feature
matrix corresponding to
the primary amino acid

This model uses a
more sophisticated,
yet efficient, deep

Further application of
the model to predict
other protein

Accuracy, p-value

(Continued on following page)
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TABLE 1 | (Continued) An overview of the included articles on study and algorithm features based in their characteristics, strengths, limitations, and measure of precision.

Author/Year
of Publication/
Setting

Classes
of machine
learning

Methods Algorithms Protein
Query

Characteristics Strengths Limitations Validation
and performance

interactions between
amino acids for
secondary structure
prediction

sequence of a protein,
which consists of a rich
set of information
derived from individual
amino acid, as well as
the context of the
protein sequence

learning architecture.
The model utilizes
hierarchical deep
inception blocks to
effectively process
local and nonlocal
interactions of
residues

structure-related
properties, such as
backbone torsion
angles, solvent
accessibility, contact
number, and protein
order/disorder region,
will be done in the
future

Feinberg E.,
2018, China, US
(Feinberg et al.,
2018)

Connectionist A PotentialNet family of
graph convolutions

GCNN A generalized graph
convolution to include
intramolecular
interactions and
noncovalent interactions
between different
molecules

First: graph convolutions
over only bonds, which
derives new node
feature maps. Second:
entails both bond-based
and spatial distance-
based propagations of
information. Third: a
graph gather operation
is conducted over the
ligand atoms, whose
feature maps are derived
from bonded ligand
information and spatial
proximity to protein
atoms

Statistically significant
performance
increases were
observed for all three
prediction tasks,
electronic property
(multitask), solubility
(single task), and
toxicity prediction
(multitask). Spatial
graph convolutions
can learn an accurate
mapping of
protein−ligand
structures to binding
free energies using the
same relatively low
amount of data

Drawback to
train−test split is
possible overfitting to
the test set through
hyperparameter
searching. Another
limitation is that train
and test sets will
contain similar
examples

Regression
enrichment factor
(EF), Pearson, and
Spearman
coefficient,
R-squared, MUE
(mean-unsigned
error)

Frasca M.,
2018, Italia (Frasca
et al., 2018)

Analogist Clustering Hopfield
model

COSNet
ParCOSNet HNN

AFP (Automated Protein
Function Prediction)

Network parameters are
learned to cope with the
label imbalance

Advantage of the
sparsity of input
graphs and the
scarcity of positive
proteins in
characterizing data in
the AFP.

Time execution
increased less than
the density, and more
than the number of
nodes

5-fold cross-
validation
Implementation and
execution in a Nvidia
GeForce GTX980
GPU target
Precision, Recall,
F-score, AUPRC

Hanson J.,
Australia, China,
2018 (Hanson
et al., 2019)

Pattern
recognition

A sequence-based
prediction of one-
dimensional structural
properties of proteins

CNN, LSTM-BRNN Improving the prediction
of protein secondary
structure, backbone
angles, solvent
accessibility

The model leverages an
ensemble of LSTM-
BRNN and ResNet
models, together with
predicted
residue–residue contact
maps, to continue the
push toward the
attainable limit of
prediction for 3- and 8-
state secondary
structures, backbone

The large
improvement of
fragment structural
accuracy. A new
method for predicting
one-dimensional
structural properties of
proteins based on an
ensemble of different
types of neural
networks (LSTM-
BRNN, ResNet, and

Long proteins are also
shown to take
extensive time,
especially for 2D
analysis tools. The use
of CPU and GPU is
shown to not make a
major difference in the
time taken, as the
speed increase
introduced by GPU

10-fold cross-
validation, Accuracy

(Continued on following page)
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TABLE 1 | (Continued) An overview of the included articles on study and algorithm features based in their characteristics, strengths, limitations, and measure of precision.

Author/Year
of Publication/
Setting

Classes
of machine
learning

Methods Algorithms Protein
Query

Characteristics Strengths Limitations Validation
and performance

angles (h, s, and w), half-
sphere exposure,
contact numbers and
solvent accessible
surface area (ASA)

FC-NN) with predicted
contact map input
from SPOT-contact.
The employment of an
ensemble of different
types of neural
networks contributes
another 0.5%
improvement

acceleration mainly
comes during training

Hanson J.,
Australia, China,
2018 (Hanson
et al., 2018)

Connectionist Method by stacking
residual 2D-CNN with
residual bidirectional
recurrent LSTM
networks, with 2D
evolutionary coupling-
based information

CNN, 2D-BRLSTM Protein contact map
prediction

Transformation of
sequence-based 1D
features into a 2D
representation (outer
concatenation function).
ResNet, 2D-BRLSTM
and FullyConnected (FC)

Method achieves a
robust performance.
The model is more
accurate in contact
prediction across
different sequence
separations, proteins
with a different
number of
homologous
sequences and
residues with a
different number of
contacts

Coding limitation
environment imposed
by the 2D-BRLSTM
model; training and
testing input is limited
to proteins of length
300 and 700 residues

AUC >0.95, ROC
curve, precision

Huang L., 2018,
US (Huang et al.,
2008)

Connectionist A novel PPI prediction
method based on deep
learning neural network
and regularized
Laplacian kernel

ENN-RL Protein–protein
interaction network

Contains five layers
including the input layer,
three hidden layers, and
the output layer.
Sigmoid is adopted as
the activation function
for each neuron, and
layers are connected
with dropouts.
Regularized Laplacian
kernel applied to the
transition matrix built
upon that evolved the
PPI network

The transition matrix
learned from our
evolution neural
network can also help
build optimized kernel
fusion, which
effectively overcome
the limitation of the
traditional WOLP
method that needs a
relatively large and
connected training
network to obtain the
optimal weights

The results show that
our method can
further improve the
prediction
performance by up to
2%, which is very
close to an upper
bound that is obtained
by an approximate
Bayesian
computation-based
sampling method

Cross-validation,
AUC, sensitivity

Khurana S.,
2018,Qatar, USA
(Khurana et al.,
2018)

Analogist Clustering Natural
language processing
task

CNN FFNN Solubility prediction Use additional biological
features from external
feature extraction tool
kits from the protein
sequences

DeepSol is at least
3.5% more accurate
than PaRSnIP and
15% than PROSO II.
DeepSol is superior to
all the current
sequence-based
protein solubility
predictors

DeepSol S2 model
was surpassed by
PaRSnIP on sensitivity
for soluble proteins

10-fold cross-
validation Acc, MCC
15% MCC = 0.55
3.5% DeepSol S1-
69 DeepSol S2- 69%

Analogist CNN
(Continued on following page)
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TABLE 1 | (Continued) An overview of the included articles on study and algorithm features based in their characteristics, strengths, limitations, and measure of precision.

Author/Year
of Publication/
Setting

Classes
of machine
learning

Methods Algorithms Protein
Query

Characteristics Strengths Limitations Validation
and performance

Le N., 2018,
Taiwan (Le et al.,
2018)

Regression Softmax
layer for classification

Classify Rab protein
molecules

2D-CNN and position-
specific scoring
matrices. PSSM profiles
of 20 × 20 matrices

Construct a robust
deep neural network
for classifying each of
four specific molecular
functions. Powerful
model for discovering
new proteins that
belong to Rab
molecular functions

Consideration of the
potential effects of
more rigorous
classification tests

5-fold cross-
validation Sensitivity,
Specificity, Acc,
AUC, F-score, MCC
Acc = 99, 99.5,
96.3, 97.6%

Li H., 2018,
China (Huang
et al., 2018)

Constrained
optimization

Regression Adam
optimizer

DNN CNN LSTM Prediction of protein
interactions

Machine learning
approach for
computational methods
for the prediction of PPIs

Insight into the
identification of
protein–protein
interactions (PPIs) into
protein functions

Manual input of
features into the
networks

Hold-out testing set
model validation Acc,
recall, precision,
F-score, MCC Acc =
0.9878 Recall=
0.9891 Precision =
0.9861 F-score=
0.9876 MCC=
0.9757

Long H., 2018,
China, US (Long
et al., 2018)

Connectionist Classification sigmoid
function

HDL CNN
LSTM RNN

Predicting hydroxylation
sites

CNN deep learning
model. Convolution layer
consists of a set of filters
through dimensions of
input data

p-values between
AUCs of other
methods are less than
0.000001

Comparative results
for CNN and iHyd-
PseCp networks

5-fold cross-
validation Sn, Sp,
Acc, MCC, TPR,
FPR, Precision, recall

Makrodimitris
S., 2018,
Netherlands
(Makrodimitris
et al., 2019)

Analogist Clustering constrained
optimization

KNN LSDR Protein function
prediction

Transformation of the
GO terms into a lower-
dimensional space

GO-aware LSDR has
slightly better
performance on SDp.
LSDR reduces the
number of dimensions
in the label-space.
Improve power of the
term-specific
predictors

LSDR generates
inconsistent
parent–child pairs.
GO-aware terms have
a higher
inconsistencies

3-fold cross-
validation Fp,
AUPRCp, SDp, Ft,
AUCRPCt

Popova M.,
2018, Russia, US
(Popova et al.,
2018)

Constrained
optimization

Regression Stack-RNN
as a generative model

Stack-RNN LSTM. De novo drug design Deep neural network
generative novel
molecules (G) and
predictive novel
compounds (P)

The ReLeaSe method
does not rely on
predefined chemical
descriptors No
manual feature
engineering for input
representation

Extension of the
system to afford multi-
objective optimization
of several target
properties

5-fold cross-
validation (5CV)
model trained using a
GPU Acc R2, RMSE
Acc R2 = 0.91
RMSE = 0.53

Sunseri J.,
2018, US (Sunseri
et al., 2019)

Connectionist Regression distributed
atom densities

CNN Cathepsin S model
ligand protein

CNN based on scoring
functions

CNN scoring function
outperforms Vina on
most tasks without
manual intervention

Difficulties with
Cathepsin S, for de
novo docking

AUC, ROC, MCC

Zhang B., 2018,
China (Zhang B.
et al., 2018)

Connectionist A novel deep learning
architecture to improve
synergy protein

CNN, RNN, BRNN Four input features;
position-specific scoring
matrix, protein coding
features, physical

A local block comprising
two 1D convolutional
networks with 100
kernels, and the

The CNN was
successful at feature
extraction, and the
RNN was successful

When the recurrent
neural network was
constructed by
unidirectional GRU,

Precision, Recall, F1-
score, macro-F1,
Accuracy

(Continued on following page)
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TABLE 1 | (Continued) An overview of the included articles on study and algorithm features based in their characteristics, strengths, limitations, and measure of precision.

Author/Year
of Publication/
Setting

Classes
of machine
learning

Methods Algorithms Protein
Query

Characteristics Strengths Limitations Validation
and performance

secondary structure
prediction

properties,
characterization of
protein sequence

concatenation of their
outputs. BGRU block,
the concatenation of
input from the previous
layer and before the
previous layer is fed to
the 1D convolutional
filter. After reducing the
dimensionality, the 500-
dimensional data are
transferred to the next
BGRU layer

at sequence
processing. The
residual network
connected the interval
BGRU network to
improve modeling
long-range
dependencies. When
the staked layers were
increased to two
layers, the
performance
increased to 70.5%,
and three-layer
networks increased
further to 71.4%
accuracy

the performance
dropped to 67.2%.
The unidirectional
GRU network was
ineffective at capturing
contextual
dependencies

Zhang L., 2018,
China (Zhang L.
et al., 2018)

Connectionist Two novel approaches
that separately generate
reliable noninteracting
pairs, based on
sequence similarity and
on random walk in the
PPI network

DNN, Adam
algorithm

Use of auto-covariance
descriptor to extract the
features from amino acid
sequences and deep
neural networks to
predict PPIs

The feature vectors of
two individual proteins
extracted by AC are
employed as the inputs
for these two DNNs,
respectively. Adam
algorithm is applied to
speed up training. The
dropout technique is
employed to avoid
overfitting. The ReLU
activation function and
cross-entropy loss are
employed, since they
can both accelerate the
model training and
obtain better prediction
results

To reduce the bias
and enhance the
generalization ability of
the generated
negative dataset,
these two strategies
separately adjust the
degree of the non-
interacting proteins
and approximate the
degree to that of the
positive dataset.

NIP-SS is competent
on all datasets and
hold a good
performance,
whereas NIP-RW can
only obtain a good
performance on small
dataset (positive
samples ≤6000)
because of the
restriction of random
walk and the results of
extensive experiments

Precision, Accuracy,
Recall, Specificity,
MCC coefficient, F1-
score, AUC,
Sensitivity

Zhao X., 2018,
China (Zhao et al.,
2018)

Connectionist Bi-modal deep
architecture with sub-
nets handling two parts
(raw protein sequence
and physicochemical
properties)

CNN and DNN Raw sequence and
physicochemical
properties of protein for
characterization of the
acetylated fragments

Multi-layer 1D CNN for
feature extractor and
DNN with attention layer
with a softmax layer

Capability of transfer
learning for species-
specific model,
combining raw protein
sequence and
physicochemical
information

Interpretation of
biological aspect,
overfitting problems
on small-scale data

10-fold cross-
validation; ACC =
0.708, sensitivity
(SEN) = 0.723,
specificity (SPE) =
0.707, AUC = 0.783,
MCC = 0.251

Armenteros J.,
2017, Denmark
(Almagro
Armenteros et al.,
2017)

Analogist Classification
optimization

CNN RNN BLSTM
FFNN Attention
models

Predict protein
subcellular localization

CNN extracts motif
information using
different motif sizes.
Recurrent neural
network scans the

A-BLSTM and the
CONV A-BLSTM
models achieved the
highest performance

Training time for the
full ensemble was
80 h, approximately
5 h per model

Nested cross-
validation and held-
out set for testing
models Gorodkin,

(Continued on following page)
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TABLE 1 | (Continued) An overview of the included articles on study and algorithm features based in their characteristics, strengths, limitations, and measure of precision.

Author/Year
of Publication/
Setting

Classes
of machine
learning

Methods Algorithms Protein
Query

Characteristics Strengths Limitations Validation
and performance

sequence in both
directions

Acc, MCC 72.90%
72.89%

Jimenez J.,
2017, Spain
(Jiménez et al.,
2017)

Bayesian Regression sigmoid
activation function,
depicting the probability

3D CNN Predict protein–ligand-
binding sites Drug
design

Fully connected
networks. Hierarchical
organized layers

Four convolutional
layers with max
pooling and dropout
after every two
convolutional layers,
followed by one
regular fully connected
layer

Demand of significant
computational
resources than other
methods for ligand-
binding prediction

10-fold cross-
validation Using
Nvidia GeForce GTX
1080 GPU for
accelerated
computing DCC,
DVO AUC, ROC, Sn,
SP, Precision, F1-
score, MCC,
Cohen’s Kappa
coefficient

Müller A., 2017,
Switzerland (Müller
et al., 2018)

Analogist Regression SoftMax
function for temperature-
controlled probability

RNN LSTM Design of new peptide
combinatorial de novo
peptide design

The computed output y
is compared to the
actual amino acid to
calculate the categorical
cross-entropy loss

The network models
were shown to
generate peptide
libraries of a desired
size within the
applicability domain of
the model

Increasing the
network size to more
than two layers with
256 neurons led to
rapid over-fitting of the
training data
distribution

5-fold cross-
validation Network
training and
generated
sequences on a
Nvidia GeForce GTX
1080 Ti GPU

Ragoza M.,
2017, US (Ragoza
et al., 2017)

Connectionist Classification distributed
atom densities

CNN SGD Protein-ligand score for
drug discovery

CNN architecture:
construction using
simple parameterization
and serve as a starting
point for optimization

On a per-target basis,
CNN scoring
outperforms Vina
scoring for 90% of the
DUD-E targets

CNN performance is
worse at intra-target
pose ranking, which is
more relevant to
molecular docking

3-fold cross-
validation ROC,
AUC, FPR, TPR, RF-
score, NNScore.
CNN-0.815 Vina-
0.645

Szalkai B.,
2017, Hungary
(Szalkai and
Grolmusz, 2018a)

Pattern
recognition

A classification by amino
acid sequence multi-
label classification ability

ANN Protein classification by
amino acid sequence

The convolutional
architecture with 1D
spatial pyramid pooling
and fully connected
layers. The network has
six one-dimensional
convolution layers with
kernel sizes [6,6,5,5,5,5]
and depths (filter counts)
[128,128,256,256,
512,512], with
parametric rectified
linear unit activation.
Each max pooling layer
was followed by a batch
normalization layer

The model
outperformed the
existing solutions and
have attained a near
100% of accuracy in
multi-label, multi-
family classification

Network variants
without batch
normalization and five
(instead of six) layers
showed a
performance drop of
several percentage
points. With more
GPU RAM available,
one can further
improve upon the
performance of our
neural network by
simply increasing the
number of
convolutional or fully
connected layers

Precision, Recall, F1-
value, AUC, ROC
curve

Szalkai B.,
2017, Hungary
(Szalkai and
Grolmusz, 2018b)

Logical Inference Classification
Hierarchical
classification tree

ANN Hierarchical biological
sequence classification

SECLAF implements a
multi-label binary cross-
entropy classification

SECLAF produces the
most accurate artificial
neural network for

Preparation of the
input data must be
done by the user

AUC

(Continued on following page)
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TABLE 1 | (Continued) An overview of the included articles on study and algorithm features based in their characteristics, strengths, limitations, and measure of precision.

Author/Year
of Publication/
Setting

Classes
of machine
learning

Methods Algorithms Protein
Query

Characteristics Strengths Limitations Validation
and performance

loss on the output
neurons

residue sequence
classification to date

Vang Y., 2017,
US (Vang and Xie,
2017)

Analogist Regression Distributed
representation with NLP

CNN HLA class I-peptide-
binding prediction

The CNN architecture:
convolutional and fully
connected dense layers

Effective for validation,
distribution, and
representation for
automatic encoding
with no handcrafted
encode construction

Provided sufficient
data, the method is
able to make
prediction for any
length peptides or
allele subtype

70% training set and
30% validation set
(Hold-out) and 10-
fold cross-validation
GPU for faster
computation of
model SRCC, AUC
SRCC = 0.521,
0.521, 0.513 AUC=
0.836, 0.819,
0.818 66.7%

Wang S., 2017,
US (Wang et al.,
2017)

Analogist Classification
Regression
Regularization and
optimization

UDNN RNN 2 Prediction of Protein
Contact Map

Consists of two major
modules, each being a
residual neural network

3D models built from
contact prediction
have Tm score >0.5
for 208 of the 398
membrane proteins

No recognition of
predict contact maps

from PDB.

Algorithm runs on
GPU card. Acc L/k
(k= 10, 5, 2, 1) Long-

range 47%
CCMpred- 21%
CASP11–30%

Yeh C., 2017,
UK, US (Yeh et al.,

2018)

Evolving
structures

Optimization GA GA multithreaded
processing

Designed helical repeat
proteins (DHRs)

Iterates through
mutation, scoring,
ranking, and selection

Aims to control the
overall shape and size
of a protein using
existing blocks

First workload
imbalance, less
efficient work sharing
and overheads in
scheduling

RMSD value

Simha R., 2015,
Canada, Germany,
US (Simha et al.,
2015)

Bayesian Classification
Probabilistic generative
model Bayesian
networks

MDLoc BN Protein multi-location
prediction

Each iteration of the
learning process obtains
a Bayesian network
structure of locations
using the software
package BANJO.

Improvement of
MDLoc over
preliminary methods
with Bayesian network
classifiers

MDLoc’s precision
values are lower than
those of BNCs,
MDLoc’s

5-fold cross-
validation Presi,
Recsi, Acc, F1-
scoresi

Yang J., 2015
China, US (Yang
et al., 2015)

Analogist Regression hierarchical
order reduction

SVR Structure prediction of
cysteine-rich proteins

Position-specific scoring
matrix (PSSM): each
oxidized cysteine
residue is represented
as a vector of 20
elements

Cyscon improved the
average accuracy of
connectivity pattern
prediction

Contact information
must be predicted
from sequence either
by feature-based
training or by
correlated mutations

10-fold cross-
validation and 20-
fold cross-validation
QC, QP 21.9%

Folkman L.,
2014, Australia
(Folkman et al.,
2014)

Bayesian
Constrained
optimization

Classification predicted
probability of the
mutation

SFFS SVM
EASE-MM

Model designed for a
specific type of mutation

Feature-based multiple
models with each model
designed for a specific
type of mutations

EASE-MM archived
balanced results for
different types of
mutations based on
the accessible surface
area, secondary
structure, or
magnitude of stability
changes

Using an independent
test set of 238
mutations, results
were compared in with
related work

10-fold cross-
validation ROC,
AUC, MCC, Q2, Sn,
Sp, PVV, NPV AUC =
0.82 MCC = 0.44 Q2
= 74.71 Sn = 73.14
Sp = 75.28 PVV =
52.30 NPV = 88.33

Li Z., 2014, US
(Li et al., 2014)

Bayesian Classification Probability
output prediction

SPIN NN Sequence profile
prediction

Sequence Profiles by
Integrated Neural

SPIN improves over
the fragment-derived

Minor improvement in
the core of proteins,

10-fold cross-
validation MSE,

(Continued on following page)

Frontiers
in

B
ioengineering

and
B
iotechnology

|w
w
w
.frontiersin.org

July
2022

|V
olum

e
10

|A
rticle

788300
21

V
illalobos-A

lva
et

al.
The

S
cience

B
ehind

P
rotein

and
A
I

https://www.frontiersin.org/journals/bioengineering-and-biotechnology
www.frontiersin.org
https://www.frontiersin.org/journals/bioengineering-and-biotechnology#articles


TABLE 1 | (Continued) An overview of the included articles on study and algorithm features based in their characteristics, strengths, limitations, and measure of precision.

Author/Year
of Publication/
Setting

Classes
of machine
learning

Methods Algorithms Protein
Query

Characteristics Strengths Limitations Validation
and performance

network based on
fragment-derived
Sequence profiles and
structure-derived energy
profiles

profile by 6.7% (from
23.6 to 30.3%) in
sequence identity
between predicted
and raw sequences

which have 10% less
hydrophilic residues in
predicted sequences
than raw sequences

Precision, Recovery
rate

Eisenbeis S.,
2012, Germany
(Eisenbeis et al.,
2012)

N/A N/A N/A Enzyme design No network No network No network —

Qi Y., 2012, US
(Qi et al., 2012)

Connectionist Classification Back
propagation in deep
layers

DNN Prediction of local
properties in proteins

An amino acid feature
extraction layer. A
sequential feature
extraction layer. A series
of classical neural
network layers

For the prediction of
coiled coil regions, our
performance of 97.4%
beats the best result
(94%) on the same
dataset from using the
same evaluation setup

The largest
improvement is
observed for relative
solvent accessibility
prediction, from 79.2
to 81.0% in the
multitask setting

3- and 10-fold cross-
validation Acc,
precision, recall,
F1 80.3%

Ebina T., 2011,
Japan (Ebina et al.,
2011)

Analogist Classification Domain
linker prediction SVM

DROP SVM RF Domain predictor Vector encoding.
Random Forest feature
selection. SVM
parameter optimization.
Prediction assessment

Advantage for testing
several averaging
windows, 600
properties encoded,
averaged with five
different windows into
a 3000-dimensional
vector

Computational time
required for
performing an
exhaustive search

5-fold cross-
validation AUC, Sn,
Precision, NDO, AOS

Yang Y., 2011,
US (Yang et al.,
2011)

Probability
Inference

Regression probabilistic-
based matching

SPARKS-X
Algorithm

Single-method fold
recognition

The model is built by
modeller9v7 using the
alignment generated by
SPARKS-X

SPAKRS-X performs
significantly better in
recognizing
structurally similar
proteins (3%) and in
building better
models (3%)

HHPRED improve 3%
over SPARKS-X due
to significantly more
sophisticated model
building techniques

ROC, TPR, FPR

Briesemeister
S., 2010, Germany
(Briesemeister
et al., 2010)

Bayesian Classification
probabilistic approach

NB Predict protein
subcellular localization

Yloc, based on the
simple naive Bayes
classifier

Small number of
features and the
simple architecture
guarantee
interpretable
predictions

Returns in confidence
estimates that rate
predictions are reliable
or not

5-fold cross-
validation Acc, F1-
score, precision,
recall

Lin G., 2010, US
(Lin et al., 2010)

Analogist Classification
Optimization

SVM SVR Protein folding kinetic
rate and real-value
folding rate

SVM classifier to classify
folding types based on
binary kinetic
mechanism (two-state
or multi-state), instead of
using structural classes
of all-α-class, all-β-class
and α/β-class

The accuracy of fold
rate prediction is
improved over
previous sequence-
based prediction
methods

Performance can be
further enhanced with
additional information

Leave-one-out
cross-validation
(LOOCV)
Classification
accuracy surface,
Predicted precision

Analogist Classification
Optimization

RFR SVM RF Random forest includes
bootstrap re-sampling,

Overall accuracy of
classification and the

Direct comparison of
Prethermut with the

10-fold cross-
validation Overall

(Continued on following page)
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TABLE 1 | (Continued) An overview of the included articles on study and algorithm features based in their characteristics, strengths, limitations, and measure of precision.

Author/Year
of Publication/
Setting

Classes
of machine
learning

Methods Algorithms Protein
Query

Characteristics Strengths Limitations Validation
and performance

Tian J., 2010,
China (Tian et al.,
2010)

Effect on single or multi-
site mutation on protein
thermostability

random feature
selection, in-depth
decision, tree
construction, and out-
of-bag error estimates

Pearson correlation
coefficient of
regression were
79.2% and 0.72

other published
predictor was not
performed as a result
of data limitation and
differences

accuracy (Q2), MCC,
Sn, Sp, Pearson
correlation coefficient
® Acc = 79.2% r
= 0.72

Zhao F., 2010,
US (Zhao et al.,
2010)

Bayesian Classification
probabilistic graphical
model

CNF SVM Protein folding Conformations of a
residue in the protein
backbone is described
as a probabilistic
distribution of (θ, τ)

Themethod generates
conformations by
restricting the local
conformations of a
protein

CNF can generate
decoys with lower
energy but not
improve decoy quality

5-, 7-, and 10-fold
cross-validation
Accuracy (Q3) Q3
= 80.1%

Hong E., 2009,
US (Hong et al.,
2009)

Symbolist Classification Branch
and bound tree Logical
inference

BroMap Tenth human fibronectin,
D44.1 and DI.3
antibodies, Human
erythropoietin

BroMAP attempts the
reduction of the problem
size within each node
through DEE and
elimination

Lower bounds are
exploited in branching
and subproblem
selection for fast
discovery of strong
upper bounds

BroMAP is particularly
applicable to large
protein design
problems where DEE/
Ap struggles and can
also substitute for
DEE/Ap in general
GMEC search

N/A

Özen A., 2009,
Turkey (Özen et al.,
2009)

Analogists Classification
Regression Constrained
optimization

SVM KNN DT SVR Single-site amino acid
substitution

Early Integration.
Intermediate Integration.
Late Integration

Possible combination
including new feature
set, new kernel, or a
learning method to
improve accuracy.

Training any classifier
with an unbalanced
dataset in favor of
negative instances
makes it difficult to
learn the positive
instances

20-fold cross-
validation Acc, Error
rate, Precision,
Recall, FP rate Acc=
0.842, 0.835

Ebrahimpour A.,
2008, Malaysia
[(Ebrahimpour
et al., 2008)

Connectionist Classification Back and
batch back propagation

ANN FFNN IBP
BBP QP GA LM

Lipase production
Syncephalastrum
racemosum,
Pseudomonas sp. strain
S5 and Pseudomonas
aeruginosa

ANN architecture: input
layer with six neurons,
an output layer with one
neuron, and a hidden
layer. Transfer functions
of hidden and output
layers are iteratively
determined

Maximum predicted
values by ANN (0.47
Uml -1) and RSM
(0.476 U–l - 1),
whereas R2 and AAD
were determined as
0.989 and 0.059% for
ANN and 0.95 and
0.078% for RSM,
respectively

ANN has the
disadvantage of
requiring large
amounts of training
data

RMSE, R2, AAD
RMSE<0.0001 R2 =
0.9998

Huang W.,
2008, Taiwan
(Huang et al.,
2008)

Analogist Clustering Combinatorial
optimization

GA SVM KNN Prediction method for
predicting subcellular
localization of novel
proteins

Preparation of SVM,
binary classifiers of
LIBSVM. Sequence
representation. Inclusion
of essential GO terms

Bias-free estimation of
the accuracy reduces
computational cost

Computational
demand is impractical
for large datasets

10-fold cross-
validation and leave-
one-out cross-
validation (LOOCV)
Accuracy, MCC
Acc= 90.6–85.7%

Katzman S.,
2008, US
(Katzman et al.,
2008)

Bayesian Classification
Probabilistic

MUSTER SVM Local structure
prediction

Calculation of output of
each unit in each layer.
Soft max function to all
outputs of a given layer
represents valid
probability distribution

Accurate predictions
of novel alphabets for
extending the
performance

Smaller windows and
number of units, the
network has fewer
total degrees of
freedom

3-fold cross-
validation, Qn

(Continued on following page)
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TABLE 1 | (Continued) An overview of the included articles on study and algorithm features based in their characteristics, strengths, limitations, and measure of precision.

Author/Year
of Publication/
Setting

Classes
of machine
learning

Methods Algorithms Protein
Query

Characteristics Strengths Limitations Validation
and performance

Liao J., 2007,
US (Liao et al.,
2007)

Supervised
Learning

Classification
Regression

RR Lasso PLSR
SVMR LPSVMR
LPBoosR MR
ORMR

Proteinase K variants Design of protein
variants. Expression of
the protein variants.
Analysis of protein
variant sequences and
activities to assess the
contribution of each
amino acid substitution

Machine learning
algorithms make it
possible to use more
complex and
expensive tests to only
protein properties

Computational
resources are cheap;
we instead used the
1000 subsamples of
the training sets

Cross-validation

Raveh B., 2007,
Israel (Raveh et al.,
2007)

Connectionist Clustering Pattern
recognition

K-means Clustering Existence of α-helices,
parallel β-sheets, anti-
parallel sheets and
loops. Non-conventional
hybrid structures

Network motif vector (k
means of motif vector).
Enriched Interaction
graphs

Rediscovery existence
of conventional
a-helices, parallel
b-sheets, anti-parallel
sheets and loops, and
non-conventional
hybrid structures

Limitation to
backbone
interactions, the
degree of each node in
the network was
bounded from above
by two covalent and
two possible
hydrogen bonds

10-fold cross-
validation

Shamim M.,
2007, India
(Shamim et al.,
2007)

Analogist Classification
Regression

SVM Protein-fold prediction LIBSVM provides a
choice of in-built kernels,
such as Linear,
Polynomial, Radial basis
function (RBF), and
Gaussian, we use RBF
kernel

Overall accuracy of
65.2% for fold
discrimination and
individual
propensities, which is
better than those from
the literature

Incrementation of
backbone
conformation results
in the reduction on
accuracy prediction

2-fold cross-
validation 5-fold
cross-validation
Accuracy (Q), Sn, Sp
Q= 65.2% >70%

Hung C., 2006,
Taiwan (Hung
et al., 2006)

Symbolist Regression Genetic
algorithm casual tree

DFS HMM GA
AGCT

Predict protein functions AGCT study applies a
hybrid methodology
based on genetic
programming with a
causal tree model to
predicting protein
function

The model is
developed to exploit
global search
capabilities in genetic
programming for
predicting protein
functions of a distantly
related protein family
that has difficulties in
the conserved domain
identification

Ratios of comparison
between the heuristic
signal match and
exhaustive sequence
alignment are low

Cross-validation

Sidhu A., 2006,
UK (Sidhu and
Zheng, 2006)

Symbolist Classification Logical
Inference

BBFNN NN DT Predict signal peptide BBFNN Characteristics:
Mutation matrix for
protein sequence
encoding. BBFNN is a
linear combination of K
bio-bases with the bio-
basis function

The BBFNN has
improved the
accuracy by a further
5%. Most cost-
effective and efficient
way of predicting
signal peptides

Size of the positive
examples in the
dataset reduces
prediction accuracy

5-fold cross-
validation Accuracy
Acc >90%, 97.16%
for BBFNN 97.63%
for C4.5

Zimmermann
O., 2006,
Germany, US
(Zimmermann and
Hansmann, 2006)

Analogist Classification SVM C-SVM
algorithm
implementation

Prediction of dihedral
regions

Implementation of the
sequence window of
length seven and three
separate predictions:

Profile-only SVM
classifiers show a
prediction
performance of 80%

The approach is
based on sequence
profiles only. Models
show a tendency to
over-predict extended

Acc, MCC, Sn, Sp
Acc = 93.3%, 93.4%
MCC = 0.645, 0.671
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DATA COLLECTION: primary data: observation, research
and review of articles. Secondary data: data of the reviewed
articles and information shared among keywords.

DATA PRE-PROCESSING (ETL and training): identification
of filtered data, curated data, and features implemented; machine
learning input relationship with protein science servers.

DATA PROCESSING (training data and feature extraction):
observation of input data and data encoding format. Record of
machine learning algorithms and methods. Recognition of key
information for processing data within databases.

DATA POST-PROCESSING: observation of post-processing
treatment, rule quality processing, filtering, combination, or
unification of information.

MEASURE: explanation of the process, the values of different
metrics for the quantification of magnitudes, and the
contribution for the completion within the process of
information.

ANALYZE: identify the application of machine learning
algorithm in which the input of the dataset to process data
format, training set, and 3D structures.

IMPROVE: determine the set to whom these new forms will be
applied in models of the researched data and contribute to future
implementations in protein science.

Concerning the computational aspects as to how articles were
classified, three initial divisions were made and are displayed in
Table 1: Pre-process, process, and post-process, each of which
contain, in turn, the following items:

pre-process
database, pretreatment, and input
process
machine learning paradigm and input, algorithm and

development software, three aspects of the neural network
used (characteristics, strengths, and limitations) and output.

post-process
input and web server when applied.
Most of the research reported in these articles performs a

pretreatment over the protein database used, that is, processes of
randomization and training, in order to leave the data prepared
for the computational process itself, for when the algorithm is to
be executed on a software platform and within a particular
machine learning paradigm (mostly supervised, unsupervised,
and deep learning, as shown in Figure 4). We also reported
special characteristics as well as strengths and limitations of the
neural networks used. Finally, part of the post-process, when
applied, concerns the web server where research results are
stored. Moreover, some of these aspects are also registered in
Tables 2–6 as well as some others (programming language and
software license type).

RESULTS

Article Scaffolding
This article is arranged as follows (Figure 2): first, we provide a
representation of the process in designing, preparing, and
describing of the guideline throughout the article. Secondly,
we review the presented formulation of the research questionT
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toward the determined problem formulation and objectives of the
research, including the treatment of the data and the applications
of it. Thirdly, the article processes the observation, research, and
review of a series of articles to further study the data obtained and
review similarities. Furthermore, the gathering of AI–PS
information, within this processing of the identification of
filtered data, curated data and features implemented, the
observation of input data, data encoding format, recording of
machine learning algorithms and methods, as so the post-
processing treatment, quality rule processing, filtering,
combination, or unification of information, which passes into
the interpretation of the information recollected, and
representation of it by the usage of figures and tables, portrays

the results, which are focused on the latest findings of AI
applications in the field of protein science as well as the usage
of specific algorithms for protein design. Therefore, this aims to
include a wide-scope range of the state of the art of artificial
intelligence within protein science; this leads us to a latter analysis
and discussion regarding the identification and prediction of AI
applications into the protein field, by classification and
identification of main protein structures, and other
components not found or described yet in nature, and the
resolution of possible protein prediction structures and other
components of them are plausible outcomes of future research.

Toward an Innovative Cross-Functional
AI–PS Binomial Inter-field
This systematic review andmeta-analysis are focused on the latest
findings of AI applications to the field of protein science as well as
specific algorithms used for protein design. Furthermore, it aims
to include a wide scope of the state of the art of artificial
intelligence in protein science. PIO is the methodology used to
address the following research question: What is the state of the
art in the use of artificial intelligence in the protein science field?
Figure 1 shows the total number of articles retrieved using the
PIO strategy in the PubMed database.

The systematic review process began with 541 references
obtained from five electronic databases: 42 were from
PubMed, 74 were from Ebsco, 48 were from Bireme, 38 were
from OVID, and 339 were from Web of Science. In the first
screening, 403 articles were removed: 250 articles with a double
reference; 2 not written in Spanish or English; 149 whose topic
was irrelevant to the review; and two newspapers, letters, or
reviews. This election process left 138 references, and manually
we added 6, thus getting a total of 144 articles for the review
(Figure 3).

A second screening (eligibility) was performed using the
following set of quality criteria:

1. Clear research questions and objectives.
2. Definition of the measured concepts.
3. Reliability and feasibility of the instruments to be measured.
4. Detailed description of the method.
5. Scaffolding and enhanced protein information.
6. Characteristics of scaffolding and its realization.
7. Appropriate system and learning approach.
8. Journal impact.

A total of 93 articles were included for further analysis, and 51
studies were removed based on quality criteria.

Machine Learning Approach to Protein
Science
Proteins are influenced by epigenetic phenomena (cellular
stress, aging, etc.) because of their multiple structure-folding-
function within protein science (PS), phenomena that can be
challenged through the use of artificial intelligence (AI).There
are several questions within this interdisciplinary approach

FIGURE 3 | Flowchart of the review process. A PRISMA flowchart of the
systematic review on AI for protein sciences.
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TABLE 2 | An overview of the protein and drug design articles with the quality assessment.

First
Author/Year
of Publication/
Country

Database Initial
scaffold

(ID)

Designed
Protein

ML model Software/Sever Programming
language/
Platform

License Quality
(%)

Machine
learning

Protein
application

Protein and drug design
Hie B., 2022,
USA (Hie and
Yang, 2022)

N/A Sequence-to-
function machine
learning surrogate
model t

Protein engineering
design

Machine learning
optimization

N/A N/A N/A 50% Supervised
learning:
optimization

Protein
design

Dara S., 2021,
India (Dara et al.,
2021)

ZINC, BindingDB,
PUBCHEM,
Drugbank, REAL,
Genomic Database,
Adaptable Clinical
Trail Database,
DataFoundry,
SWISS-PROT,
SCoP, dbEST.
Genome
Information
Management
System,
BIOMOLQUEST,
PDB, SWISS-
PORT, ENZIME

Target
identification, hit
discovery, hit to
lead, lead
optimization

PPI prediction, protein
folding, drug
repurposing, virtual
screening, activity
scoring, QSAR, drug
design, evaluation of
ADME/T properties

AutoEncoder,
ANN,CNN, DL,
MLP,NB, RF, RNN,
CNN, SVM, LR

N/A N/A N/A 50% Supervised
learning:
prediction

Drug
discovery

Feger G., 2020,
Czech
Republic,
France (Feger
et al., 2020)

PDB Peptide amphiphile
scaffolds

Amphiphilic peptide
scaffold design

SVM, RF SasFit C Open
source

60 Supervised
Learning:
Prediction

Protein
design

He H., 2020,
China (He et al.,
2020)

Multiple databases Multiple organisms Review of novel drug
discovery techniques

Multiple methods for
structure prediction,
ligand-binding site,
undruggable to drug
rabble targets, hidden
allosteric site

N/A N/A N/A 50 N/A Drug
discovery

Maia E., 2020,
Brazil (Maia
et al., 2020)

Multiple databases structure-based
virtual screening
(SBVS)

Drug development VSA N/A Multiple
languages

N/A 60 Supervised
Learning:
Unsupervised
Learning

Drug
development
design

Qin Z., 2020,
US (Qin et al.,
2020)

PDB Phi–psi angle and
sequence of natural
protein, only of
standard amino
acids

Protein design of fold
alpha-helical structure

MNNN Tensorflow https://
github.com/IBM/
mnnn

Python Open
Source

95 Supervised
Learning:
Prediction
Regression

Protein
design

Tsou L., 2020,
Taiwan (Tsou
et al., 2020)

ChEMBL In-house database
of 165,000
compounds

TNBC inhibitors and
GPCR classification
prediction

DNN, RF N/A N/A N/A 60 Supervised
Learning:
Classification

Drug design
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TABLE 2 | (Continued) An overview of the protein and drug design articles with the quality assessment.

First
Author/Year
of Publication/
Country

Database Initial
scaffold

(ID)

Designed
Protein

ML model Software/Sever Programming
language/
Platform

License Quality
(%)

Machine
learning

Protein
application

Wang X., 2020,
China (Wang X.
et al., 2020)

KIBA, Davis dataset Kinase protein
family

Predict drug-target-
binding affinity

CNN, GCN N/A N/A N/A 60 Supervised
Learning,
Semi-
Supervised
Learning:
Prediction

Drug-target
binding-
affinity

Yu C., 2020,
Taiwan, US (Yu
and Buehler,
2020)

PDB α-helix-rich
proteins

De novo protein design RNN, LSTM TensorFlow,
https://github.com/
tensorflow/
magenta/issues/
1438

Python Open
Source

90 Supervised
Learning:
Unsupervised
Learning:
Prediction

Protein
design

Fang C., 2019,
US (Fang et al.,
2020)

UniProt Proteins from
datasets BT426
and BT6376
containing at least
one beta-turn

Beta-turn prediction HMM, CNN, DeepDIN Tensorflow, Keras
http://dslsrv8.cs.
missouri.edu/
~cf797/
MUFoldBetaTurn/
download.html

Python Open
Source

90 Supervised
Learning:
Classification

Protein
design

Karimi M.,
2019, US
(Karimi et al.,
2019)

BindingDB,
STITCH, Uniref

Various protein
classes

Compound–protein
affinity prediction

RNN, CNN https://github.com/
ShenLab/
DeepAffinity

N/A N/A 75 Semi-
supervised,
Unsupervised
Learning:
Regression

Drug design

Lin J., 2019,
China (Lin et al.,
2019)

DrugBank Druggable proteins
and non-druggable
proteins

Drug target prediction SVM, GA https://github.com/
QUST-AIBBDRC/
GA-Bagging-SVM

Matlab MathWorks 90 Supervised
Learning:
Prediction

Drug design

Hu B., 2018,
China (Hu et al.,
2018)

DDI, SIDER,
TWOSIDES, HPRD,
Drug Bank, Offsides
PubChem

Semantic meta-
paths ADR

meta-path-based
proximities ADR

SDHINE, Network
embedding

TensorFlow, N/A C, C++, Python Apache 2.0 65 Supervised
Learning:
Regression

Drug design

Popova M.,
2018, Russia,
US (Popova
et al., 2018)

PHYSPROP,
ChEMBL, KKB

SMILE string Drug design (de novo
design)

Stack-RNN, LSTM,
ReLeaSE

PyTorch,
TensorFlow
ReLeaSE https://
github.com/isayev/
ReLeaSE

Python, CUDA Open
Source

75 Reinforced
Learning,
Unsupervised
Learning:
Regression

Drug design

Zafeiris D.,
2018, UK
(Zafeiris et al.,
2018)

GEO, Array
Expression

Amyloid beta-
precursor protein,
microtubule-
associated protein
tau,
apolipoprotein E

Biomarker discovery
for Alzheimer’s disease

ANN N/A N/A N/A 50 Supervised
Learning:
Classification

Enzyme
design

Jimenez J.,
2017, Spain
(Jiménez et al.,
2017)

scPDB PDB ID File or
PDB file

Predict protein–ligand-
binding sites Drug
design

3D-DCNN Keras, Theano
www.
playmolecule.org

Python Open
Source

90 Supervised
Learning:
Regression

Drug design
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TABLE 2 | (Continued) An overview of the protein and drug design articles with the quality assessment.

First
Author/Year
of Publication/
Country

Database Initial
scaffold

(ID)

Designed
Protein

ML model Software/Sever Programming
language/
Platform

License Quality
(%)

Machine
learning

Protein
application

Müller A., 2017,
Switzerland
(Müller et al.,
2018)

ADAM, APD DADP Antimicrobial
peptide Amino acid
sequences

Design of new peptide
combinatorial de novo
peptide design

RNN, LSTM modlAMP Python
package https://
github.com/
alexarnimueller/
LSTM_peptides

Python Open
Source

100 Supervised
Learning:
Regression

Drug design

Ragoza M.,
2017, US
(Ragoza et al.,
2017)

PDB ChEMBL Spatial and
chemical features
of protein–ligand
complex

Protein–ligand score
for drug discovery

CNN, SGD Gnina Caffe https://
github.com/gnina

C++ Open
Source

85 Supervised
Learning:
Classification

Drug design

Yeh C., 2017,
UK, US (Yeh
et al., 2018)

JSON database:
centers of mass and
geometric
relationship data

Helical repeat
proteins, Center of
mass (CoM) using
C-α protein
sequence

Designed helical
repeat proteins (DHRs)

GA multithreaded
processing

ELFIN https://
github.com/
joy13975/elfin

Python, C++,
MATLAB

Apache 2.0
open
source 3-
Clause BSD

90 Supervised
Learning:
Optimization

Drug design

Folkman L.,
2014, Australia
(Folkman et al.,
2014)

ProTherm Protein sequence
and amino acid
substitution

Model designed for a
specific type of
mutation

EASE-MM, SVM EASE-MM LISVM
http://www.ict.
griffigr.edu.au/
bioinf/ease

Python, Linux Open
Source

75 Supervised
Learning:
Classification

Model design

Khan Z., 2014,
Pakistan (Khan
et al., 2015)

BRENDA Amino Acid
sequence and
alkaline enzyme

Enzyme catalysis DT, KNN, MLP,
PNN, SVM

MATLAB Bioweka
Weka

Java Open
Source
MathWorks

50 Supervised
Learning:
Classification

Drug design

Li Y., 2014, US
(Li and Cirino,
2014)

PDB E. coli Designs of improved
enzymes and enzymes
with new functions and
activities

Computational design
and scaffolding and
compartmentalization

N/A N/A N/A 50 N/A Drug design

Murphy G.,
2014, US
(Murphy et al.,
2015)

DND_4HB protein DND_4HB protein Design an up-down
four-helix bundle

Computational folding N/A N/A N/A 50 N/A Drug design

Traoré S., 2013,
France (Traoré
et al., 2013)

PDB 3D protein
structure

Structure-based
computational protein
design framework

CFN CPD http://
genoweb.toulouse.
inra.fr/tschiex/CPD

Perl Open
source

65 Supervised
Learning:
Classification

Protein
design

Volpato V.,
2013, Ireland
(Volpato et al.,
2013)

ENZYME UniProt Oxidoreductase,
transferase,
hydrolase, lyase,
isomerase, and
ligase

Acid-residue
frequency derived from
multiple sequence
alignments extracted
from uniref90

N-to-1 Neural Network N/A N/A N/A 65 Supervised
Learning:
Classification

Drug design

Daniels N.,
2012, US
(Daniels et al.,
2012)

SCOP Protein sequence,
207 beta structural
SCOP super
families

Detection for beta-
structural proteins into
the twilight zone, make
over a 100-new-fold
prediction genome of
T. maritima

HMM, MRF SMURFLite http://
smurf.cs.tufts.edu/
smurflite/

N/A Open
Source

65 Unsupervised
Learning:
Clustering

Drug design
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TABLE 2 | (Continued) An overview of the protein and drug design articles with the quality assessment.

First
Author/Year
of Publication/
Country

Database Initial
scaffold

(ID)

Designed
Protein

ML model Software/Sever Programming
language/
Platform

License Quality
(%)

Machine
learning

Protein
application

Eisenbeis S.,
2012, Germany
(Eisenbeis et al.,
2012)

PDB (βα)8-barrel and the
flavodoxin-like fold,
CheY, HisF

Enzyme design Rational recombination http://pubs.acs.org
Modeller, Rosetta

Python IBM,
Academic
nonprofit
freeware

75 N/A Drug design

Ebina T., 2011,
Japan (Ebina
et al., 2011)

DS-All dataset Protein sequence Domain predictor DROP, SVM, RF DROP http://web.
tuat.ac.jp/
~domserv/DROP.
html

Bash script Open
source

75 Supervised
Learning:
Classification

Drug design

Bostan B.,
2009, US
(Bostan et al.,
2009)

KEGG Given a species
proteome

Predict homologous
signaling pathway

PSP N/A N/A N/A 50 Supervised
Learning:
Classification

Model design

Hong E., 2009,
US (Hong et al.,
2009)

Standard rotamer
library Expanded
rotamer library

Fn3: Derived from
protein Fn3, 10th
human fibronectin-
type III domain

Tenth human
fibronectin, D44.1 and
DI.3 antibodies,
Human erythropoietin

BroMAP BroMAP C++, Linux Open
Source

100 Supervised
Learning:
Optimization

Drug design

Özen A., 2009,
Turkey (Özen
et al., 2009)

ProTherm Structure-based
features: amino
acid substitution
likelihood
equilibrium
fluctuations α, Cβ,
packing density

Single-site amino acid
substitution

SVM, KNN, DT, SVR MOSEK http://
www.prc.boun.
edu.tr/appserv/prc/
mlsta

N/A Open
Source

85 Supervised
Learning:
Classification
Regression

Model design

Ebrahimpour A.,
2008, Malaysia
(Ebrahimpour
et al., 2008)

GenBank Geobacillus sp.
Strain

Lipase production
Syncephalastrum
racemosum,
Pseudomonas sp.
Strain S5 and
Pseudomonas
aeruginosa

ANN, FFNN, IBP, BBP,
QP, GA, LM

CPC-X Software
N/A

Java Neural
Power
version 2.5

75 Supervised
Learning:
Classification

Protein
design

Zhu X., 2008,
China (Zhu and
Lai, 2009)

PDB 223 scaffold
proteins

Pocket residues of
ribose-binding protein
(2dri), tyrosyl-t/RNA
synthetase (4ts1), and
tryptophan synthase
(1a50). No metal ion-
binding sites

Vector matching N/A N/A N/A 65 N/A Drug design

Liao J., 2007,
US (Liao et al.,
2007)

GenBank Proteinase
K-catalyzed
hydrolysis of the
tetrapeptide
N-Succinyl-Ala-
Ala-Pro-Leu
p-nitroanilide

Proteinase K variants RR, Lasso, PLSR,
SVMR, LPSVMR,
LPBoosR, MR, ORMR

N/A Matlab MathWorks 75 Supervised
Learning:
Classification
Regression

Protein
design
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TABLE 2 | (Continued) An overview of the protein and drug design articles with the quality assessment.

First
Author/Year
of Publication/
Country

Database Initial
scaffold

(ID)

Designed
Protein

ML model Software/Sever Programming
language/
Platform

License Quality
(%)

Machine
learning

Protein
application

Raveh B., 2007,
Israel (Raveh
et al., 2007)

PDB TIM-barrel fold
1YPI. Whole β-
sheet global
structures

Existence of α-helices,
parallel β-sheets, anti-
parallel sheets and
loops. Non-
conventional hybrid
structures

K-means clustering Matlab Matlab MathWorks 75 Unsupervised
Learning:
Clustering

Protein
design

Zimmermann
O., 2006,
Germany
(Zimmermann
and Hansmann,
2006)

PDB Protein sequence Prediction of dihedral
regions

C-SVM LIBSVM-library
DHPRED http://
www.fz- juelich.de/
nic/cbb

C, Python,
Linux, Windows

Open
source

80 Supervised
Learning:
Classification

Protein
design

Russ W., 2002,
US (Russ and
Ranganathan,
2002)

N/A SH3 domain GroEL
minichaperoneWW
domain prototype

Thermostable
consensus phytase,
84.5 kDa protein

Knowledge-base
potential functions

N/A N/A N/A 65 N/A Protein
design

Rossi A., 2001,
Italy (Rossi et al.,
2001)

PDB, HSSP 2ci2 Barnase Barnase and
chymotrypsin inhibitor

Perceptron N/A N/A N/A 90 Supervised
Learning:
Regression

Drug design

3D-CNN, Three-dimensional convolutional neural network; ANN, Artificial neural network; BBP, Back Back propagation; BroMap, Branch and bound map estimation; CFN, Cost function network; CNN, Convolutional neural network;
DeepDIN, Deep dense inception network; DT, Decision tree; DROP, Domain linker prediction using optimal feature; EASE-MM, Evolutionary Amino acid, and Structural Encodings with Multiple Models; FFNN, Feed forward neural network;
GA, Genetic algorithms; GCN, Graph convolutional network; HMM, Hidden Markov model; IBP, Incremental back propagation; KNN, k-nearest neighbor; Lasso, Least absolute shrinkage and selection operator; LM, Levenberg–Marquardt;
LPBoostR, Linear programming boosting regression; LPSVMR, Linear programming support vector machine regression; LSTM, Long short-term memory; MLP, Multilayer perceptron; MR, Matching loss regression; MRF, Markov random
forest; MNNN, Multi-scale neighborhood-based neural network; ORMR, One-norm regularization matching-loss regression; PLSR, Partial least-squares regression; PNN, Probabilistic neural network; PSP, Predict Signal Pathway; QP, quick
prob; ReLeaSE, Reinforcement Learning for Structural Evolution; RF, Random forest; RNN, Recurrent neural network; RR, Ridge regression; SDHINE, Meta path-based heterogeneous information embedding approach; SFFS, Sequential
forward floating selection; SGD, Stochastic gradient descent; SVM, Support vector machine; SVMR, Support vector machine regression; SVR, Support vector regression; VSA, Virtual screening algorithms.
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such as How do proteins evolve? How do proteins fold and get
their tridimensional structure? What are their networks

within proteins? Given the astronomical numbers of
possibilities for protein structures, configurations, and
functions that require the use of AI as a tool to fully
understand protein behavior.

A total of 144 articles were assessed for quality (Tables 2–6)
resulting in 93 articles (Table 1), those articles that were greater
or equal to 75 in the quality percentage qualifications were kept
for the final biochemical meta-analysis. For this review and meta-
analysis, we identified five main applications of AI into PS
(Tables 2–6 and Figures 4–6)

I. Protein design and drug design (Table 2)
a) De novo protein design.
b) Novel biocatalyst design.
c) Novel function and ligand interaction.
d) Evolution of non-existent proteins in nature.
e) Chemical structure and properties.
f) Drug–drug interaction.
g) Drug–receptor interaction.
h) Drug effects.

II. Protein function, function prediction, and novel function
(Table 3)
a) Protein–ligand interactions.
b) Hydroxylation site prediction.
c) Prediction of the local properties in proteins.
d) Enzymatic function prediction.
e) Predicting protein–protein interactions.
f) Function prediction.
g) Molecular property prediction.

III. Fold ID, physicochemical properties, and protein
classification (Table 4)
a) Fold Id.
b) Glycation site predictor.
c) Phosphorylation site predictor.
d) Protein–protein interaction.
e) Intrinsically disordered protein prediction.

IV. Protein structure prediction (Table 5)
a) Protein structure prediction: primary, secondary, and

3D-structures; domains, active sites, allosteric sites,
and structural feature prediction.

b) Protein structure classification: folds, structural families,
intrinsically disorder proteins, etc.

c) Protein–protein interactions and protein networks.
d) Protein–ligand interactions: substrates, inhibitors,

activators, ions, etc.
V. Protein contact map prediction, protein-binding

prediction, protein site prediction, and genomics
(Table 6)

1) Contact map prediction.
2) Protein sub-mitochondrial site prediction.
3) Genomics.

The 40% (57/144) of the protein studies by AI applications were
the following ones: myoglobin, silk protein, amyloid proteins, Rab
family, cathepsin S family, kinases family, K proteinase, barnase,
apolipoprotein family, protein DND_4HB, and antimicrobial
peptides. Studies in enzymes should be pointed out,

FIGURE 4 | Machine Learning paradigms: superviser learning,
unsupervised learning, reinforcement learning.
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FIGURE 5 | (Continued).

FIGURE 5 | Machine learning and artificial intelligence applications to protein sciences. Information includes the number of studies, applications, databases,
methods, and validation used.
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TABLE 3 | An overview of the protein function prediction, function prediction, and novel function articles with the quality assessment.

First
Author/Year
of Publication/
Country

Database Initial
scaffold

(ID)

Designed
Protein

ML model Software/Sever Programming
language/
Platform

License Quality
(%)

Machine
learning

Protein
application

Protein function prediction
Verma N., 2021,
US (Verma et al.,
2021)

DrugBank
matador
PDB

Human, C. Elegans Protein–ligand
interactions

DNN GitHub (https://github.
com/ekraka/SSnet)

Python Open
source

75 Supervised
learning:
Prediction

Protein–ligand
interaction
prediction

Du Z., 2020,
China, Russia, US
(Du et al., 2020)

CAFA3,
SwissProt

Human, C. Elegans Automated function
prediction

NLP, CNN Keras, TensorFlow Python Open
Source

70 Supervised
Learning:
Classification

Protein function
prediction

Liang M., 2020,
China (Liang and
Nie, 2020)

PDB Relative angle of (C –

Cα – C) principal
plane

Enzymatic function
prediction

RN, LSTM TensorFlow Python Open
Source

90 Supervised
Learning:
Prediction

Protein function
prediction,
Function ID

Rifaioglu A., 2019,
Turkey, UK
(Rifaioglu et al.,
2019)

UniProtKB/
Swiss-Prot

N/A GO term prediction DNN Tensorflow, https://
github.com/cansyl/
DEEPred

Python Open
Source

70 Supervised
Learning:
Regression

Protein function
prediction

Torng W., 2019,
US (Torng and
Altman, 2019)

PROSITE
NOS dataset

Protein structure as
3D images

Protein functional site
detection

DL, 3D-
CNN, SVM

N/A https://simtk.org/
projects/fscnn

Python N/A 75 Supervised
Learning:
Classification

Protein function
prediction

Wan C., 2019, UK
(Wan et al., 2019)

UniProtKB/
Swiss-Prot

Human proteins Function prediction DMNN, SVM Keras, https://github.
com/psipred/
STRING2GO

Python Open
Source

80 Supervised
Learning:
Prediction
Classification

Protein function
prediction

Feinberg E.,
2018, China, US
(Feinberg et al.,
2018)

PDB Bind
2007

Scaffold split for
grouping ligands in
common frameworks

Molecular Property
Prediction

GCNN PyTorch, NumPy and
SciPy

Python Open
Source

100 Supervised
Learning:
Prediction

Protein function
prediction

Frasca M., 2018,
Italy (Frasca et al.,
2018)

STRING GO Organisms: Homo
sapiens (human) S.
cerevisiae (yeast) Mus
musculus (mouse)

AFP (Automated
Protein Function
Prediction)

COSNet,
ParCOSNet,
HNN

COSNet, ParCOSNet C, C++, R, CUDA Open
Source

75 Unsupervised
Learning:
Clustering

Protein function
prediction

Khurana
S., 2018, Qatar,
US (Khurana
et al., 2018)

pepcDB
database

k-mer structure and
additional sequence
and structural
features extracted
from the protein
sequence

Solubility prediction CNN, DL,
FFNN

PROSO II https://zenodo.
org/record/1162886#.
XSP26ffPzOQ DeepSol:
https://github.com/
sameerkhurana10/
DSOL_rv0.2

Python, Linux Open
source

95 Unsupervised
Learning:
Clustering

Protein function
prediction

Li H., 2018, China
(Li et al., 2018)

HPRD DIP
HIPPIE

Primary sequence
Escherichia coli,
Drosophila,
Caenorhabditis
elegans, Pan’s PPI
datasets

Prediction of protein
interactions

DNN, CNN,
LSTM

Keras, Theano,
TensorFlow, N/A

Python Open
Source

85 Supervised
Learning:
Regression

Protein function
prediction

Long H., 2018,
China, US (Long
et al., 2018)

UniProt PseAAC
Hydroxyproline and
hydroxylysine

Predicting
hydroxylation sites

CNN, LSTM MXNet, N/A R Apache 2.0 85 Supervised
Learning:
Classification

Protein function
prediction
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TABLE 3 | (Continued) An overview of the protein function prediction, function prediction, and novel function articles with the quality assessment.

First
Author/Year
of Publication/
Country

Database Initial
scaffold

(ID)

Designed
Protein

ML model Software/Sever Programming
language/
Platform

License Quality
(%)

Machine
learning

Protein
application

Makrodimitris S.,
2018,
Netherlands
(Makrodimitris
et al., 2019)

Arabidopsis
thaliana
proteins

Arabidopsis thaliana
protein

Protein function
prediction

KNN, LSDR SciPy https://github.
Com/stamakro/SSP-
LSDR.

Python, MATLAB
Bioinformatics
toolbox

Open
source,
Mathworks

80 Unsupervised
Learning:
Clustering

Protein function
prediction

Zhang L., 2018,
China (Zhang L.
et al., 2018)

UniProt, DIP S. cerevisiae, H.
sapiens, and M.
musculus

Predicting
Protein–Protein
interactions

DNN, Adam
Algorithm

TensorFlow Python Open
Source

100 Supervised
Learning:
Prediction

Protein function
prediction

Adhikari B., 2017,
US (Adhikari et al.,
2018)

DNCON
Dataset

N/A Contact map protein
prediction

CNN TensorFlow, Keras http://
sysbio.rnet.missouri.edu/
dncon2/

Python Open
Source

65 Supervised
Learning:
Regression
Predection

Protein
residue–residue
contacts

Cao R, 2017, US
(Cao et al., 2017)

UniProt Protein sequence Protein function
prediction

RNN ProLanGO Model N/A N/A N/A 50 Supervised
Learning:
Classification

Protein function
prediction

Al-Gharabli S.,
2015, Jordan
(Al-Gharabli et al.,
2015)

PDB Amino acid sequence
hydrophobicity

Prediction of dihedral
angles
physiochemical
properties, enzyme
loops

ANN N/A N/A N/A 50 Supervised
Learning:
Classification

Protein function
prediction

Qi Y., 2012, US
(Qi et al., 2012)

Standard
benchmark,
CB513
DSSP

PSI-BLAST amino
acid embedding

Prediction of the local
properties in proteins

DNN Torch5 C Open
Source

100 Supervised
Learning:
Classification

Protein function
prediction

Yang Y., 2011,
US (Yang et al.,
2011)

SPINE Protein sequence Single-method fold
recognition

SPARKS-X
Algorithm

SPARKS-X https://
sparks-lab.org/server/
sparks-x/

Shell script Open
Source

75 Supervised
Learning:
Regression

Protein function
prediction

Latek D., 2010,
Poland (Latek and
Kolinski, 2011)

10 globular
proteins,
216
residues,
and S100A1
protein

10 globular proteins
and S100A1 protein

Predicted Nuclear
Overhauser Effect
signals on the basis of
low-energy structures
from CABS-NMR

CABS, MC CABS- NMR toolkit
http://biocomp.chem.
uw.edu.pl/services.php

N/A N/A 70 Unsupervised
Learning:
Clustering

Protein function
prediction

Tian J., 2010,
China, US (Tian
et al., 2010)

ProTherm
PDB

3D structures Effect on single- or
multi-site mutation on
protein
thermostability

RFR, RF, SVM Prethermut http://www.
mobioinfor.cn/
prethermut/

R, Perl, Linux Open
Source

75 Supervised
Learning:
Classification

Protein function
prediction

Wu S., 2008, US
(Wu and Zhang,
2008)

PDB PDB protein
sequence

Protein contact
predictor

MUSTER MUSTER http://zhang.
bioinformatics.ku.edu/
MUSTER

N/A N/A 50 Supervised
Learning:
Classification

Protein function
prediction

Hung C., 2006,
Taiwan (Hung
et al., 2006)

NCBI Nucleocapsid (nsp1)
of a coronavirus family

Predict protein
functions

AGCT N/A N/A N/A 75 Supervised
Learning:
Classification

Protein function
prediction

(Continued on following page)
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TABLE 3 | (Continued) An overview of the protein function prediction, function prediction, and novel function articles with the quality assessment.

First
Author/Year
of Publication/
Country

Database Initial
scaffold

(ID)

Designed
Protein

ML model Software/Sever Programming
language/
Platform

License Quality
(%)

Machine
learning

Protein
application

Sidhu A., 2006,
UK (Sidhu and
Zheng, 2006)

Swiss-Prot Signal peptides and
non-secretory
proteins from Human,
E. coli, prokaryotic

Predict signal peptide BBFNN, DT N/A N/A N/A 75 Supervised
Learning:
Regression

Protein function
prediction

Capriotti E., 2005,
Italy (Capriotti
et al., 2005)

ProTherm Protein tertiary
structure

Protein stability
prediction

SVM I-Mutant2.0 http://gpcr.
biocomp.unibo.it/cgi/
predictors/I-Mutant2.0/I-
Mutant2.0.cgi

Python Open
Source

75 Supervised
Learning:
Classification

Protein function
prediction

Hu C., 2004, US
(Hu et al., 2004)

WhatIF
database
UniProt

3D coarse-grained
structure from protein
sequences

Optimal non-linear
scoring

SVM non-linear
Gaussian
kernel
functions

N/A N/A N/A 65 Supervised
Learning:
Classification

Protein function
prediction

Gutteridge A.,
2003, UK
(Gutteridge et al.,
2003)

PDB Amino acid sequence
of quinolate
phosphoribosyl
transferase

Predict active site FFNN N/A N/A N/A 50 Unsupervised
Learning:
Clustering

Protein function
prediction

Function Prediction and Novel Function
Nie J., Singapore
2020 (Sua et al.,
2020)

UniProt acetyl-lysine (S1),
“crotonyl-lysine” (S2),
“methyl-lysine” (S3),
or “succinyl-
lysine” (S4)

Identification of
Lysine PTM sites

RF, SVM,
MNB, LR, ME,
KNN,
CNN, MLP

Tensorflow, https://
github.com/khanhlee/
lysineSGT

Python N/A 100 Supervised
Learning:
Classification

Function ID

Savojardo C..,
2020, Italy
(Savojardo et al.,
2020a)

UniProtKB
GOA,
DeepMitoDB

Human, mouse, fly,
yeast, and
Arabidopsis thaliana

protein sub-
mitochondrial
localization

DeepMito,
1D-CNN

N/A N/A N/A 75 Supervised
learning:
Prediction

Function ID

Fang C., 2019,
China, Japan
(Fang et al., 2019)

PDB MoRF-containing
membrane protein
chains

Molecular recognition
features MoRFs
prediction

DCNN N/A N/A N/A 75 Supervised
Learning:
Classification

Function ID and
Fold ID

Zhang Y., 2019,
China (Zhang
et al., 2019)

PDB PDNA-543, PDNA-
224 and PDNA-316

Identification of
DNA–protein-binding
site

ADASYN Theano Python Open
Source

85 Supervised
Learning:
Classification

Function ID and
Fold ID

Hanson J., 2018,
Australia, China
(Hanson et al.,
2019)

PISCES
CASP12
PDB

5N5EA 6FI2A 6FQ3A Sequence-based
prediction of one-
dimensional
structural properties
of proteins

CNN, 2D-
BRLSTM

N/A N/A N/A 80 Supervised
Learning:
Classification

Function ID

Shah R., 2008,
US (Shah et al.,
2008)

D Dataset Protein sequence Homology detection SVM SVM-HUSTLE http://
www.sysbio.org/sysbio/
networkbio/svm_hustl

N/A N/A 70 Supervised
Learning:
Classification

Function ID and
Fold ID

1D-CNN, one-dimensional convolutional neural network; 2D-BRLSTM, two-dimensional bidirectional recurrent long short-term memory; 3D-CNN, three-dimensional convolutional neural network; ADASYN, Adaptive Synthetic Sampling;
ANN, Artificial neural network; AGCT, Alignment genetic causal tree; BBFNN, Biobasis function neural network; CABS, C-alpha-beta side; CNN, Convolutional neural network; COSNet, Cost-sensitive neural network; DCNN, Deep
Convolutional neural network; DMNN, Deep mahout neural network; DFS, Depth first search; DL, Deep learning; DNN, Deep neural network; DTNN, Deep tensor neural network; FFNN, Feed forward neural network; GA, Genetic algorithms;
HDL, Hybrid Deep learning; HMM, Hidden Markov model; HNN, Hopfield neural network; KNN, k-nearest neighbor; LR, Logistic regression; LSDR, Label-Space dimensionality reduction; LSTM, Long short-term memory; MC, Monte Carlo;
ME,Max Entropy; MLP,Multilayer; MNB,Multinomial Naïve Bayes; MNPP,Message passing neural network; NLP, Natural language processing; NN, Neural network; ParCOSNet, Parallel COSNet; RF, Random forest; RN, Relational network;
RNN, Recurrent neural network; SPARK-X, Probabilistic-based matching; SVM, Support vector machine.

Frontiers
in

B
ioengineering

and
B
iotechnology

|w
w
w
.frontiersin.org

July
2022

|V
olum

e
10

|A
rticle

788300
36

V
illalobos-A

lva
et

al.
The

S
cience

B
ehind

P
rotein

and
A
I

http://gpcr.biocomp.unibo.it/cgi/predictors/I-Mutant2.0/I-Mutant2.0.cgi
http://gpcr.biocomp.unibo.it/cgi/predictors/I-Mutant2.0/I-Mutant2.0.cgi
http://gpcr.biocomp.unibo.it/cgi/predictors/I-Mutant2.0/I-Mutant2.0.cgi
http://gpcr.biocomp.unibo.it/cgi/predictors/I-Mutant2.0/I-Mutant2.0.cgi
https://github.com/khanhlee/
https://github.com/khanhlee/
http://www.sysbio.org/sysbio/networkbio/
http://www.sysbio.org/sysbio/networkbio/
http://www.sysbio.org/sysbio/networkbio/
https://www.frontiersin.org/journals/bioengineering-and-biotechnology
www.frontiersin.org
https://www.frontiersin.org/journals/bioengineering-and-biotechnology#articles


oxidoreductases, transferases, hydrolases, lyases, isomerases, ligases,
NOS (nitric oxide synthase), lysozyme, which are included in the
columns of the initial scaffold (Tables 2–6). These proteins are very
useful in the industry as well as in the biomedical fields. With respect
to the type of organisms, the more explored are the following ones:
E. coli, Drosophila, Caenorhabditis elegans, Homo sapiens, S. cerevisiae
yeast, Mus musculus (mouse), Geobacillus, and Coronavirus.

Tables 2–6 present the lists of the most commonly used
databases in AI applications on PS. Of all the studies
reviewed, the single use of main databases and datasets
used is as follows:
1) PDB (30/144) 21%.
2) Author’s dataset construction (21/144)15%.
3) UniProt either UniProtKB or UniProtKB/SwissProt (12/

144)8%.
4) CASP (critical assessment of protein structure prediction)

database (5/144)3%.
5) SCOP (structural classification of proteins) (4/144)3%.
6) N/A, GenBank (4/144) 3%.
7) Protherm (3/144) 2%.
8) BioLip (biologically relevant ligand–protein) (2/144) 1%.
9) PLMD (protein lysine modifications database) (2/

144) 1%.
10) And each of the next databases ChEMBL, eSol, GEO,

DSSP, Drugbank, BioCreative, Transfac, STRING,
BRENDA, SPINE, PISCES, NCBI, D3R Grand
challenge 3, and KEGG with a (1/144)1%.

From the studies reviewed, (23/144), 16% use two databases.
Of these, the latter (11/23) 48% uses a combination of the PDB
and HSPP, PISCES, ProTherm, MOAD, SPx dataset, ChEMBL,
DisProt, and UniProt/SwissProt; (4/23)17% use a combination of
the GO database with UniProt or STRING; (4/23)17% uses a
combination of the UniProt/SwissProt database with ENZYME,
DIP, TrEMBL, and CAFA database; and a (2/23)9% combination
among DIP, HPRD, SKEMPI database, and SPx dataset. The rest
(24/144)17% belongs to a combination of three or more databases
with PDB, UniProt, among others.

Moreover, several authors (Shamim et al., 2007; Simha et al.,
2015; Yang et al., 2015; Li et al., 2018; Torng and Altman, 2019)
focused on using previously constructed datasets, while others
chose the creation of their own, based on their own design and
outcome, for example, NOS, PPI’s, SPX, DBMLoc, D-B, and
Extended D-B (Tables 2–6 and Figure 5).

The following tables show the principal protein categories that
were found in this study. Table 2 shows the result of each of the
38 articles that were considered in the protein and drug design
category.

Table 3 shows 26 studies that are related to protein function
prediction and 6 studies related to function prediction and novel
function.

Table 4 shows 19 studies that are related to fold ID and
physicochemical properties and 8 studies related to protein
classification.

Table 5 shows 26 studies that are related to protein structure
prediction.

Table 6 shows five studies for protein contact map prediction,
five studies for protein-binding prediction, nine studies for
protein site prediction, and two studies for genomics.

Table 1 shows the overview of the extracted information of the
selected studies based on the quality criteria.

Machine Learning Paradigms and AI
Algorithm Roles
The most applied approach we found as a result of our review and
meta-analysis corresponds to supervised learning (123/144)85%,
which focuses on classification algorithms (CNN, NB, KNN, RF,
SVM, etc.) and regression algorithms (SVR, RFR, DT, ANN,
DNN, etc.) that are used for a variety of tasks: detection of
functional sites, hydroxylation sites, amino acid composition,
DNA expression sequences, protein interaction, biomarker
finding, protein design, drug design, 3D structure prediction,
and protein folding (Tables 2–6 and Figures 4, 5). Within
supervised machine learning (123), we found that classification
techniques overrule, by far, regression ones (31/123) (for
reference, see Tables 2–6). On a closer look, we see that these
methods are generally very good at prediction tasks, although
complexity may be significantly increased by the execution time
required, something that is often reported as a drawback of this
method (AlQuraishi, 2021).

In contrast to supervised learning, it is only (17/144)12% focusing
on unsupervised learning, using clustering algorithms (CNN, FFNN,
LSDR, DL, HMM, MRF, NN, etc.) for various purposes, such as
protein solubility prediction, protein prediction of new functions,
discovery of DNA motifs, detection of protein structures, and
prediction of the nuclear Overhauser effect at low energies. Of the
eight articles using this approach, two of them report an
improvement in performance as an advantage, one of them in
time reduction (Frasca et al., 2018) and the other one in the
acceleration of automated protein function prediction methods in
general (Makrodimitris et al., 2019). At the same time, however, a
disadvantage reported is that time execution may be increased, a fact
that should not surprise us, for it is well known that unsupervised
learning algorithms are characterized by being computationally very
complex methods (Table 1 and Figures 4–7).

On the other hand, supervised machine learning is used just a
little more than deep learning techniques. Moreover, it is
interesting to note that roughly (77/144)53% of the deep
learning articles combine two clustering algorithms: CNN (47/
77)61% and LSTM (16/77)21%. Of course, some articles put
forward optimization procedures in an algorithmic genetic
fashion (Figures 4–7).

Regarding hybrid algorithms using neural networks, we found
that all 11 articles explicitly stating their use of hybrid algorithms
belong to the deep learning paradigm, combining CNN and LSTM
or RNN and CNN. One of them (Almagro Armenteros et al., 2017)
goes even further; in that, it uses a combination of these two neural
networks to predict protein subcellular localization and then an
attention mechanism to identify protein regions important for
subcellular localization (Table 1 and Figures 4–6).

It is interesting to note as well that nine articles are used for
prediction (glycation product prediction (Chen et al., 2019),
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TABLE 4 | An overview of the fold id, physicochemical properties, and protein classification articles with the quality assessment.

First
Author/Year
of Publication/
Country

Database Initial
scaffold

(ID)

Designed
Protein

ML model Software/Sever Programming
language/
Platform

License Quality
(%)

Machine
learning

Protein
application

Fold ID and physicochemical properties
Rives A., 2020,
UK, USA (Rives
et al., 2021)

SCOPe Protein data in the form
of unlabeled amino acid
sequences. Small
vocabulary of 20
canonical elements

Predicted model
contains
information about
biological
properties in its
representations

Deep contextual
language model

https://github.com/
facebookresearch/
esm

Python Open
source

70 Supervised
learning;
prediction

Physicochemical
and biological
properties

Li H., 2020,
France, Hong
Kong (Hongjian
et al., 2021)

PDB, PubChem,
ZINC, ChEMB,L
BindingDB, HTS

Chemical Estrogen
receptor α (Erα)
Anaplastic lymphoma
kinase Neuraminidase
(NA) Reducing the level
of Dmiro protein in flies
Acetylcholinesterase
(AchE)

Protein–ligand
complex

RF, BRT, kNN,
NN, SVM,
GBDT, multi-
task DNN
XGBoost

Descriptor data bank
ODDT BINANA RF-
Score-v1 RF-Score-
v3 MIEC-SVM

Python Open
Source

100 Supervised
Learning;
Unsupervised
Learning;
Prediction
Classification
Regression

Physicochemical
properties

Shroff R., 2020,
US (Shroff et al.,
2020)

PDB N/A amino acid
association guide
mutation

3D CNN Theano www.
Mutcompute.com

Python Open
Source

70 Supervised
Learning: Class
Prediction

Microenvironment
mutation
identification

Wang M., 2020,
China, US (Wang
M. et al., 2020b)

UniProt E. coli, M. musculus, H.
sapiens

Protein
malonylation site
prediction

DL-CNN Keras, https://
github.com/QUST-
AIBBDRC/DeepMal/

Python, Matlab Open
Source

80 Supervised
Learning:
Classification

Malonylation site
prediction

Chen J., 2019,
China (Chen et al.,
2019)

Datasets
A(CPLM),B,C

Proteins and reducing
sugars

Glycation product
prediction

RNN, CNN N/A N/A N/A 60 Supervised
Learning:
Classification

Glycation site
predictor

Han X., 2019,
Singapore, US
(Han et al., 2019)

eSol Cell-free protein
expression from E. coli

Protein solubility GAN N/A N/A N/A 60 Supervised
Learning:
Regression
Prediction

Protein solubility
prediction

Heinzinger M.,
2019, Germany
(Heinzinger et al.,
2019)

UniProt, PDB TS115 CB513 CASP12 Protein sequence
representation

NLP, ELMo Pytorch, https://
embed.protein.
properties/

Python Open
Source

80 Supervised
Learning:
Classification

Fold ID

Kaleel M., 2019,
Ireland (Kaleel
et al., 2019)

PDB Amino acids are
subcellular into four
classes involving RSA

Prediction of
relative solvent
accessibility

BRNN http://distilldeep.
ucd.ie/paleale/

Python Open
Source

90 Supervised
Learning:
Prediction

Protein relative
solvent accessibility
prediction

Li C., 2019, China
(Li and Liu, 2020)

LE dataset from
SCOP

Multiple superfamilies Detect the
structural motifs
related with the
protein folds

MotifCNN and
MotifDCNN
SVM CNN

TensorFlow Python Open
source

100 Supervised
Learning:
Classification

Fold ID

Luo L., 2019,
China (Luo L.
et al., 2019)

BioCreative II,
BioCreative III,
BioCreative II.5

PPI protein articles Protein–protein
interaction

KeSACNN Keras Python Open
Source

50 Supervised
Learning:
Classification

Physicochemical
properties

Taherzadeh T.,
2019, Australia,
US (Taherzadeh
et al., 2019)

Uniprot, dbPTM,
Uniprep, UnicarKB,
GlycoProtDB

Glycoprotein N- and O-linked
glycosylation

DNN SVM TensorFlow, https://
sparks-lab.org/
server/sprint-gly/

Python Open
Source

80 Supervised
Learning:
Regression
Prediction

Glycosylation site
identification

(Continued on following page)
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TABLE 4 | (Continued) An overview of the fold id, physicochemical properties, and protein classification articles with the quality assessment.

First
Author/Year
of Publication/
Country

Database Initial
scaffold

(ID)

Designed
Protein

ML model Software/Sever Programming
language/
Platform

License Quality
(%)

Machine
learning

Protein
application

Zhang D., 2019,
US (Zhang and
Kabuka, 2019)

DIP, HPRD, UniProt D. melanogaster, S.
cerevisiae, E. coli, C.
elegans, H. sapiens, H.
pylori, M. musculus, R.
norvegicus

Protein–protein
interactions and
protein family
prediction

Multimodal DNN N/A N/A N/A 75 Supervised
Learning:
Classification

Physicochemical
properties

Cuperus J., 2018,
US (Cuperus
et al., 2017)

5′UTR library of 50-
nt-long random
sequences

Yeast Saccharomyces
cerevisiae

Predict protein
expression

CNN Keras, Theano,
https://github.com/
Seeliglab/2017---
Deep-learning-
yeast-UTRs

Python Open
Source

85 Supervised
Learning:
Regression

Fold ID

Hochuli J., 2018,
US (Hochuli et al.,
2018)

PDB Ligands SMILE Protein
FASTA

Identify
protein–ligand
scoring

CNN Gnina, Caffe
Github.com/gnina

C++, Python Open
source

50 Supervised
Learning:
Classification

Protein Scoring

Luo F., 2018,
China (Luo F.
et al., 2019)

Phospho.ELM,
PhosphositePlus,
HPRD, dbPTM,
SysPTM

Kinase protein family Protein
phosphorylation

CNN https://github.com/
USTCHIlab/
DeepPhos

N/A N/A 60 Supervised
Learning:
Regression
Prediction

Phosphorylation
site predictor

Zhao X., 2018,
China (Zhao et al.,
2018)

PLMD Lysine Lysine acetylation
sites

CNN DNN Keras, Theano,
https://github.com/
jiagenlee/DeepAce

Python Open
Source

80 Supervised
Learning:
Regression
Classification
Prediction

Acetylation site
prediction

Zhao F., 2010, US
(Zhao et al., 2010)

CASP (PSSM) Position-specific
scoring matrix
generated by PSI-
BLAST

Protein folding CNF CNF N/A N/A 80 Supervised
Learning:
Classification

Fold ID

Armstrong K.,
2008, US
(Armstrong and
Tidor, 2008)

PDB Protein sequence Protein
engineering space
of foldable
sequences

Computational
mapping

N/A C++ Open
source

50 N/A Fold ID

ShamimM., 2007,
India (Shamim
et al., 2007)

D-B dataset Ext.
D-B dataset

Structural information of
amino acid residue and
amino acid residue pairs

Protein fold
prediction

SVM LIBSVM-library C++, Java,
Python
Windows, Linux

Open
source

80 Supervised
Learning:
Classification

Fold ID

Protein Classification
Burak T., 2021,
Turkey (Alakuş
and Türkoğlu,
2021)

UniProt Protein sequence from
60 different families

Protein family
classification/
identification

FIBHASH N/A N/A N/A 70 Supervised
Learning:
Classification

Protein
classification

Zhao Z., 2019,
China (Zhao and
Gong, 2019)

Monomers and
dimers from the
author

Monomers and dimers
from the author

Protein–protein
interaction

LSTM N/A N/A N/A 60 Supervised
Learning:
Unsupervised
Learning:
Regression

Interface residue
pair prediction

Huang L., 2018,
US (Huang et al.,
2018)

DIP, HPRD PPI network graph Protein–protein
interaction

ENN-RL TensorFlow, https://
www.eecis.udel.
edu/~lliao/enn/

Python Open
Source

75 Supervised
Learning:
Prediction

Protein–protein
interaction
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TABLE 4 | (Continued) An overview of the fold id, physicochemical properties, and protein classification articles with the quality assessment.

First
Author/Year
of Publication/
Country

Database Initial
scaffold

(ID)

Designed
Protein

ML model Software/Sever Programming
language/
Platform

License Quality
(%)

Machine
learning

Protein
application

Le N., 2018,
Taiwan (Le et al.,
2018)

UniProt GO Rab GGT activity Rab
GDI activity Rab GTPase
binding Rab GEF activity

Classify Rab
protein molecules

2D-CNN Keras, Theano
DeepRab; http://
bio216.bioinfo.yzu.
edu.tw/deeprab/

Python Open
Source

90 Supervised
Learning:
Regression

Protein
Classification

Xue L., 2018,
China, US (Xue
et al., 2019)

Swiss-Prot,
TrEMBL

Secretory protein Protein sequence
into T3Ses or non-
T3Ses

DCNN Keras, https://
github.com/
lje00006/DeepT3

Python Open
Source

60 Supervised
Learning:
Regression
Classification

Protein
classification

Zhao B., 2018, US
(Zhao and Xue,
2018)

DisProt PDB Intrinsically disordered
proteins (IDPs),
intrinsically disordered
regions (IDRs), and
intrinsically disordered
amino acids (IDAAs)

N/A ANN, DT DisEMBL, IUPred,
VSL2, Dbann, and
Espritz

N/A N/A 50 Supervised
Learning:
Regression

Intrinsically
disordered protein
prediction

Szalkai B., 2017,
Hungary(Szalkai
and Grolmusz,
2018a)

Swiss-Prot,
UniProt, GO

Thyroid hormone,
phenol-containing
compound, cellular
modified amino acid,
protein kinase
superfamily

protein
classification by
amino acid
sequence

ANN TensorFlow Python Open
Source

90 Supervised
Learning:
Classification

Protein
Classification

Szalkai B., 2017,
Hungary (Szalkai
and Grolmusz,
2018b)

UniProt GO Classes.tre Hierarchical
Biological
Sequence
Classification

DNN SECLAF,
TensorFlow https://
pitgroup.org/seclaf/

Python Open
Source

85 Supervised
Learning:
Classification

Protein
Classification

3D-CNN, three-dimensional convolutional neural network; ANN, Artificial neural network; BLSTM, Bidirectional long short-term memory; BRNN, Bidirectional recurrent neural network; BRT, Booster regression tree; CNF, Conditional neural
filed; DNN, Deep neural network; DT, Decision Tree; ELMO, Embeddings from language models; ENN-RL, Evolution neural network-based Regularized Laplacian kernel; FIBHASH, Fibonacci numbers and hashing table; GAN, Generative
adversarial network; GBDT, Gradient boosted decision tree; GR, Genetic recombination; KNN, k-nearest neighbor; KeSCANN, Knowledge-enriched Self-Attention convolutional neural network; LSTM, Long short-term memory; MotifCNN,
Motif convolutional neural network; Motif DNN, Motif deep neural network; Multimodal DNN, Multimodal deep neural network; NLP, Natural language processing; NN, Neural network; RF, Random forest; RNN, Recurrent neural network;
SPARK-X, Probabilistic-based matching; SVM, Support vector machine.
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TABLE 5 | An overview of the protein structure prediction articles with the quality assessment.

First
Author/Year
of Publication/
Country

Database Initial
scaffold

(ID)

Designed
Protein

ML model Software/Sever Programming
language/
Platform

License Quality
(%)

Machine
learning

Protein
application

Protein Structure Prediction
Xu J., 2022, USA (Xu
et al., 2021)

CASP13, PDB,
PISCES, CATH

Discrete probability
over distance for
three backbone atom
pair and inter-residue
orientation

Structure prediction Convolutional
residual neural
network

https://github.com/
j3xugit/RaptorX-
3DModeling/

python Open
source

70 Supervised
Learning;
Prediction

Protein structure
prediction

ALQuraishi M.,
2021, USA
(AlQuraishi, 2021)

PDB, CASP14 Primary protein
sequence

Structure prediction Markov random
field, Attention
networks

N/A N/A N/A 50% Supervised
Learning:
Prediction

Protein structure
prediction

Bond P., 2020, UK
(Bond et al., 2020)

PDB Only residues with
side chains longer
than beta-carbon

Predicting the
correctness of
protein residues

NN, MLP CCP4 C++, Python Open
Source

60 Supervised
Learning:
Regression

Protein structure
prediction

Wardah W., 2020,
Australia, Fiji, Japan,
US (Wardah et al.,
2020)

BioLiP Positive (binding) or
negative (non-
binding), protein
sequence
classification

Predicting Protein-
peptide-binding
sites

CNN PyTorch, https://github.
com/WafaaWardah/
Visual

Python Open
Source

100 Supervised
Learning:
Prediction
Classification

Protein structure
prediction

Yang J., 2019,
China, USA (Yang
J. et al., 2020)

CASP13,
Uniclust30

Representation of the
rigid-body transform
from one residue to
another; angles and
distances

Predicted inter-
residue orientations

Deep residual
convolutional
neural network

https://
yanglab.nankai.edu.cn/
trRosetta/

Python Open
source

70 Supervised
Learning;
Prediction

Protein structure
prediction

Degiacomi M., 2019,
UK (Degiacomi,
2019)

PDB Malate
dehydrogenase
(1MLD), αB crystallin
(2WJ7)
Phospholipase A2
(1POA), Envelope
glycoprotein (1SVB),
MurD, closed (3UAG),
MurD, open (1E0D),
MurD, closed + open
(3UAG,1E0D), HIV-1
(1E6J)

Enhancement of
molecular
conformational
space generator

Molecular
dynamics, RF,
auto encoder

Keras, Tensorflow Python Open
Source

80 Unsupervised
Learning:
Classification

Protein
conformational
space

Guo Y., 2019, US
(Guo et al., 2019)

CB513,
CASP10,
CASP11

Protein sequences Protein secondary
structure

ACNN, BLSTM Keras, Tensorflow,
https://github.com/
GYBTA/DALSTM/

Python Open
Source

80 Supervised
Learning:
Prediction
Classification

Protein
secondary
structure
prediction

Long S., 2019,
China (Long and
Tian, 2019)

Jpred dataset
cullpdb dataset
UniRef90
UniProt

Multiple superfamilies Protein secondary
structure prediction

CNN TensorFlow N/A Python Open
Source

60 Supervised
Learning;
Unsupervised
Learning;
Prediction

Protein structure
prediction

Mirabello C., 2019,
Sweden (Mirabello
and Wallner, 2019)

PDB N/A Method prediction NLP, DNN Keras, TensorFlow
https://bitbucket.org/
clami66/rawmsa

Python Open
Source

70 Supervised
Learning:
Prediction

Protein structure
prediction

(Continued on following page)
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TABLE 5 | (Continued) An overview of the protein structure prediction articles with the quality assessment.

First
Author/Year
of Publication/
Country

Database Initial
scaffold

(ID)

Designed
Protein

ML model Software/Sever Programming
language/
Platform

License Quality
(%)

Machine
learning

Protein
application

Pagès G., 2019,
France (Pagès et al.,
2019)

CASP Model QA Protein model
quality assessment

3D CNN TensorFlow, Ornate
https://team.inria.fr/
nanod/software/Ornate/

C++, Python Open
Source

85 Supervised
Learning:
Regression

Model protein
prediction

Schantz M., 2019,
Argentina, Denmark,
Malaysia (Klausen
et al., 2019)

PDB, PISCES Crystal structures Prediction of
protein structural
features

CNN, LSTM Keras Python Open
source

100 Supervised
Learning:
Prediction

Protein structure
prediction

Wang D., 2019,
China (Wang D.
et al., 2020)

CASP11, 12 Caspase 14 Protein structure
refinement

Multi-
objective PSO

AIR 2.0 www.csbio.sjtu.
edu.cn/bioinf/AIR/

Python Open
Source

95 Supervised
Learning:
Optimization

Protein structure
prediction

Yu C., 2019, US (Yu
et al., 2019)

PDB 194l (lysozyme),
107m (myoglobin),
6cgz (β-barrel), a silk
protein, amyloid
protein, and others

Generation of
audible sound from
amino acid
sequence for
application on
designer materials

RNN, LSTM Magenta TensorFlow,
Melody RNN

Java, Python Open
Source

100 Supervised
Learning:
Regression

Protein
sequence
prediction

Zheng W., 2019, US
(Zheng et al., 2019)

CASP13 Query sequence
profiles

Automated
structure prediction
pipeline

ZhangServer
and QUARK
pipelines

Zhang and Quark server N/A Open
Source

85 Supervised
Learning:
Classification
Regression

Protein structure
prediction

Fang C., 2018, US
(Fang et al., 2018)

PDB JPRED
CASP CB513

Different super-
families, CASP10,
11, 12

Protein secondary
structure prediction

Deep3I network MUFOLD-SS TensorFlow
and Keras

Python Open
Source

80 Supervised
Learning:
Classification

Protein structure
prediction

O’Connell J., 2018,
Australia, China, US
(O’Connell et al.,
2018)

SPIN dataset N/A Sequence profile
compatible

DNN http://sparks-lab.org.
SPIN

N/A Open
Source

65 Supervised
Learning:
Prediction

Protein
sequence
prediction

Sunseri J., 2018, US
(Sunseri et al., 2019)

D3R Grand
challenge 3
Grand
challenge 3

Input ligand SMILES
protein FASTA CSAR

Cathepsin S model
ligand protein

CNN Gnina, Caffe, https://
github.com/gnina

C++, Python Open
Source

100 Supervised
Learning:
Regression

Protein model
prediction

Zhang B., 2018,
China (Zhang B.
et al., 2018)

PDB, PISCES,
TR5534 Dataset

CASP10, 11, 12
and 13

Prediction of
performance of
protein

CNN, RNN,
BRNN

Keras Python Open
Source

100 Supervised
Learning,
Prediction

Protein structure
prediction

Armenteros J.,
2017, Denmark
(Almagro
Armenteros et al.,
2017)

UniProt Protein sequence,
Sequence information

Predict protein
subcellular
localization

CNN, RNN
BLSTM, FFNN,
Attention
models

Lasagne, Theano, Deep
Loc: http://www.cbs.dtu.
dk/services/DeepLoc

Python License
MIT

90 Supervised
Learning:
Classification

Protein structure
prediction

Vang Y., 2017, US
(Vang and Xie, 2017)

IEDB MHCBN
SYFPEITHI

Human leukocyte
antigen (HLA)
complex

HLA class
I-peptide-binding
prediction

NLP, CNN Keras, Theano, https://
github.com/uci-cbcl/
HLA-bind

Python Open
Source

100 Supervised
Learning:
Regression

Protein structure
prediction

Wang S., 2017, US
(Wang et al., 2017)

Pfam CASP
CAMEO

150 Pfam families 105
CASP11 test proteins
76 hard CAMEO

5f5pH DRNN TensorFlow, Theano
http://raptorx.uchicago.
edu/ContactMap/

Python Apache
2.0

75 Supervised
Learning:
Classification
Regression

Protein structure
prediction

(Continued on following page)
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TABLE 5 | (Continued) An overview of the protein structure prediction articles with the quality assessment.

First
Author/Year
of Publication/
Country

Database Initial
scaffold

(ID)

Designed
Protein

ML model Software/Sever Programming
language/
Platform

License Quality
(%)

Machine
learning

Protein
application

Yang J., 2015,
China, US (Yang
et al., 2015)

PDB SPx
dataset
PDBCYS
dataset

Amino acid sequence Structure prediction
of cysteine-rich
proteins

HMM, SVR CYSCON http://www.
csbio.sjtu.edu.cn/bioinf/
Cyscon/

N/A N/A 75 Supervised
Learning:
Regression

Protein structure
prediction

Li Z., 2014, US (Li
et al., 2014)

PISCES TL2282 dataset
TS500 dataset
TR1532 dataset

Sequence profile
prediction

SPIN, NN SPIN http://sparks-
lab.org

Python, Linux Open
Source

85 Supervised
Learning:
Classification

Protein structure
prediction

Wong K., 2013,
Canada, US, Saudi
Arabia (Wong et al.,
2013)

Protein-Binding
Microarray
dataset

DNA sequence DNA-motif
discovery

Kmer-HMM kmerHMM http://www.
cs.toronto.edu/wkc/
kmerHMM

N/A N/A 50 Supervised
Learning:
Classification.
Unsupervised
Learning:
Clustering

Model Discovery

Katzman S., 2008,
US (Katzman et al.,
2008)

PDB PISCES Amino acid sequence
of a protein of
unknown structure

Local structure
prediction

Multi-layer NN PREDICT-2ND http://
www.soe.ucsc.edu/
~karplus/predict-2nd/

C++ Open
source

80 Unsupervised
Learning:
Clustering

Protein structure
prediction

Bindslev C., 2002,
Denmark
(Bindslev-Jensen
et al., 2003)

20 Patients with
allergy to
Macrozoarces
americanus

Macrozoarces
americanus

Investigate
potential
allergenicity of Ice
Structuring
Protein (ISP)

DT N/A N/A N/A 45 Supervised
Learning:
Regression

Protein structure
prediction

3D-CNN, three-dimensional convolutional neural network; ACNN, Asymmetric convolutional neural network; BLSTM, Bidirectional long short-term memory; BRNN, Bidirectional recurrent neural network; CNN, Convolutional neural network;
Deep3I, Deep inception-inside-inception network; DNN, Deep neural network; DRNN, Deep residual neural network; DT, Decision Tree; FFNN, Feed forward neural network; HMM, Hidden Markov model; K-merHMM, K.mer Hidden Markov
model; LSTM, Long short-term memory; MC, Monte Carlo; ML, Model; MLP, Multilayer perceptron; NN, Neural network; PSO, Particle swarm optimization; RNN, Recurrent neural network; RNN 2, Residual neural network; SPIN, Sequence
Profiles by Integrated Neural network; SVR, Support vector regression; UDNN, Ultradeep neural network.
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TABLE 6 | An overview of the protein contact map prediction, protein-binding prediction, protein site prediction, and genomics articles with the quality assessment.

First
Author/Year
of Publication/
Country

Database Initial
scaffold

(ID)

Designed
Protein

ML model Software/Sever Programming
language/
Platform

License Quality
(%)

Machine
learning

Protein
application

Protein Contact Map Prediction
Yang H., 2020,
China (Yang H. et al.,
2020)

SCOPe 2.07 N/A Contact map protein
prediction

GAN Keras, Tensorflow
https://github.
com/melissaya/
GANcon

Python Open
Source

70 Supervised
Learning:
Regression

Contact map
prediction

Hanson J., 2018,
Australia, China
(Hanson et al., 2018)

PDB UniProt Primary amino acid
sequence, proteins from
CASP12

Protein contact map
prediction

CNN, 2D-BRLSTM http://sparks-lab.
org/jack/server/
SPOTContact/

N/A N/A 95 Supervised
Learning:
Prediction

Protein contact
map prediction

Ashkenazy H., 2011,
Israel (Ashkenazy
et al., 2011)

PDB 3D protein structure Contact map
prediction

WMC http://tau.ac.il/
~haimash/WMC

Perl Open
Source

45 N/A Protein map
prediction

Durrant J., 2011, US
(Durrant and
McCammon, 2011)

PDB MOAD Crystal structure data Identification of small-
molecule ligands

ANN scoring
function map

NNScore
2.0 http://www.
nbcr.net/software/
nnscore/

Python Open
Source

50 Supervised
Learning:
Classification

Protein map
prediction

Lin G., 2010, US (Lin
et al., 2010)

PDB Protein Folding Rates.
Predicting protein folding
rates from geometric
contact and amino acid
sequence

Protein folding kinetic
rate and real-value
folding rate

SVM, SVR SeqRate http://
casp.rnet.
missouri.edu/fold_
rate/index.html

Java Open
Source

75 Supervised
Learning:
Classification

Protein map
prediction

Protein-Binding Prediction
Song J., 2021, China
(Song et al., 2021)

PDB Swiss-
Prot

ATP-binding proteins Protein–ATP-Binding
Residues

DCNN, LightGBM TensorFlow, Keras
https://github.
com/tlsjz/
ATPensemble

Python Open
Source

80 Supervised
Learning:
Regression
Prediction
Classification

Prediction of
Protein–ATP
Binding Residues

Kwon Y., 2020,
Korea (Kwon et al.,
2020)

PDBind-2016 VEGFR2 kinase domain
and adenosine deaminase

Prediction of affinity-
binding of a
protein–ligand
complex

3D-CNN Keras, Tensorflow Python Open
Source

85 Supervised
Learning:
Prediction

Protein affinity-
binding prediction

Mahmoud A., 2020,
Switzerland, US
(Mahmoud et al.,
2020)

PDB HIV-1 protease,
dihydrofolate reductase

Hydration site
occupancy and
thermodynamics
predictions

CNN https://hub.
docker.com/r/
lilllab/watsite3

N/A Open
Source

65 Supervised
Learning:
Regression
Classification

Protein–ligand-
binding prediction

Wang M., 2020, US
(Wang M. et al.,
2020a)

SKEMPI 1.0,
2.0 dataset
AB-Bind S645
dataset

Protein–protein
complexes

Protein–ligand-
binding affinity
predictions

Site-specific
persistent homology,
CNN, GBT

TopNetTree, Keras
https://doi.org/10.
24433/CO.
0537487.v1

Matlab, java,
python

Open
Source

90 Supervised
Learning:
Prediction

Protein–protein-
binding affinity

Luo X., 2019, China
(Luo et al., 2020)

Transfac DNA sequences predicting
DNA–protein binding

CNN Keras, Tensorflow
https://github.
com/gao-lab/
ePooling

Python Open
Source

70 Supervised
Learning:
Regression
Prediction

Protein-binding
prediction

Protein Site Prediction
Zheng W., 2020,
China, US (Zheng
et al., 2020)

SCOPe2.07 N/A Protein domain
boundaries

DRNN https://zhanglab.
ccmb.med.umich.
edu/FUpred/

N/A Open
Source

60 Supervised
Learning:
Classification

Protein domain
identification

(Continued on following page)
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TABLE 6 | (Continued) An overview of the protein contact map prediction, protein-binding prediction, protein site prediction, and genomics articles with the quality assessment.

First
Author/Year
of Publication/
Country

Database Initial
scaffold

(ID)

Designed
Protein

ML model Software/Sever Programming
language/
Platform

License Quality
(%)

Machine
learning

Protein
application

Cui Y., 2019, China
(Cui et al., 2019)

BioLip Fourteen binding residues Protein–ligand-
binding residue
prediction

DCNN TensorFlow,
https://github.
com/yfCuiFaith/
DeepCSeqSite

Python Open
Source

100 Supervised
Learning:
Prediction

Protein site
prediction

Fu H., 2019, China
(Fu et al., 2019)

PLMD Sequences and
physicochemical
properties of protein

Predict Lysine
ubiquitination sites in
large scale

CNN, DL DeepUbi TensorFlow,
DeepUbi: https://
github.com/
Sunmile/DeepUbi

Python,
MATLAB, Linux

Open
Source

100 Supervised
Learning:
Classification

Protein site
prediction

Haberal I., 2019,,
Norway, Turkey
(Haberal and Ogul,
2019)

PDB Metal binding of histidine
and Cysteine amino acids

Prediction of metal
binding in proteins

2D-CNN,
LSTM, RNN

Keras, TensorFlow Python Open
Source

100 Supervised
Learning:
Prediction

Protein site
prediction

Savojardo C., 2019,
Italy (Savojardo et al.,
2020b)

UniprotKB/
Swiss-Prot

Mitochondrial proteins Sub-mitochondrial
cellular localization

CNN http://busca.
biocomp.unibo.it/
deepmito

Python Open
Source

75 Supervised
Learning:
Regression

Protein sub-
mitochondrial site
prediction

Simha R., 2015,
Canada, Germany,
US (Simha et al.,
2015)

DBMLoc
dataset

N/A Protein multi-location
prediction

MDLoc, BN MDLoc http://
www.eecis.udel.
edu/compbio/
mdloc

Python Open
Source

75 Supervised
Learning:
Classification

Protein site
prediction

Briesemeister S.,
2010, Germany
(Briesemeister et al.,
2010)

UniProt Protein sequence Predict protein
subcellular localization

NB Yloc Weka www.
multiloc.org/YLoc

Python, Java,
Linux

Open
source

85 Supervised
Learning:
Classification

Protein site
prediction

Huang W., 2008,
Taiwan (Huang et al.,
2008)

UniProt GO SCL12,
SCL16 Sequence-based,
GO terms, protein
sequence

Prediction method for
predicting subcellular
localization of novel
proteins

GA, SVM LIBSVM ProlocGO
http://iclab.life.
nctu.edu.tw/
prolocgo

N/A N/A 75 Supervised
Learning:
Classification

Protein site
prediction

Ladunga I., 1991,
Hungary (Ladunga
et al., 1991)

UniProt Signal peptide Novel predicted signal
peptides

NN (Tiling algorithm) N/A C N/A 50 Supervised
Learning:
Classification

Protein site
prediction

Genomics
Dai W., China, 2020
(Dai et al., 2020)

Reactome DB
and InBio
Map DB

Human essential gene Predict human
essential genes

Network
embedding, SVM

N/A N/A N/A 50 Supervised
Learning:
Classification

Human gene
prediction

Picart-Armada S.,
2019, Belguim, UK,
Spain
(Picart-Armada et al.,
2019)

STRING Gene-disease data from
22 common non-
cancerous diseases

Target disease gene
identification

PR, Random
Randomraw EGAD,
PPR, Raw, GM, MC,
Z-scores, KNN,
WSLD, COSNet,
bagSVM, RF, SVM

https://github.
com/b2slab/
genedise

R Open
Source

80 Semi-
supervised,
Supervised
Learning:
Classification

Target gene
identification,
target drug
discovery

2D-BRLSTM, two-dimensional bidirectional Res-long short-term memory; 2D-CNN, Two-dimensional convolutional neural ubcell; 3D-CNN, Three-dimensional convolutional neural ubcell; ANN, Artificial neural network; BN, Bayesian
Network; CNN, Convolutional neural network; DCNN, DeepConvolutional neural network; DL, Deep learning; GAs, Genetic algorithms; GBT, Gradient boost tree; KNN, k-nearest neighbor; LightGBM, Light Gradient BoostingMachine; LSTM,
Long short-term memory; NB, Naïve Bayes; NN, Neural network; RNN, Recurrent neural network; SVM, Support vector machine; SVR, Support vector regression; WMC, Weighted multiple conformation.
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protein secondary structure (Guo et al., 2019), prediction of metal
binding in proteins (Haberal and Ogul, 2019),
compound–protein affinity prediction (Karimi et al., 2019),
prediction of protein structural features (Klausen et al., 2019),
protein contact map prediction (Hanson et al., 2018), prediction
of protein interactions (Huang et al., 2018), predicting
hydroxylation sites (Long et al., 2018), and predicting protein
subcellular localization (Almagro Armenteros et al., 2017)), of
which two perform prediction from original sequences (Almagro
Armenteros et al., 2017;Li et al., 2018).

Moreover, one of them highlights that one of its applications is
for the design of new drugs and one of them performs this task
(Karimi et al., 2019).

It is tempting to put forward the claim that hybrid algorithms
in deep learning are very good for prediction tasks as well as for
applications in the new drug design. It is noteworthy to mention
that these articles belong to the last 3 years of our revision,
something that suggests that there is a tendency for the use of
hybrid methods in the near future (Table 1).

AI Training, Validation, and Performance
Validation process allows obtaining a quantitative measure of the
models’ efficiency. In this systematic review, several
methodologies were used to train and validate in the machine
and deep learning proposed by means of hold-out and k-fold
cross-validation; The most utilized was the k-fold cross-

validation, each one with a different folding proposal, e.g., 2-,
3-, 5-, and 10-fold (Szalkai and Grolmusz, 2018a), trained and
validated its algorithm utilizing two validations: 3- and 5-fold
cross-validations. Several articles used a graphics processing unit
(GPU) that was employed to accelerate the deep learning training
and validation process. The most utilized AI algorithm in these
articles was CNN, with a 33% occurrence, followed by DNN with
9%, both programmed with Python. The performance of the AI
algorithms for protein design was evaluated using parameters
such as sensitivity, specificity, true-positive rate, false-positive
rate, accuracy, recall, precision, F1-score, area under the curve
(AUC), receiver operating characteristic (ROC) curve, and
Matthew’s correlation coefficient (MCC). For the case of the
hold-out validation, a percentage of the data that is taken and that
percentage is randomly removed from the dataset is selected. This
methodology, in particular, is computationally very simple;
however, it suffers from a high variance because it is not
known that data will end up in the test set or in the training
one and of the importance that these data might have. In hold-out
validation, datasets, which for this review are the databases of
proteins, genes, peptides, etc. (see Tables 2–6 and Figures 4–6),
are randomly divided into two partitions with different
proportions (50, 70, or 75% training—50, 30, or 25%
validation), which are mutually exclusive. The first part of the
database is used to feed the input vectors of the methods and train
the machine or deep learning algorithms, while the rest is used to

FIGURE 6 | Representation of the specific case for protein structure prediction in the supervised learning framework. Revealing the most common flow followed by
the studies analyzed. From extraction, training data, feature extraction procedures and data continuity. Including the PDB database, the most common supervised
algorithms, SVM, SVR, 3DCNN.

Frontiers in Bioengineering and Biotechnology | www.frontiersin.org July 2022 | Volume 10 | Article 78830046

Villalobos-Alva et al. The Science Behind Protein and AI

https://www.frontiersin.org/journals/bioengineering-and-biotechnology
www.frontiersin.org
https://www.frontiersin.org/journals/bioengineering-and-biotechnology#articles


evaluate and validate the results obtained with their proposed
algorithms. In contrast, with this type of validation technique,
hold-out takes a long time for computational processing,
especially for large datasets, in particular case, the large
protein databases. As a result of our meta-analysis, we found
the use of the hold-out methodology to train and validate their AI
proposals, as CNN, RNN, LSTM, and FFNN (Tables 1–6 and
Figures 4–6) in the prediction of expressions, interactions, and
subcellular localization of proteins and also in the prediction of
the peptide binding.

Another technique for evaluating the performance of AI
methods, particularly for large databases such as protein
design, is cross-validation. Cross-validation is a technique used
to (generally) obtain the ability of a model to fit an unknown
dataset given a collected dataset. In this context, the k-fold cross-
validation is an iterative process that consists of dividing the
dataset randomly into k groups of approximately the same size. In
this sense, although not all possible combinations of sets are
examined, an estimate of the average accuracy more than
acceptable can be obtained by training the model only k-fold.
The first set is used to train the AI models and the other is used to
test and validate them, doing this process k times using a different
group for validation in the iteration. Although cross-validation is
computationally an intensive method of training and validation,
its advantages are the reduction of computational time because
the process is repeated k times, where all the data are tested once
and used for training, maintaining a reduced variance and bias.
Of the total 93 articles in this review, 41 of them (47%) used the
following cross-validation schemes: leave-one-out, 2-fold, 3-fold,
4-fold, 5-fold, 6-fold, 7-fold, 8-fold, 10-fold, and 20-fold cross-
validations. For most of them, the use of 5-fold and 10-fold cross-
validations to analyze the performance of their AI proposals
predominated, with 16 and 17 articles, respectively. This method
was preferred for the evaluation to the performance of CNN and
SVM algorithms, with databases such as PBD, ProTherm,
UniProt, GO, and ChEMBL. Additionally, in seven articles
(17%), they carried out various types of cross-validations to
obtain more information on the performance of their
proposals. Another variant to evaluate performance was
observed in three articles (7%), which combined the use of
both hold-out and cross-validation methodologies in their
proposals, which provide them more effective comparison of
results in terms of validation schemes.

In contrast, in 22 articles of this review, 25% did not mention
neither their training methods nor the validation performed to
evaluate the performance of their algorithms used. Likewise, 7%
of the articles evaluated their methods using various types of
cross-validations at the same time to obtain more information on
the performance of their proposals, e.g., 4-fold, 6-fold, 8-fold, and
1-fold, or 3-fold, 5-fold, 7-fold, and 1-fold, or 10- and 20-fold, for
databases of PDB, UniProt, GO, ChEMBL, ProTherm, PISCES,
GenBank, STRING, and new databases as NOS, SPx, D-B, and
Ext D-B.

In general, the performance of all proposed AI algorithms was
evaluated using several parameters such as sensitivity, specificity,
true-positive rate, false-positive rate, accuracy, recall, precision,
root-mean-square error (RMSE), R2, F1-score, area under the

curve (AUC), receiver operating characteristic (ROC) curve, and
Matthew’s correlation coefficient (MCC) (Table 1).

Of the 87 articles selected as finalists, we have the following: 32
use one single algorithm and 55 use a combination of two or three
algorithms sequentially. In machine learning, we found 30; in
deep learning, we found 20 applying machine learning (SVM); 11
deep learning (RNN); and 6 using optimization through genetic
algorithms.

Regarding the programming language in which each study was
developed, we found 47 articles do not specify what language they
are based on, 75 articles are based on the Python language, of
which 57 are based entirely on Python and 18 are in combination
with other software; see Tables 2–6.

Twelve articles are based on the C++ language of which only
three are based exclusively on that language and nine in
combination with Python, with C, R, and CUDA and C++
language in the Linux environment.

Other nine articles are based on MATLAB of which only four
are based exclusively on that language and five in combination in
conjunction with Python and Bioinformatics and with Python
and C++.

Six articles are based on the C language of which three are
based exclusively on that language and three in combination in
conjunction with C++, R, and CUDA, with Java and Python and
one with Linux and Windows environment.

Finally, seven articles are based on the Java language of which
two are written exclusively in this language and five in
combination with TensorFlow and with C and Python.

Regarding software licenses, 90 articles were found to be Open
Source. An article is licensed by Neural Power version 2.5. One
article specifies an open license type belonging to IBM and GNU,
respectively. Unfortunately, 45 items did not specify the type of
license they own.

RoadMap of Artificial Intelligence in Protein
Science
The goal of this analysis is to provide a road map to apply
machine learning and AI techniques in protein science. One of
the results of our meta-analysis, for example, in protein structure
prediction, is shown in Figure 6 in which we can observe the two
main strategies for protein structure prediction. In Figure 2, we
show the scaffold-template-based modeling that is the most
commonly used for the scientist in this field with very good
results. However, recently Senior and collaborators using a free
modeling approach successfully developed an AlphaFold
algorithm using a deep neural network. They generated an
outstanding accuracy of the 3D structure of a protein with an
unknown fold in CASP14 (Senior et al., 2020). This led to an
unsolved big question about the importance of the starting point
in protein structure prediction, in particular, and in protein
science, in general.

The road map of this research is an evolving and a dynamic
process (Figure 7). It begins by obtaining information from a list
of several databases, followed by a pre-treatment step over the
extracted data, including those steps for eliminating redundancies
within sequences, structure threshold based on RMSD values, and
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the like. Further steps contribute to the required pre-processing to
complete the reporting process, and then proceed to the data
process of the information itself, which includes the input data
and the application of the machine learning algorithm, in which
the input data are set to be processed into FASTA sequences,
training sets, or 3D structures, depending on the function of
algorithm in turn. The algorithms used fall into four categories:
supervised learning, unsupervised learning, deep learning, and
optimization, where each of these categories include a set of their
own subparts, which are then combined and configured to predict
new ways to model previous data and contribute to future
implementations in protein science. The post-processing of
data and the support of the new data acquired are made up of
models and sequences that were loaded on the platforms to
servers such as “DeepUbi, DeepSol, COSNet, Gnina, among
others”, in which these servers are used for the storage or
implementation of their respective methods. Figure 7 shows
that more than half of the reported research completed the
three pre-process, process and post-process steps we set
forward, so this sequence may be applied to protein science
including protein design, classification, physicochemical
properties, functionalities, folding properties, and new
functions such as homology prediction, domain prediction,
subcellular localization, drug design, sensitivity, and other
enhancers that can provide new catalysts and new functions,
all of which provide any future development for biomolecular
enhancement within protein science through machine learning.
Model development is intrinsically related to the protein
application to be developed. Data extraction varies depending
on the architecture of the model to be developed since the data
become more complex as the transformation, training, and
feature extraction process unfold. The extraction ranges from
obtaining the amino acid sequence, secondary structure to the 3D
atomic model, using the atomic coordinates. Transforming data
emphasizes on performing an adequate filtering for the use of the
information for the training of the model, which leads to the
feature extraction for the use of machine learning model and
finally generating a final output. The process road map includes
the fusion of these different applied AI learnings, models, and
classifications into a connected deep learning layer that will be
included in future research and test datasets to cover the terms of
AI science, proteins, and their applications.

FINAL DISCUSSION AND FURTHER
CHALLENGES FOROURUNDERSTANDING
OF PROTEIN SCIENCE USING AI

Novelties and Future Direction in the
Binomial PS-IA Research
The protein science field has great expectations on ML methods
as indispensable tools for the biomedical sciences as well as for the
chemical and biotechnology industry, for applied research is
moving toward synthetic organisms with artificial metabolic
networks, regulators, and so on, creating synthetic molecular
factories. The binomial PS-IA research is evolving and

strengthening, as shown in the Results section (Tables 1–6
and Figures 4–7). Our research reveals that road maps are
most needed to solve complex problems in PS, guiding the
exploration into the protein universe. As depicted in Table 1,
ML techniques, which are used nowadays, are tailored to the
expected results; Tables 1–6 display an array of networks of
several solving problem methods, hence showing that guidance is
needed in the form of road maps.

It is important to emphasize that in order to design a model
algorithm bank functioning as a kit-tool, it is essential to understand
the source from which the data are obtained and then used to train
eachmodel. The studies analyzed solve classification, regression, and
optimization problems. As depicted in Table 1, models providing a
solution make use of probabilistic inference, functions, activation
functions, reduction of the hierarchical order, and logical inference.
These results support the fact that machine learning models are
heterogeneous, time demanding to design, and correctly evaluate
complex models—since the result may not always be as expected or
the method may not be carried out successfully. As illustrated in
Table 3, there are some physical limitations blocking the full
execution of the various models or algorithms, for example, when
there is no appropriate computational equipment. Not surprisingly,
several authors report that executing a model requires a high
demand on execution time, computational power, extensive time
to correctly evaluate the model, large memory consumption, and
optimization towardGPUs (Frasca et al., 2018; AlmagroArmenteros
et al., 2017; Yeh et al., 2018; Jiménez et al., 2017; Lin et al., 2010).
Another crucial aspect mentioned inTable 1 is the lack of input data
to train the model, something that influences the model’s precision
and accuracy (Pagès et al., 2019; Cuperus et al., 2017; Folkman et al.,
2014; Qi et al., 2012). Moreover, there are also limitations in model
construction, such as errors in the training process, manual
intervention of data, overadjustment of the model, and an
inadequate algorithm construction. In the studies analyzed, there
are cases in which there is no description regarding the performance
of the comprehensive models, generating gaps in the understanding
of the behavior of the algorithms or models, like whether they are
deterministic (Long et al., 2018; Ragoza et al., 2017; Makrodimitris
et al., 2019). As stated in the ML and AI Algorithm section,
supervised learning is the most used method, something that
highlights the use of classification algorithms. Moreover, there
seems to be a current trend to solve problems in protein science
using techniques that require a cross-functional group of scientists,
something that, in turn, highlights the fact that there is plenty of
unexplored terrain in the use of unsupervised machine learning.

An interesting finding is the implementation of free code and
software, as shown in the AI Training, Validation, and
Performance section. Our results exhibit a tendency to create
models with transparency, which means that every study
implemented in a public server has access to all new models
created. Another crucial result is the one depicted in the Road
Map of Artificial Intelligence in Protein Science section, which is
an abstraction that reduces the design of an artificial intelligence
model to be used in the resolution of a specific problem in protein
science. The whole process follows three steps directed to build a
competent model; these steps are 1) the procedure to obtain raw
data and which type of processing should be followed for the
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model to be adequate, 2) the type of algorithm that may be used
depending on the complexity of the problem, and finally, 3) the
interpretation of results.

Overall, AI displays a window of opportunities to solve
complex problems in PS because of its potential in finding
patterns and correlating information that requires the
integration of protein data exceeding many petabytes.
However, we are still far away from solving all the protein
tasks computationally. As a result of our biochemical meta-
analysis, we showed that AI applications are strongly directed
to function identification and protein classification (Tables 1–6),
for machine learning models and methods are heterogeneous and
do not always draw a clear line as to whether a process should go
in a certain sequence (Table 1 and Figures 4–7). It should also be
noted that there is no optimal method, which is why applications
have different purposes and conditions, suggesting that
algorithms must be customized based on the expected
outcome or query (Table 1).

The evaluation accuracy horizon is an open epistemic horizon,
as shown in Table 1: the metrics for ML methods used in several
applications are limited; there are no reported research articles
using random forest, in which the cross-validation is unnecessary.
In summary, none of the studies reported explicitly use robustly
validated methods.

We end by commenting on a key problem in the binomial
AI–PS. As well known, it is not possible to work directly with the
protein sequences. To tackle this challenge, several studies
address this limitation by representing the sequence of a
protein as an input to the deep learning model (Almagro
Armenteros et al., 2017; Long et al., 2018; Fu et al., 2019).
Moreover, given some featured procedures comprising what

may be called the coding architecture, which is based on
creating a specific-weight matrix or a bit vector that represents
the sample. This practice was observed in some articles (Cuperus
et al., 2017; Jiménez et al., 2017; Khurana et al., 2018; Le et al.,
2018) that work with 2D convolutional neural networks in which
the authors reported an increase in sensitivity and precision when
using indexed datasets. A similar abstraction was observed in 3D
convolutional neural networks since the structural representation
of a protein is not a rotational invariant; several authors (Jiménez
et al., 2017; Ragoza et al., 2017; Hochuli et al., 2018; Pagès et al.,
2019; Sunseri et al., 2019; Torng and Altman, 2019) propose using
a volumetric map divided into voxels centered on the backbone
atoms, representing the physicochemical properties of proteins.

Regarding other review articles along the lines we have
followed, the closest we found is the one by Dara et al. (2021).
This review article is restricted to drug discovery, one of the five
applications we analyzed (genomics, protein structure and
function, protein design and evolution, and drug design).

Of a total of 38 articles we presented in Table 2 concerning
protein and drug design, only 11 of them were about protein
design, so the comparison is not at all fair between these two
articles, as far as the analysis of the bibliography analyzed is
concerned. However, we share with these authors part of the
challenges for researchers in this area: data quality as well as the
heterogeneity of databases to be searched for.

Optimization and the characteristics of a prediction must be
carried out with a few design considerations, including how to
represent the protein data and what type of learning algorithm to
use. These form the establishment of a priority acquisition,
standard acquisition, etc., and the generation of a protein
based on a base model, with the aim that one day it would be

FIGURE 7 | Representation of the whole AI process based on the selected protein application. The process amalgams several steps: protein application (protein
design, protein classification, protein prediction, etc.), extraction (selection of database), transform (code development and filtering), and load (input of the training data)
(ETL) for the training data and the feature extraction procedure is the building of the machine learning network. Outcome step and a proposal server application.
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possible to have controllable predictive models that can read and
generate outputs in a consensual terminology, as revised in Hie
and Yang (2022). Clearly showing a replacement of conventional
methods to the use of machine learning algorithms (neural
networks), attributed to improvements in design,
computational power, etc., the result of a machine learning
algorithm is not deterministic, but rather, it is intended to
perform transformation functions in relation to the complexity
of the data, as depicted in AlQuraishi (2021). There are volumes
and volumes of empirical protein data. It is extremely difficult to
synthesize such data for correct use in existing algorithms;
however, machine learning has helped to compile a large
number of methodologies, considering specific assumptions.
Nevertheless, most of the empirical methodologies to
demonstrate that drugs are safe and effectively continue to be
used since there is a gap in the understanding of how the learning
transmission of the data to the model is carried out (Dara et al.,
2021).

In order to close our reflection as a research team, we believe
that a landmark for the epistemic horizon in research is the
reassurance that cross-functional groups of scientists from several
academic disciplines, in this case including the participation of
experts from the natural sciences (organic chemistry, physics and
chemistry of proteins, molecular and structural biology, protein
engineering, systems biology, microfluid chip engineering, and
nanobiotechnology), together with those in computer science
(artificial intelligence, knowledge engineering) promote the
innovation process in tecno-sciences by combining tacit and
explicit knowledge, sharing skills, methodologies, tools, ideas,
concepts, experiences, and challenges to fully explore the
binomial AI–PS promising area of research (Hey et al., 2019;
Mataeimoghadam et al., 2020; Senior et al., 2020; Tsuchiya and
Tomii, 2020). A very recent successful case study that highlights
this approach is the team of creators of system Alphafold (Senior
et al., 2020; AlQuraishi, 2021), one which in the CASP (Critical
Assessment of Protein Structure Prediction) competition of
three-dimensional protein structure modeling were able to
determine the 3D structure of a protein from its amino acid
sequence. By doing so, this group of researchers solved one of
natural science’s open (until now) and most challenging
problems using a deep learning approach combining
template-based modeling (TBM) and free modeling (FM).
The key point is that the neural network prediction
encompasses backbone torsion angles and pairwise
distances between residues (Senior et al., 2020). At the
dawn of the year 2021, this peak of the iceberg brings fresh
air and a great power to the protein science field, in particular,
and to the life-sciences more broadly, encouraging the new
generation of scientists to work as cross-functional teams in
order to tackle novel tasks toward the understanding of
nature.

One challenge for the binomial AI–PS research area is to
tackle the representation of tacit knowledge and include it in the
ML algorithms. The relevance of tacit knowledge in the building
up of protein science knowledge has come a long way since
Polanyi first noted it, extending to different fields in the search
for an improvement of their practical skills. In AI, the

predominant way of knowledge acquisition and performance
is a formal one in which the machine learns and expresses
explicitly through guidelines and that works in a focalized mean;
the new task alludes to a tacit dimension (Polanyi, 1962), which
remains in the edge of attention and incorporates aspects that
are taught and learned mostly through practice and in a
comprehensive manner (it is context-specific, spreads in the
laboratory environment, and comes into play in decision-
making.

Some Conclusions
To sum up, the systematic review and the biochemical meta-
analysis offered in this article focused on the enormous
innovation that has been made in the binomial AI–PS
research, both in its applications and its road maps to solve
protein structures and function prediction, protein and drug
design, among other tasks. The contribution of this study is 3-
fold: firstly, the setup of a cross-functional group in which
computer scientists, professionals in biomedicine, and a
philosopher constructed a common language and together
identified relevant literature in the inter-field of AI–PS and
constructed a bridge between the two fields, which can serve
as a framework for further research in either area.

Secondly, we stressed the importance of a finer-grain
understanding of training and validation methods of ML
models and their outcomes, combining databases from several
areas of knowledge (life-science experiments, in silico
simulations, ML, direct evolution approach, etc.) that allowed
us to classify, stratify, and contribute to the evolving protein
science field. Thirdly, we showed that the binomial AI–PS, a
progressive research program, as Lakatos would say and has still
several challenges to tackle, such as the development of a
comprehensive machine learning benchmarking enterprise, the
experimental confirmation of the structure of the 3D modeling in
laboratories, the classification, etc., controls the vulnerability of
the neural networks, the development of a tool-kit to design novel
biocatalysts not found in nature using reverse engineering,
human-made metabolic routes, the design of new antibody
molecular factory, novel proteostasis systems, the
understanding of protein folding and protein-aggregation
mechanisms, etc. Finally, we suggested that there may be a
paradigm shift in the AI–PS research as a result of the recent
great outcome of Alphafold, encouraging its use to the new
generation of scientists.

In any case, what is clear is that a cross-functional group of
scientists from several knowledge domains is required to work
in coordination for sharing ideas, methodologies, and
challenges toward the development of road maps and
computational tools, paradigms, tacit, and explicit
knowledge to fully explore and close the gap of the
binomial AI–PS, a promising research area.
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GLOSSARY

1D-CNN one-dimensional convolutional neural network

2D-BRLSTM two-dimensional bidirectional recurrent long short-term
memory

2D-CNN Two-dimensional convolutional neural network

3D-CNN Three-dimensional convolutional neural network

ACNN Asymmetric convolutional neural network

ADASYN Adaptive synthetic sampling

AGCT Alignment genetic causal tree

ANN Artificial neural network

BBFNN Biobasis function neural network

BBP Back back propagation

BLSTM Bidirectional long short-term memory

BN Bayesian network

BRNN Bidirectional recurrent neural network

BroMap Branch and bound map estimation

BRT Booster regression tree

CABS C-alpha–beta side

CFN Cost function network

CNF Conditional neural field

CNN Convolutional neural network

COSNet Cost-sensitive neural network

DCNN Deep convolutional neural network

DeepDIN Deep dense inception network

Deep3I Deep inception-inside-inception network

DFS Depth first search

DL Deep learning

DMNN Deep mahout neural network

DNN Deep neural network

DRNN Deep residual neural network

DROP Domain linker prediction using optimal feature

DT Decision tree

DTNN Deep tensor neural network

EASE-MM Evolutionary amino acid and structural encodings with
multiple models

ELMO Embeddings from language models

ENN-RL Evolution neural network-based regularized Laplacian kernel

FFNN Feed forward neural network

FIBHASH Fibonacci numbers and hashing table

GA Genetic algorithms

GAN Generative adversarial network

GBT Gradient boost tree

GBDT Gradient boosted decision tree

GCN Graph convolutional network

GR Genetic recombination

HDL Hybrid deep learning

HMM Hidden Markov model

HNN Hopfield neural network

IBP Incremental back propagation

KeSCANN Knowledge-enriched self-attention convolutional neural
network

K-merHMM K.mer Hidden Markov model

KNN k-nearest neighbor

Lasso Least absolute shrinkage and selection operator

LightGBM Light gradient boosting machine

LM Levenberg–Marquardt

LPBoostR Linear programming boosting regression

LPSVMR Linear programming support vector machine regression

LR Logistic regression

LSDR Label-space dimensionality reduction

LSTM Long short-term memory

MC Monte Carlo

ME Max entropy

ML Model

MLP Multilayer perceptron

MNB Multinomial naïve bayes

MNNN Multi-scale neighborhood-based neural network

MNPP Message passing neural network

MotifCNN Motif convolutional neural network

Motif DNN Motif deep neural network

MR Matching loss regression

MRF Markov random forest

Multimodal DNN Multimodal deep neural network

NB Naïve Bayes

NLP Natural language processing

ORMR One-norm regularization matching-loss regression

ParCOSNet Parallel COSNet

PLSR Partial least-squares regression

PNN Probabilistic neural network

PS Protein science

PSO Particle swarm optimization

PSP Predict signal pathway

QP quick prob

ReLeaSE Reinforcement learning for structural evolution

RF Random forest

RN Relational network

RNN Recurrent neural network
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RNN 2 Residual neural network

RR Ridge regression

SDHINE Meta path-based heterogeneous information embedding
approach

SFFS Sequential forward floating selection

SGD Stochastic gradient descent

SPARK-X Probabilistic-based matching

SPIN Sequence profiles by integrated neural network

SVM Support vector machine

SVMR Support vector machine regression

SVR Support vector regression

UDNN Ultradeep neural network

VSA Virtual screening algorithms

WMC Weighted multiple conformations
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