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Detecting phenotype-driven transitions in regulatory network
structure
Megha Padi1 and John Quackenbush2,3

Complex traits and diseases like human height or cancer are often not caused by a single mutation or genetic variant, but instead
arise from functional changes in the underlying molecular network. Biological networks are known to be highly modular and
contain dense “communities” of genes that carry out cellular processes, but these structures change between tissues, during
development, and in disease. While many methods exist for inferring networks and analyzing their topologies separately, there is a
lack of robust methods for quantifying differences in network structure. Here, we describe ALPACA (ALtered Partitions Across
Community Architectures), a method for comparing two genome-scale networks derived from different phenotypic states to
identify condition-specific modules. In simulations, ALPACA leads to more nuanced, sensitive, and robust module discovery than
currently available network comparison methods. As an application, we use ALPACA to compare transcriptional networks in three
contexts: angiogenic and non-angiogenic subtypes of ovarian cancer, human fibroblasts expressing transforming viral oncogenes,
and sexual dimorphism in human breast tissue. In each case, ALPACA identifies modules enriched for processes relevant to the
phenotype. For example, modules specific to angiogenic ovarian tumors are enriched for genes associated with blood vessel
development, and modules found in female breast tissue are enriched for genes involved in estrogen receptor and ERK signaling.
The functional relevance of these new modules suggests that not only can ALPACA identify structural changes in complex
networks, but also that these changes may be relevant for characterizing biological phenotypes.
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INTRODUCTION
We tend to think of phenotypes as being characterized by
differentially expressed genes or mutations in particular genes.
However, the individual genes that show the greatest changes in
expression in a phenotype do not tend to be drivers of that
phenotype.1,2 Despite the increasing power and depth of
sequencing studies, identifying the causal mutations and single-
nucleotide polymorphisms (SNPs) that are responsible for
determining heritable traits and disease susceptibility remains
challenging. Indeed, many studies have found thousands of
genetic variants of small effect size contribute to common traits.3–
5 It has become apparent that complex regulatory interactions
between multiple genes and variants can contribute to defining
the state of the cell. Modeling such phenotypes requires that we
have a clearer picture of how genes and proteins work together to
perform normal cellular functions, and how remodeling the
interactions between genes can cause changes in phenotype
including disease.
In this context, it is useful to make a subtle shift and think of a

phenotype as being defined by a network of interacting genes
and gene products. It has been shown that analyzing the
mathematical properties of such networks can provide important
biological insight into phenotypic properties. For example, high-
degree “hubs” in protein–protein interaction (PPI) networks are
enriched for genes essential to growth.6 Biological networks are
known to have modular structure and contain closely interacting
groups of nodes, or “communities”, that work together to carry

out cellular functions.7–9 There are many analytical and experi-
mental methods for inferring network models associated with
different phenotypic states, and for computing topological
properties like centrality and community structure.10–13 However,
the most significant questions we can ask of biological networks—
how networks differ from each other, and how these differences in
network structure drive functional changes—remain largely
unanswered. A significant challenge in this area is the lack of
computational approaches for finding meaningful changes in the
structure of large complex networks.
Previous work on comparative analysis of biological networks

has focused on the so-called “differential network”, the set of
edges that are altered relative to a reference network.14 While the
advantage of this approach is its simplicity, there are several issues
that arise in such an edge-based analysis. First, biological network
inference has a relatively high rate of false negatives due to noise
in both the experimental data that are used and in the network
inference methods themselves. Consequently, it can be difficult to
determine whether the appearance or disappearance of a single
edge is “real”. The uncertainty in the estimate of the difference
between two edge weights is the sum of the uncertainties in each
individual edge, which inflates noise in the final differential
network. Second, the perturbed network will in general contain
both positive and negative changes in edge weight relative to the
reference network, and it is challenging to analyze and interpret a
differential network with mixed signs. If we only consider the new
edges associated with a phenotype, we would miss the functional
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effects of decreases in edge activity. Third, by focusing only on the
altered edges and discarding common edges, the differential
interactions are taken out of their functional context, making it
difficult to connect them to global cellular changes. For example,
adding or deleting ten scattered edges in a network may have
very different consequences on the phenotype than would the
same number of changes concentrated in a local functional
neighborhood of the network.
One way to address these issues and find more robust

differences between networks is to identify changes in groups
of nodes, rather than in individual edges. Computational methods
that have been developed to do this fall into several categories.
First there are methods that evaluate differences in pre-specified
network features, like user-defined gene sets, small regulatory
motifs, or global topological characteristics. For example, Gam-
berdella et al. evaluated the statistical significance of differences in
co-expression of a user-defined gene set between two condi-
tions.15 Similarly, the coXpress method defines clusters using co-
expression in the reference condition, and tests for significant
changes in each cluster under a new condition.16 Landeghem
et al. developed a method for inferring the best differential
network that contrasts two datasets, and new measures have
been devised to test whether global modular structure and
degree characteristics are different between two networks.17–20

However, these methods are limited to examining pre-defined
gene modules and network features, and fail to take full
advantage of the network structure. As such, they lack the ability
to discover new pathways and network modules that functionally
distinguish different phenotypes.
Other methods have been developed to discover de novo gene

modules that differ between conditions. The DiffCoEx algorithm
iteratively groups genes that are differentially co-expressed to find
new modules.21,22 Valcarcel et al. compared metabolite correlation
networks to discover groups of metabolites that changed their
correlation pattern between normal weight and obese mice.23

These methods are based on first computing the most differential
edges and then grouping them together, which increases the
uncertainty of each edge estimate and does not incorporate
functional edges that are present in both conditions,14,24 thus
losing network context.
Another class of methods attempts to identify “active modules”,

which are groups of genes that are differentially expressed in a
particular disease or condition and also highly connected in a
reference network, such as the PPI network.25 However, the “active
modules” framework only uses differential gene expression and so
focuses on the nodes rather than accounting for changes in the
strength of regulatory edges.
We present a new graph-based approach called ALtered

Partitions Across Community Architectures (ALPACA) that com-
pares two networks and identifies de novo the gene modules that
best distinguish the networks. ALPACA is based on modularity
maximization, a technique commonly used to find communities in
a single graph. As applied previously, modularity is a measure of
the observed edge density of the communities as compared to
their expected density in a degree-matched random graph.
Although this technique is powerful, it has a “resolution limit”
because communities can only be identified if they are larger than
the typical cluster size in random graph configurations.26 This lack
of resolution is especially disadvantageous when studying
transcriptional networks, which tend to have a dense and
hierarchical structure, and whose functional units only become
evident under different environmental conditions.27 A framework
based on modularity maximization has been created to find
common community structure among multiple networks,28 but
the only way to detect differences is to apply modularity
maximization to each network separately, followed by brute-
force comparison of the two resulting community structures.

In ALPACA, we adapt the modularity framework to compare
condition-specific networks to each other rather than to a random
graph null model. We define a score called the “differential
modularity” that compares the density of modules in the
“perturbed” network to the expected density in a matched
“baseline” network, allowing us to contrast, for example, networks
from disease and healthy tissue samples and partition the nodes
into optimal differential modules, without relying on predefined
gene sets or pathways. In contrast to methods that simply cluster
the most differential edges, ALPACA compares the full network
structures active in each condition and reduces the noise from
individual edges by estimating an aggregated null model. And
because the null model is based on the community structure of a
known reference network rather than on a random graph, the
“resolution limit” is substantially smaller, and ALPACA can detect
small disease modules otherwise hidden within larger regulatory
programs associated with normal cellular functions.
To demonstrate the utility of ALPACA, we show that it can

identify changes in the modular structure of simulated networks,
and that it exhibits higher resolution and robustness than other
network approaches. We then apply it to compare transcriptional
networks derived from non-angiogenic and angiogenic subtypes
of ovarian cancer, normal human fibroblasts and fibroblasts
expressing tumor virus oncogenes, and male and female breast
tissue from the Genotype-Tissue Expression (GTEx) project. In each
case, we find that ALPACA identifies modules enriched in
biological processes relevant to the phenotypes we are
comparing.

RESULTS
Modularity maximization and detecting community structure
Many methods for determining the community structure of a
network are based on maximizing the modularity:13

Q ¼ 1
2m

X
i;j

Aij � didj
2m

� �
δðCi ; CjÞ: (1)

Here, Aij indicates the adjacency matrix of the network, m is the
number of edges, di is the degree of node i, and Ci is the
community assignment of node i. The modularity represents to
what extent the proposed communities have more edges within
them than expected in a randomly connected graph with the
same degree properties; this null expectation is represented in the
second term of the equation above. The modularity is optimized
over the space of all possible partitions {C} and the value of Ci
corresponding to the maximum modularity then determines the
community structure of the network. An exhaustive search is not
possible for large networks, but many methods have been
developed to find locally optimal community structure, including
ones based on edge betweenness, label propagation, and random
walks.13,29,30 The Louvain algorithm is a particularly efficient way
to find high-quality local optima of the modularity function.31

Community comparison and edge subtraction
Having arrived at a pair of inferred networks corresponding to
different phenotypic states, there are two straightforward ways to
compare the community structures based on the modularity
metric (Fig. 1). One method, which we will call “community
comparison”, consists of using modularity maximization to find
the community structure for each network individually, and then
finding the nodes that alter their community membership
between the two networks. Another method, which we will call
“edge subtraction”, is to compute the differences in the edge
weights between the two networks, and then apply modularity
maximization to the resulting subtracted weights.
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Both methods can detect large, dramatic changes in network
structure. However, there are important differences in these
methods. “Community comparison” is limited in its ability to
detect structural changes smaller than the average community
size in each individual network. In contrast, “edge subtraction”
acts on the difference of the edge weights, which reduces the
density of the network and increases the resolution, but this
method is also more strongly affected by noise in the individual
edges. Further, only positive edge weight differences can be used
to run modularity maximization in the subtracted network, so
edges that are lost are not appropriately accounted for;
incorporating both positive and negative edge weight differences
requires more complex techniques.32,33

ALPACA: a new method for detecting changes in community
structure
To overcome some of the limitations of the community
comparison and edge subtraction methods, we developed
ALPACA, a new algorithm based on modularity maximization.
The unique aspect of ALPACA is that, rather than comparing edge
distributions to a random null model, we compare edges of the
“perturbed” network to a null model based on the “baseline”
network to find differential gene modules between the two
networks (Fig. 1). ALPACA optimizes a new quantity called

“differential modularity”, which we define as:

D ¼ 1
mP

X
i;j

Dij δ Mi;Mj
� � ¼ 1

mP

X
i;j

ðAP
ij � NijÞ δðMi ;MjÞ: (2)

This score compares the number of edges in a module M in the
perturbed network—whose adjacency matrix is given by AP

ij and
total edge weight is mP—to the expected number of edges Nij

based on the pre-computed community structure {C} of the
baseline network. Here, Nij is defined as:

Nij ¼
P

b2Cj ~wib

� � P
a2Ci ~waj

� �
P

a2Ci ;b2Cj ~wab
; (3)

where Ci is the community assignment of node i in the baseline
network, and ~wab is the normalized weight of the edge between
node a and node b in the baseline network: ~wab ¼ mP

m

� �
wab. For

the normalization, we have chosen to globally scale the edge
weights of the baseline network so that the total matches mP, the
sum of the edge weights in the perturbed network. This allows a
fair comparison between two networks that could be derived from
two datasets of differing quality or sample size and may have
different global sensitivity properties. To identify the modules {M}
that maximize the differential modularity, we use the following
two-step procedure. First, we determine the community structure

Baseline 

Perturbed 

Community comparison Edge subtraction 

ALPACA 

TF TF TF TF 

TF TF TF TF 

TF TF TF TF 

TF TF TF TF 

TF TF TF TF 

TF TF TF TF 

Compute community structure 
{C} of baseline network 

Compute differential modularity 
matrix Dij for perturbed network 

relative to {C} 

Apply Louvain algorithm to Dij 
and find optimal assignment of 

nodes to differential modules {M} 

GO term enrichment on top-
ranked genes in each module 

Baseline 

Perturbed 

Fig. 1 Methods to compare networks and find changes in modular structure. “Community comparison” identifies communities separately in
each network and looks for nodes that change their community membership. “Edge subtraction” finds communities by subtracting the
networks and finding communities in the resulting differential edges (red arrows). ALPACA looks for groups of genes that are more
interconnected in the perturbed network than expected given the community structure of the baseline network. Flowchart shows the major
steps in the implementation of ALPACA
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of the baseline network using established methods.9,31 Second,
we compute the differential modularity matrix Dij and apply the
Louvain optimization algorithm to iteratively aggregate the nodes
into modules.31

Note that the equation above is presented in a form that applies
to weighted bipartite networks, as we will be applying it to
analyze transcription factor (TF)–gene interactions. It can be easily
adapted to analyze other types of networks. More details about
the implementation of all three methods—community compar-
ison, edge subtraction, and differential modularity—are presented
in the Materials and Methods section.

Evaluating the performance of ALPACA on simulated networks
We reasoned that ALPACA would be more sensitive to small
changes in modular structure than methods based on standard
community detection, because the null model is computed using
detailed properties of the baseline network rather than relying on
random graphs. We also believed that ALPACA would be less
sensitive to noise in individual edge weights than edge
subtraction, because the null model is estimated by averaging
over communities in the baseline network. We set out to test
these properties in a setting that resembles real biological
networks as much as possible, but where we have control over
the changes in modularity.
To do this, we constructed a baseline network and then created

new modules through the “addition” of new edges, resulting in a
perturbed network. For the noiseless version of this simulation, we
inferred a regulatory network by integrating known human TF-
binding sites with gene expression data in normal human
fibroblasts using the algorithm PANDA34 (see Materials and
Methods for further details). After thresholding the edge weights
and applying CONDOR,9 a method for community detection in
bipartite networks, we found that the baseline network had five
communities of varying sizes. Next, we simulated a set of

perturbed networks by choosing a random subset of TFs and
genes and adding new edges between them, thus artificially
creating a new module. The new module consisted of between 3
and 21 TFs, and five times as many genes as TFs.
To these simulated networks, we applied three differential

community detection methods—community comparison, edge
subtraction, and ALPACA—and ranked the nodes by their
contribution to the final score for each method. We then used
Kolmogorov–Smirnov and Wilcoxon tests to evaluate whether the
“true” module ranked higher than expected by chance in each
ranked list. The edge subtraction method demonstrated superior
performance for recovering modules of all sizes (Fig. 2a); this is to
be expected, since the only new edges added to the networks
were within the new modules. Examining the results from the
other two methods, we observed that ALPACA is substantially
better than community comparison at detecting smaller modules
ranging down to a size of 50 nodes.
We then introduced edge noise into the “addition” simulation

while retaining the modular structure of the underlying network.
To do this, we made another series of perturbed networks, where,
in addition to introducing the new module as described above, we
also randomly resampled the edges from the baseline network
while retaining the inter-community and intra-community edge
density. In this more realistic set of simulations, we found that
ALPACA outperformed the other methods on modules in the
range of 18–90 nodes (Fig. 2b).
To check that these results are independent of the particular

optimization algorithm used, we repeated the analysis using the
Louvain method instead of CONDOR for initial community
detection in the community comparison and edge subtraction
methods. The results were similar in both cases, and in particular,
ALPACA still outperformed the other methods on modules in the
range of 18–54 nodes (Supplementary Fig. 1). This indicates that
the superior performance of ALPACA is not due to the

Fig. 2 Performance of three methods on simulated networks with added module. Network at left visualizes the regulatory network derived
from normal human fibroblasts, with purple, yellow, orange, pink, and blue denoting the pre-existing community structure, and red nodes
depicting the synthetically added module. Bar graphs show performance of each method—ALPACA, edge subtraction or community
comparison—on network simulations with (a) or without (b) resampling of edges among the pre-existing communities. P-values were
computed using a one-sided Wilcoxon test. Bar graphs show mean of −log10P over 20 network simulations, and error bars depict the
corresponding standard deviation. Boxplots represent same data as the bar plots. Boxplot elements are defined as follows: center line,
median; box limits, upper and lower quartiles; whiskers, 1.5× interquartile range; points, outliers. Note that the color of the boxplots for the
edge subtraction method in a is not visible because the distribution is very narrow
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optimization method used, but rather arises directly from the
definition of the differential modularity.
While the edge subtraction method works well to detect

“added” modules under low noise conditions, it becomes
problematic if edges are deleted or if their weights decrease in
the perturbed state relative to the control, because most network
clustering methods are only formulated for positive edge weights.
One might suggest transformation of edge weights, but any
simple transformation of negative edge weights to make them
positive (for example, by exponentiation or a linear shift) would
bias the results. Algorithms that directly incorporate negative
edge weights are complex and involve multiple steps and
assumptions.32,33 In contrast, ALPACA’s differential modularity
matrix Dij contains both negative and positive values, correspond-
ing to areas of decreasing and increasing edge density relative to
the baseline network and its community structure. By optimizing
over the sum of Dij, ALPACA incorporates positive and negative
changes in edge density in a symmetric fashion.
As a simple demonstration of ALPACA’s ability to detect

community structure changes with negative weights, we created
“subtracted” simulations in which selected edges in a baseline
network are reduced in weight to produce a substantially different
perturbed network structure (Fig. 3 and Supplementary Fig. 2; see
Materials and Methods for more details). In Fig. 3, for example, the
network consists of two dense node groups, A and B, which are
more strongly connected together in the baseline condition (edge
weight 0.8) than in the perturbed condition (edge weight 0.2).
Therefore, the perturbation causes groups A and B to separate and
perform distinct functions; intuitively, this means groups A and B
characterize the change in modular structure between the two
networks. Because the only change in edge weights is the
decrease in edges between A and B, the edge subtraction method
results in a network with negative edge weights.
If instead we reverse the process and subtract the perturbed

network from the baseline network, the resulting positive edge
weight network produces two modules, one consisting of TFs in
group A linked with genes in group B, the other consisting of TFs
in group B linked with genes in group A. This does not match the
intuitive result we are looking for. The community comparison
method detects no change because both the baseline and
perturbed networks are composed of the same two node

communities. However, ALPACA correctly identifies groups A
and B as the differential modules characterizing this transition.
An example with three node groups is shown in Supplementary

Fig. 2. Again, we find that ALPACA identifies the key change in
modular structure and edge subtraction cannot. Although these
examples are simple, such areas of decreased edge density will be
locally embedded in any realistic biological network and will
strongly influence the identification of neighboring modules.

Angiogenic vs. non-angiogenic ovarian cancer tumors
Ovarian cancer is the second most common cause of cancer death
among women in the developed world. Available treatment
options for ovarian cancer, such as platinum-based therapies,
often lead to chemoresistance and recurrence. Ovarian cancer
tumors can be stratified by gene expression profile, tissue of
origin, or other characteristics, in order to better understand
heterogeneity and predict patient-specific therapeutic strategies.
We previously found that a gene signature associated with
angiogenesis is able to classify ovarian cancer patients into a poor-
prognosis subtype.35

We classified 510 ovarian cancer patients from The Cancer
Genome Atlas into 188 angiogenic and 322 non-angiogenic
tumors and used PANDA to infer separate gene regulatory
networks for the two subtypes, as previously described.36 We then
applied a variety of methods to look for changes in community
structure associated with the angiogenic tumors, ranked the nodes
by their contribution to the total score for each method (see
Materials and Methods), and evaluated the core genes in each set
for functional enrichment. In order to evaluate the unique
contributions of ALPACA, we first applied standard community
detection techniques to identify communities in each subtype-
specific network, using both the Louvain method and CONDOR,
and we looked for GO terms that were statistically enriched in the
angiogenic network but not in the non-angiogenic network. Next,
we applied edge subtraction, community comparison, and ALPACA
to directly identify differential modules associated with angiogenic
tumors. Finally, we also computed the differentially expressed
genes between the non-angiogenic and angiogenic cancer
subtypes. The GO term enrichment with Padj < 0.05 for each
method is presented in full in Supplementary Table 1.

Edge subtraction (rev.) 

ALPACA 

Baseline Perturbed 

Transcription factor 

Gene 

Community comparison 
Group A Group B 

Fig. 3 Performance of three methods on perturbations that decrease edge density. Left-hand side shows a network transition involving a
decrease in edge weights between nodes in groups A and B. All other edges remain the same. Right-hand side shows the results of three
methods when comparing these two networks. Each method identified up to two differential modules, which are distinguished by their light
blue and light pink colors in each case. Note that the “edge subtraction” method needs to be applied in the reverse manner, comparing the
baseline network against the perturbed network, in order to have positive differential edge weights
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Consistent with what we observed in the simulated networks,
ALPACA had higher resolution than the other methods and
identified 25 modules specific to the angiogenic network.
Strikingly, ALPACA was the only network method that identified
a gene module enriched in “blood vessel development”, the
pathway that we know drives the phenotypic difference between
these two ovarian cancer subtypes. Standard community detec-
tion methods did not find such a cluster. The non-angiogenic
network communities were enriched for histone methylation,
embryo development, G-protein-coupled receptor signaling,
interferon signaling, and chromatin assembly, whereas the
angiogenic communities were enriched for cAMP biosynthetic
process, response to fibroblast growth factor, MAPKK activity, and
interferon signaling (Supplementary Table 1). The community
comparison method did not yield any enriched GO terms. The
edge subtraction method resulted in four large modules enriched
for general processes like regulation of cell shape, extracellular
matrix organization, nucleosome assembly, and immune response
(Supplementary Table 1). The differentially expressed genes did
exhibit enrichment for “blood vessel development”, but that is to
be expected given that the two subtypes of tumors were defined
using a gene signature associated with angiogenesis. The

remainder of the differential expressed genes was not enriched
for functional groups that overlapped with those we identified
using network-based methods (see Supplementary Information
for more details).
ALPACA led to more specific GO term enrichment than the

other methods, suggesting that it was able to more carefully refine
differential module structure. For example, instead of general GO
terms like “immune response”, the ALPACA modules were
enriched for particular immune-related pathways like Type I
interferon response, interleukin production, regulation of the NFκB
pathway, and inflammation. Other enriched pathways included
JAK-STAT and growth hormone signaling, urogenital develop-
ment, triglyceride homeostasis, flavonoid glucuronidation, and cell
migration (Fig. 4). Some of these pathways, like JAK-STAT and cell
migration, have well-established associations with ovarian tumor
progression, while others like flavonoids and triglycerides have
only tentative connections with risk of ovarian cancer. Never-
theless, there is substantial support for the biological relevance of
these pathways with disease etiology. We provide a detailed
discussion of the modules and their biological functions in the
Supplementary Information.

Fig. 4 ALPACA modules associated with angiogenic ovarian tumors. Right-hand side shows five of the modules, with nodes colored by their
membership. Edge opacity is proportional to its contribution to the differential modularity. Network is annotated with representative enriched
GO terms with Padj < 0.05, and the genes annotated by the shown GO terms are labeled in larger font. Left-hand side shows the relationship
between the ALPACA modules (denoted by M) and the community structure of the angiogenic network (denoted by ANG). Edge thickness
depicts the fraction of genes in that differential module that are present in a particular angiogenic network community. The size of each node
is proportional to the number of genes in that module or community. Bottom inset: Same networks as above, but colored by community
membership in the angiogenic network rather than by membership in the ALPACA modules
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Most of the ALPACA GO term results could not be found by
running community detection on the angiogenic network alone,
which shows that ALPACA partitions nodes in a novel manner that
does not merely reflect the underlying community structure of the
disease network but instead highlights the changes in modular
structure between conditions (Fig. 4, inset). We note that running
ALPACA in reverse, to find modules present in the non-angiogenic
network as compared to the angiogenic network, results in a
substantially smaller set of enriched GO terms, which fall mostly
into the metabolic and immune categories, with no enrichment in
blood vessel development (Supplementary Table 1). ALPACA
therefore selectively identifies network modules associated with
the specific phenotype under study. We also computed the
correlation in expression among the genes in each ALPACA
module. The average absolute value of the Pearson correlation
among all gene pairs in each module ranged only from 0.06 to
0.13, suggesting that network module detection does not merely
reflect correlation-based clustering (Supplementary Fig. 3). Finally,
we ranked the genes by their contribution to the differential
modularity and used Gene Set Enrichment Analysis (GSEA) to
evaluate enrichment for GO terms across the whole network (see
Materials and Methods). The results included some of the
biological processes found through module-level enrichment, like
“blood vessel remodeling” and “response to Type I interferon”, but
not others, likely due to decreased resolution caused by
combining genes from different ALPACA modules (Supplementary
Table 4).

Tumor virus perturbations in primary human cells
DNA viruses hijack the host cell cycle to jumpstart viral genome
replication. Tumor viruses can do this so effectively that they lead
to aberrant cell proliferation and tumorigenesis, and studying
tumor viruses can shed light on the molecular mechanisms
behind cancer. Previously, we expressed a panel of 63 proteins
from four families of DNA tumor viruses—Epstein-Barr virus,
human papillomaviruses, polyomaviruses, and adenovirus—in
IMR90 primary human fibroblasts and generated gene expression
profiles for each cell line.37 To construct regulatory networks, we
divided the gene expression data into two groups, the first
corresponding to the 37 viral proteins classified as “transforming”
due to their tumorigenic properties, and the second correspond-
ing to all the control cell lines that contain either empty vectors or
GFP. We used PANDA to infer networks by combining gene
expression from each sample group with a prior map of cell-type-
specific DNase-I-hypersensitive TF-binding sites.34

We first ran standard community detection on each network,
using the Louvain method for modularity maximization. The
control network contained communities enriched in cell migra-
tion, axon guidance, and wound response (Supplementary Table
2). The communities in the transforming viral oncogene network
were enriched for epithelial–mesenchymal transition, cell migra-
tion, axon guidance, and wound response. Since an important
function of fibroblasts is to migrate and heal wounds, many of the
results from standard community detection appear to be cell-
type-specific processes that are not specific to viral oncogenes.
The genes with the biggest changes in community assignment
were enriched in BMP response and natural killer cell develop-
ment (Supplementary Table 2). Applying the edge subtraction
method using Louvain or CONDOR optimization methods resulted
in enrichment for chromatin modification, the Toll-like Receptor
pathway, and immune response.
We then applied ALPACA to compare the two networks. Like

the edge subtraction method, ALPACA also revealed changes in
immune response and chromatin modification but, importantly, it
also found significant enrichment for “mitotic cell cycle”, which
is the main process we expect to be perturbed by tumor viruses
(Fig. 5). Consistent with this, we had previously found that

fibroblast cell lines expressing transforming viral oncogenes have
significantly altered growth rates.37 The mitotic cell cycle GO term
was not found using any other network-based method, nor was it
enriched among the differentially expressed genes (Supplemen-
tary Table 2). The TFs regulating this module—RB1, TFDP1, and
ATF family members—were not differentially expressed either and
were only found using ALPACA. The average absolute value of the
Pearson correlation coefficient among genes in the ALPACA
modules ranged from 0.22 to 0.34 (Supplementary Fig. 3). The
functional significance of the ALPACA modules is further
described in the Supplementary Information. As was true with
ovarian cancer, there is substantial support for the relevance of
these modules in viral transformation.

Sexual dimorphism in normal breast tissue
The GTEx consortium has generated gene expression data using
tissue collected from 51 body sites and in nearly 600 individuals.
Not surprisingly, the tissue with the greatest difference between
males and females in autosomal gene expression is the breast.38

We used PANDA to create tissue-specific regulatory networks to
study the effect of sex on regulatory networks in breast tissue.38

We first applied the Louvain method to detect communities
separately in the networks derived from male and female breast
tissue and tested for functional enrichment of GO terms in the
male and female communities. We found that both the networks
were enriched for the same biological processes: GTPase-
mediated signal transduction and protein catabolic process
(Supplementary Table 3). Therefore, despite what one might
expect to be substantially different, the global structure of the
male and female networks failed to identify sex-specific patterns
of regulation. We also used the edge subtraction method to
search for modular differences between the sexes and tested
modules for GO term enrichment, but this too failed to identify
any significant GO biological processes. In contrast, ALPACA
detected several functional modules that differentiate male and
female breast tissue (Fig. 6 and Supplementary Information).
These modules were enriched in developmental and signaling
pathways that are relevant to breast tissue and are often
dysregulated in breast cancer. Notably, ALPACA uniquely identi-
fied a module associated with female breast tissue that was
enriched for “intracellular estrogen receptor signaling pathway”,
the hormonal process we expect to be critical for female breast
development and overall function. Most of the biological
processes identified by ALPACA were not enriched among genes
differentially expressed between male and female breast tissue
(Supplementary Table 3 and Supplementary Information). The
average absolute value of the Pearson correlation coefficient
among genes in the ALPACA modules ranged from 0.16 to 0.2
(Supplementary Fig. 3).

DISCUSSION
Biological networks have complex modular and hierarchical
topologies that allow organisms to carry out the functions
necessary for survival. Various perturbations, such as diseases,
environmental conditions, or mutations, can lead to changes in
the phenotype of the organism. Techniques such as differential
expression analysis can be used to characterize the transition
between different cellular states, but changes in gene expression
are ultimately driven by changes in regulatory pathways. If we are
to fully understand the basis of complex phenotypes and diseases,
we need computational methods that can analyze how regulatory
networks change with phenotype. To address this challenge, we
developed ALPACA, an algorithm for comparing the topology of
two large networks, using a metric we call the “differential
modularity”, to find groups of nodes that characterize differences
in network structure. ALPACA differs from other community
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detection methods in that it compares the structure of networks
to each other rather than to a random background network and is
thus better able to detect subtle differences in network modular
structure. This can potentially allow detection of small modules
that function together in particular conditions or in disease.
We evaluated the performance of ALPACA on simulated

networks and compared it to two available approaches for
detecting changes in network modular structure: (i) “community
comparison”, where one applies standard community detection to
the baseline and perturbed networks separately and contrasts the
resulting communities, and (ii) “edge subtraction”, which involves
subtracting the two networks edge by edge, and clustering the
resulting differential network. ALPACA was able resolve smaller
differential modules than the community comparison method.
Intuitively, this is because modularity maximization in its standard
form penalizes the splitting of a large dense community into
smaller ones, whereas the differential modularity score used in
ALPACA penalizes the formation of large communities similar to
those present in the baseline network. In addition, ALPACA was
more robust to noise in individual network edges and better at
detecting small modules than the edge subtraction method. In the
edge subtraction method, the uncertainty of the edges in the
“differential” network is the sum of the uncertainties in the
corresponding edges of the original networks. In contrast, ALPACA
aggregates the signals coming from multiple edges in the

baseline network communities to derive a null model for edge
density, so it is less sensitive to the uncertainty in individual edges.
ALPACA’s differential modularity metric directly compares the

edges that one sees within a community to what you would
expect based on the topology of a corresponding reference
network. This adapts the well-established modularity maximiza-
tion method to infer subtle changes in the community structure
that arise when comparing distinct complex phenotypes. Unlike
other methods that simply subtract networks, ALPACA preserves
those secondary interactions that exist in both networks but
allows them to shift their functional context as the edges around
them change, which can capture new modular structures. The
differential modularity also incorporates increased and decreased
edge weights across the entire network into a single, simple
framework for module detection. And unlike community compar-
ison, ALPACA can detect new modules that form within the
context of globally active regulatory programs that are present in
both the baseline and perturbed networks.
We applied ALPACA to compare transcriptional networks that

were inferred from a combination of gene expression and TF-
binding data using the PANDA network inference algorithm.
PANDA does not explicitly use the expression correlation between
regulators and the target genes, and can therefore model TFs that
are not changing in mRNA expression but whose activity is
controlled through other mechanisms, like post-translational

Fig. 5 ALPACA modules associated with transforming viral oncogenes. Network shows five modules, with nodes colored by membership in
differential modules. Edge opacity is proportional to its contribution to the differential modularity. Network is annotated with representative
enriched GO terms with Padj < 0.05. Genes annotated by the shown GO terms are labeled in large font
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modification. PANDA also incorporates changes in promoter
activity that could alter regulatory targeting patterns. Comparing
angiogenic to non-angiogenic subtypes of ovarian cancer, we
found functional modules that were enriched in expected disease
pathways like blood vessel development, interleukin production,
and JAK-STAT signaling. We also found enrichment for less
expected processes like flavonoid biosynthesis and triglyceride
homeostasis, which have been speculated to be relevant for
ovarian cancer, but for which the underlying molecular pathways
are not known.39–42 All these modules were specific to the
angiogenic subtype and uniquely revealed by ALPACA; they could
not be found through standard community detection in the
individual angiogenic and non-angiogenic networks or in an
edge-subtracted network, or by running ALPACA in reverse on the
non-angiogenic network compared to the angiogenic network.
In another application of the method, we compared normal

male and female breast tissue to find sex-specific patterns of
regulation. Many of the modules we found were enriched in
known processes related to breast development and breast
cancer, like ERK and Rho GTPase signaling. Perhaps most
strikingly, the female breast network contained a differential
module enriched for estrogen receptor signaling, which is one of
the main sex-specific pathways known to be active in breast
tissue. Once again, these results could not be found using other
community detection and network comparison methods.
ALPACA builds on our growing understanding of how networks

define phenotype. Differential expression is driven by changes in
the activity and structure of gene regulatory networks. But adding

or subtracting edges does more than change individual regulatory
interactions. With enough individual changes occurring in the
right places in the starting network, changes in edges can lead to
the creation or destruction of functional communities of genes
and their regulators. While the global structure of the network
may be largely unchanged, these new functional communities
provide insight into coherent processes that differentiate one
phenotype from another.
Consistent with this, we found that standard differential

expression analysis was unable to detect enrichment in many of
the biological functions found using ALPACA. This is because
network-level analysis, and ALPACA in particular, helps organize
both strongly and weakly differentially expressed genes into new
modules that are under common regulatory control, identifying
signaling pathways that could not have been distinguished if
genes were ranked purely by differential expression. Moreover,
ALPACA can also find the TFs that likely regulate these pathways
but are not themselves differentially expressed. In addition, we
found that the average magnitude of the Pearson correlation
coefficient among genes in an ALPACA module ranged from 0.06
to 0.34, suggesting that ALPACA provides insights that go beyond
correlation-based clustering of gene expression profiles.
ALPACA requires a minimum input of two graphs and could be

applied to many types of biological networks, including metabolic,
PPI, and expression Quantitative Trait Loci (eQTL) networks, all of
which exhibit highly functional modular structures.9,43,44 For
example, we could imagine applying ALPACA to compare
community structure in PPI networks with mutation-driven

Fig. 6 Sexually dimorphic ALPACA modules in human breast tissue. Networks show four modules specific to either female (left-hand side) or
male (right-hand side) breast tissue. Nodes are colored by membership in differential modules. Edge opacity is proportional to its contribution
to the differential modularity. Networks are annotated with representative enriched GO terms with Padj < 0.05. Genes annotated by the shown
GO terms are labeled in large font
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“edgetic” perturbations, in order to discover functional changes in
protein complexes and signaling associated with disease.45

ALPACA could also be applied to compare eQTL networks in
patient cohorts with differing pathologies to prioritize sets of SNPs
and genes that influence complex traits. Any of these ALPACA
modules could be interrogated for disease association using data
from genome-wide association studies.46

As is true of all methods, some of the general difficulties in
community detection will affect the performance of ALPACA.
Many real-world networks, including those found in biology, do
not have one clearly superior community partition, but instead
exhibit a complex landscape of near-optimal community struc-
tures.47 A number of studies have found that ensemble methods
can help identify robust communities in this landscape.48,49 In
ALPACA, we use CONDOR to detect communities in the baseline
network, and this is a deterministic method that finds one of the
high-scoring partitions of the network. We then optimize the
differential modularity using the Louvain method, which is
stochastic and can access many near-optimal solutions. The
performance of ALPACA could potentially be improved by
employing a consensus approach in both these steps.
Another challenge in community detection is the resolution

limit of various community detection methods.26 ALPACA is based
on modularity maximization and therefore still has a resolution
limit, even though it is smaller than usual due to the fact that the
null model is defined at the community level rather than at the
global network level. But in principle, phenotypes and diseases
may be driven by modules of any size. To identify all such
modules, we could adapt ALPACA to operate at a variety of
granularity levels by incorporating resistance parameters that
modify the modularity function.50,51

As more genome-wide studies of molecular interactions and
multi-omics data are generated, better statistical models for
network analysis will be critical to making differential network
biology a robust and reproducible platform for studying complex
diseases.14 ALPACA establishes a rigorous framework for compar-
ing complex networks and identifying changes in modular
structure, and is an important step forward in creating methodo-
logical platforms for predictive analysis of biological networks.

METHODS
ALPACA algorithm
ALPACA comprises the following two steps:
Step 1: The input network consists of edges between regulators and

target genes. We first label the nodes that act as regulators and targets
separately. In particular, a gene that encodes a TF becomes two separate
nodes depending on whether we are modeling its mRNA expression level
(target node) or protein activity (regulator node). For the weight of each
edge, we use the final z-score output by the PANDA network inference
algorithm. We then take the edges that have positive weight in the
baseline condition, and run bipartite weighted network community
detection using either CONDOR or the Louvain method.
Step 2: Compute Dij for the perturbed network, using the definition in

the main text and the baseline communities found in Step 1. It is possible
that the numerator and denominator of Nij are both zero, meaning that
there were no edges between the communities Ci andCj. This can happen
if, for example, at least one of the nodes i or j were not connected to the
baseline network to begin with. In this case, we define Nij to be zero, since
the “expected” number of edges between the two nodes is zero. We next
apply a generalized Louvain procedure to assign nodes into communities
based on Dij.

19 Briefly, the Louvain method works as follows: (i) Start with
every node in its own community, (ii) go through each node iteratively,
and merge it with the node that produces the biggest increase in
differential modularity, (iii) after reaching a local optimum, treat each of
the resulting groups as “metanodes” in a new “metanetwork” and
recalculate an effective adjacency matrix, and (iv) repeat steps (ii) and
(iii) until convergence. For the purpose of reporting reproducible results,
we iterate through the nodes in the same pre-determined order every
time, and we break ties by selecting the first member of the set.

In an optional third step, we can evaluate the core genes in each module
for enrichment in known biological pathways.
Step 3: The core genes are those that are most important to the integrity

of the module and therefore potentially the most robust and essential
members. To define the core genes, we score each node according to its
contribution to the differential modularity of the module that it belongs to:

Si ¼ 1
mP

X
j

Dij δ Mi ;Mj
� �

: (4)

We ranked the target genes in each module by their scores Si. Since the
size of typical modules found in ALPACA ranged from about 50 to 200
genes, we chose to use the top 50 core genes from each module to
evaluate functional enrichment in an equitable manner across all the
modules. We also repeated each analysis using the top 100 core genes in
order to test the dependence of the enrichment on the cutoff. GO term
enrichment was calculated using the GOstats package in R, with the
following parameters: the gene universe is defined to be the set of all
possible target genes in the initial networks, and the p-value calculation is
conditioned on the GO hierarchy structure. In each module, the p-values
were adjusted for multiple testing using the Benjamini–Hochberg method.
To run GSEA, we ranked all genes in the network by (i) their raw score Si

or by (ii) a version of the score ~Si normalized for the relative sizes of each
module,9 so that genes in smaller modules are not at a disadvantage
simply because they have fewer potential connections to nodes within the
module:

~Si ¼
P

j Dij δ Mi ;Mj
� �

P
i;j Dij δ Mi ;Mj

� � : (5)

GSEA pre-ranked was run against GO biological process gene sets using
the desktop Java application (http://software.broadinstitute.org/gsea) with
default parameters. An FDR threshold of 0.25 was used to identify
significantly enriched GO terms.

Edge subtraction method
For each edge, the edge weight of the baseline network was subtracted
from the edge weight in the perturbed network to compute Δwij, and only
edges with Δwij > 0 were retained. We then used the Δwij values as new
edge weights to perform community detection using CONDOR or Louvain
optimization.9,31

Community comparison method
We first used either CONDOR or Louvain method to find the community
structure of the baseline and perturbed networks, in each case keeping
only edges that had positive z-scores. We next aimed to efficiently map the
two community structures to each other. To find the best approximation of
a linear mapping, we computed R in the equation B= AR, where A is the
N × q matrix of node membership for the baseline community structure,
and B is the corresponding matrix for the perturbed community structure
(here N is the number of genes and q is the number of communities). To
invert the matrix A, we used singular value decomposition to compute the
pseudoinverse AP= VD−1UT, where A= UDVT and then computed R= APB.
The entries of the q × q matrix R represent an approximate linear
transformation that maps the communities in the baseline network to
the communities of the perturbed network. Finally, we scored each node
according to how much its community membership remains the same
between baseline and perturbed conditions, using the formula
SðRÞi ¼ P

j
AijRBij . Nodes were ranked from low to high values of SðRÞi for

further analysis. Low-scoring nodes represent the nodes that participate in
altered community structure in the perturbed network.

Creating simulated networks and evaluating differential
community methods
To simulate “addition” networks, we started with the GFP-control network
from the tumor virus dataset (see section on “Data preprocessing,
differential expression, and network inference” for details on how this
network was constructed) and thresholded the edges at a z-score of 2.7
(for noiseless simulation) or 2.9 (for noisy simulation). The threshold was
chosen such that the resulting edges would form an unweighted network
with a similar community structure as the full weighted network. We found
that applying CONDOR to the GFP-control network at a threshold of 2.7
resulted in five communities containing 1336, 833, 781, 1018, and 44
nodes each. To add a module, we randomly chose a subset of these nodes
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and added all possible new edges between them. To add noise in the
second set of “addition” networks, we also resampled edges as follows: (i)
start with an empty network with the same nodes as the GFP-control
network, (ii) count the number of edges between TFs in community Ci and
target genes in community Cj, for each pair i and j, in the GFP-control
network, and (iii) add a matching number of edges randomly between the
TFs in community Ci and target genes in community Cj in the new network.
We evaluated the results of each method on the simulated networks by

comparing the ranks of true positives (the target genes in the added
module) against a background consisting of target genes not in the added
module. We used one-sided Kolmogorov–Smirnov and Wilcoxon tests to
look for significant differences in the distribution of the ranks. Both tests
gave similar results, and in the figures we present the one-sided Wilcoxon
p-values.
To create the “subtracted” simulation with two node groups, we started

with a fully connected network containing 100 nodes, with all edge
weights set to a default value of 0.1. We then defined two node groups, A
and B, each containing 10 TFs and 40 genes. Edges within each of these
groups were set to edge weight 1.0. Next, to create the baseline network
we set the weights of all edges between groups A and B to be 0.8. To
create the perturbed network we set the weights of all edges between
groups A and B to be 0.2. To create the three-group “subtracted” network,
we first created a fully connected network containing 125 nodes, with all
edge weights set to a default value of 0.1. We then defined three node
groups A, B, and C containing 50, 25, and 50 nodes, respectively (of which
10, 5, and 10 were TFs). Edges within each group were set to weight 1.0,
and all edges between groups B and C were set to weight 0.2. For the
baseline network, the edges between groups A and B were set to weight
0.8 and for the perturbed network, the edges between groups A and B
were set to weight 0.2.

Data preprocessing, differential expression, and network inference
Preprocessing and network inference for ovarian cancer data was carried
out as previously described.36 Briefly, we ran the network inference
algorithm PANDA (Passing Attributes between Networks for Data
Assimilation) to integrate gene expression data with TF-binding sites to
create regulatory networks for each subtype.34 The prior network of
binding sites for 111 TFs were defined as the occurrence of the
corresponding motif in the promoter, defined as [−750, +250] base pairs
around the transcription start site (TSS).
The viral oncogene gene expression data were normalized and batch-

corrected, and a map of high-probability TF-binding sites was created by
combining cell-type-specific DNase-I hypersensitivity data with motif
occurrence in the promoters defined as [−25 kb, 25 kb] around each
TSS, as previously described.37 The binding sites and gene expression were
combined to infer networks using PANDA with default parameters, as
previously described.1

Sex-specific and tissue-specific transcriptional networks for the GTEx
data were constructed as previously described.38,52

Differential expression analysis was carried out using the R package
limma, and p-values were adjusted for multiple testing using the
Benjamini–Hochberg method.53

Code availability
ALPACA is implemented in R and is freely available for download through
Github at https://github.com/meghapadi/ALPACA.

Data availability
Ovarian cancer gene expression data are available from The Cancer
Genome Atlas (TCGA) at https://gdc.cancer.gov. Tumor virus gene
expression data are available from the Gene Expression Omnibus (GEO),
accession number: GSE38467. Breast tissue data from the Genotype-Tissue
Expression (GTEx) project can be found at https://sites.google.com/a/
channing.harvard.edu/kimberlyglass/tools/gtex-networks.
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